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a b s t r a c t

We present an independent test of recently developed methods of potential analysis and
degenerate fingerprinting which aim, respectively, to identify the number of states in a
system, and to forecast bifurcations. Several samples of modelled data of unknown origin
were provided by one author, and the methods were used by the two other authors to
investigate these properties. The main idea of the test was to investigate whether the
techniques are capable to identify the character of the data of unknown origin, which
includes potentiality, possible transitions and bifurcations. Based on the results of the
analysis, models were proposed that simulated data equivalent to the test samples. The
results obtained were compared with the initial simulations for critical evaluation of the
performance of themethods. In most cases, themethods successfully detected the number
of states in a system, and the occurrence of transitions between states. The derived models
were able to reproduce the test data accurately. However, noise-induced abrupt transitions
between existing states cannot be forecast due to the lack of any change in the underlying
potential.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Developing new statistical techniques requires their testing on artificial data, which is usually performed on simulated
surrogate series with known properties [1]. In this paper, we attempt an independent (or ‘blind’) test of new methods of
time series analysis. Blind testing is well established in the geosciences (see for instance [2–4]) and is a rigorous form of
testing new methods. The methods of time series analysis we examine are increasingly being used in important applied
contexts, where their reliability needs to be well established. In particular, several groups are interested in detecting past
transitions or bifurcations in climate data [5–9], with the ultimate aim of trying to forecast such features in the future
[10,11]. It is vital that the methods used are tested to assess their reliability and limitations, because any positive results
(e.g. a forecast of forthcoming climate bifurcation) could be extremely important to societies, but are also likely to be
contested (in scientific and social arenas). Whilst those developing and applying statistical methods should always do a
careful job of self-checking their reliability in a given context, past experience (in climate science at least) suggests this has
not always been the case.

A transparent way to test methods is to apply them to artificial time series provided by an independent party who knows
(but does not reveal) the underlying model used to generate the data. Here several sets of time series data were provided
by one of the authors (P. D. Ditlevsen) without revealing their origin. The methods to be tested were then run by the other
authors, and from the results of their statistical analysis and visual observations, they described the expected properties
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and behaviour of the underlying systems and attempted to model the corresponding data. The provider of the original data
then commented on the results and disclosed the origin of the series and the extent to which themethods used were able to
detect and describe the dynamics of the simulated systems. In Section 2, we describe themethods tested. Section 3 presents
the results. Section 4 describes the performance of the methods. Section 5 concludes.

2. Methodology

For detecting and forecasting critical behaviour in time series (by which we mean climate temperature transitions
and bifurcations), two techniques have been developed; potential analysis and degenerate fingerprinting. We distinguish
transitional and bifurcational behaviour: in the case of bifurcation, the number of states in the system is changing (structural
change), whereas in the case of transition, the underlying systempotentialmay remain the same but the system statemay be
shifting with some trend (linear, parabolic, etc.). The transitions may be noise-induced, when the system oscillates between
known states of a fixed potential, or forced by external forcing, as in the case of increasing temperature due to fossil fuel
emissions.

2.1. Potential analysis

Following several early studies that proposed multistability of the climate system [12–14], it was suggested [15,5] that
a stochastic equation with double-well potential can be appropriate for modelling some aspects of the Earth’s climate. In
particular, a climatic potential function was introduced in Ref. [16], where its time-dependent properties (probability flux
and variance) and most probable states of the stationary probability distribution were studied. A stochastic resonance in a
systemwithperiodically oscillating potentialwas studied in Ref. [17],where a dynamical systemwas subject to both periodic
forcing and random perturbation. However, these studies considered only bistable potential, whereas the approach we use
allows for a higher number of states. Moreover, the present method provides a novel presentation of the dynamics of a time
series in a potential contour plot, where bifurcations are visualised [8,18].

Following the potential approach, Kwasniok and Lohmann [7] studied a proxy for paleotemperature in Greenland during
the last ice age using the stochastic differential equation

ż(t) = −U ′(z) + ση, (1)
with a double-well potential

U(z) = a4z4 + a3z3 + a2z2 + a1z,
andproposed anumericalmethod toderive the coefficients of the potential fromanobserved time series using theunscented
Kalman filter (UKF) for its parameter estimations (see [19,7,20]).

Based on this approach, we have developed the method of potential analysis [8,18], which provides a dynamical portrait
of time series (see Figs. 3–5). The number of system states is estimated bymeans of a polynomial fit of the probability density
function of the data. The results of the analysis of sliding windows of variable size are plotted in a contour potential plot [8].
As an adopted colourmap standard, we denote detected one-well potential by red colour, double-well potential by green
colour, triple-well potential by cyan colour, four-well-potential by purple colour; the number of detectedwells bigger than 4
is denoted by yellow colour. If the change of the number of states (change of colour in the potential contour plot) is observed
along all time scales (varying time windows), this denotes a bifurcation in the series. If there is only a sporadic change at
smaller time scales, this may be due to small-size effects or nonstationarities, and does not indicate a global bifurcation.

2.2. Degenerate fingerprinting

The method of ‘degenerate fingerprinting’ was proposed by Held and Kleinen [10], who used the lag-1 auto-correlation
function to estimate the decay rate in a time series from its short-term memory. For a system approaching a bifurcation,
a nearly universal property is that this decay rate will tend to infinity — a phenomenon known as ‘critical slowing down’.
Subsequently, we modified the method of degenerate fingerprinting [11] to use Detrended Fluctuation Analysis (DFA) to
estimate the decay rate. DFA is a widely used tool for the study of statistical scaling properties of nonstationary time series
which was introduced in Ref. [21]. It has been applied successfully to DNA sequences [22], heart-rate dynamics [23–25], and
climate dynamics [26,27].

Here we employ and compare both methods for estimation of the decay rate in time series. In the case of the
autocorrelation approach, any linear trend is first removed from the data.

In the degenerate fingerprinting techniques, a sliding window of fixed size is moving along a time series and lag-1
correlation or DFA exponent is estimated for the segment of data. This provides the so-called ACF- and DFA-propagators,
whose tending to a value 1 denotes critical behaviour. In principle, if a system is approaching a bifurcation, this should be
forewarned by an upward trend in the propagators towards 1. Comparing propagators allows us to analyse the influence of
trends and variability in the short-term memory.

To illustrate the propagator technique, in Fig. 1 we show artificial data, in which a sigmoid function is superimposedwith
red noise with fluctuation exponent α = 0.7, which was generated using a perturbation in the Fourier domain [28]. This
dataset simulates a forced transition, where the pattern of fluctuations does not change but the underlying trend drives a
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Fig. 1. Sigmoid function superimposedwith colour noisewith fluctuation exponentα = 0.7 (upper panel). ACF-propagatorswith andwithout detrending;
the influence of the transitional trend is indicated in the area where these two curves of ACF-propagators differ. DFA-propagator, similarly to the ACF-
propagator with detrending, shows no presence of a genuine bifurcation.

system to another state.When applying theACF-propagatorwithout detrending,we see clear indication of critical behaviour,
with values approaching 1. However, if we apply ACF-propagator with detrending or DFA-propagator, we can see that there
is no real criticality in the data, and thus we can conclude that there is no genuine bifurcation or changing number of states
in the system.

To detect transitions between states via low order moments of the probability distribution, one needs to be near
criticalities where some of these states coalesce, as happens in pitchfork and limit point bifurcations. Otherwise, the
transition occurs through finite jumps that have no clear signature in the autocorrelation function or variance levels. In
these cases, degenerate fingerprinting can only be used for detecting (not forecasting) critical behaviour.

Recently, Ref. [29] suggested that autocorrelation alone is not enough to detect bifurcations, and in addition changes
in variance should be monitored. Moreover, Ref. [30] showed that in finite-size time series of length N with power-law
correlation exponent γ , variance ∆2

N(s) and autocorrelation function CN(s) satisfy ∆2
N(s) = CN(s/sx) + O(s−1), where

sx =


2

(2−γ )(1−γ )

1/γ
.

This confirms our observation that the DFA-propagator is meaningful in monitoring changes in the data alongside the
ACF-propagator. For example, most climatic time series possess power-law correlations, and in the presence of memory,
especially with high fluctuation exponent and nonstationarities, lag-1 autocorrelations are not informative. In Fig. 2, we
show data constructed of 11 chunks of red noise with increasing fluctuation exponent from 0.5 to 1.5, and one can see how
the data becomes nonstationary, which is indicated by the trend in both propagators, as well as in the variance. Note that for
the last two chunks, when ACF-propagator reaches its maximal value 1, DFA-propagator is able to detect further variability
in the data, providing additional information about the changes in the variance.

3. Analysis of the test data

3.1. Data overview

In Figs. 3–5, we show the nine samples of artificial data provided for the test, their potential contour plots, and
propagators (ACF- and DFA-propagators were calculated with sliding window of fixed size 500). Samples 1–7 demonstrate
similar types of behaviour, with abrupt jumps between twomain states, whereas samples 8 and 9 are structurally different.
In addition, samples 4–7 have pronounced periodic variability of fluctuations within each state. Sample 8 demonstrates
quasi-periodic behaviour, and sample 9 resembles ice-sheet dynamics with accumulation and ablation stages.

In the first sample (Fig. 3), themajor abrupt transitions at 1500 and 2800 time units are detected by both propagators and
by the potential plot, and also, because the potential plot considered various time scales (whereas propagators were calcu-
lated for the fixed window 500), it is able to detect the shorter-scale transition at 3100. In addition, themulti-scale potential
plot shows, at bigger scales, that the data are quite homogeneous with pronounced double-well-potential behaviour.

Propagators can detect the noise-induced transitions when the background behaviour is non-critical (there are no
nonstationarities, changes in memory, etc.). This happens, for example, in sample 1. Both propagators are far from critical
value 1 in the beginning of the series, but then the abrupt change (noise-induced) kicks their values to 1, and they detect
this noise-induced change.
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Fig. 2. Artificial data combined of eleven chunks of 1000 datapoints eachwith increasing fluctuation exponent α from 0.5 to 1.5 with step 0.1. Upper panel
shows data with increasing nonstationarities due to increasing memory. Middle panel shows the variance calculated along the series in non-overlapping
windows of size 100; due to the increasing memory the variance is decreasing. The bottom panel shows ACF- and DFA-propagators correctly detecting the
critical behaviour of the data. Note that when ACF-propagator reaches critical value 1 and stabilises there, DFA-propagator is still able to detect variability
in the data, and its fluctuations correspond to changes in variance in the middle panel.

In the sample 4, where there is irregularity at 2300–3000, this is detected by the potential plot. In sample 5, the detection
of the pattern is also consistent in all three techniques.

Cyan in the potential colour plot denotes three wells in the potential, and this colour is observed at larger time scales in
samples 4 and 6, where the timewindow aggregates large amount of data with several types of variability. In these samples,
double-well-potential data also have high-frequency periodic oscillations, and in the histogram this additional variability
appears as a third mode—this explains the higher number of states in that case. In sample 5, the waiting time of jumps
between wells is much longer, and therefore the first half of the data is identified as one-well-potential (with periodic
oscillations).

Analytically, proving non-potentiality would require proving non-existence of non-trivial solutions to particular
equations for the Lyapunov function (which is also difficult to find). However, the potential analysis allows us to detect
experimentally a sample without globally existing potential, which is indicated by variable patches in the potential contour
plot (see sample 9, Fig. 5). This intermittent pattern in the contour plot is caused by varying potential or by complicated
noise or both. In fact, the series 9 may be non-potential with damping.

3.2. Suggested models to reproduce the test data

We attempted to reproduce datasets with estimated properties using the Langevin equation with varied parameters and
forcings in order to test our initial guesses about the provided data.

In Figs. 3–5, we show samples of the modelled data reconstructed from our analysis of the data provided for the test. We
used four main types of the models:

• Langevin equation with white noise (samples 1–2).
• Langevin equation with white noise and periodic forcings (samples 4–7).
• Signal with three sine waves superimposed — analogous to the insolation forcing (sample 8)
• Non-potential model of ice-accumulation with damping (sample 9).
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Fig. 3. Three samples (1–3) of artificial data provided for the test, and their potential colour plots and propagators (upper 9 panels). Artificial data
reconstructed from the analysis of the test data, their potential plots and propagators (lower 6 panels). Since we were unable to reproduce the data
presented in sample 3 of the test, the relevant panels are omitted. In the contour plots, detected one-well potential is denoted by red colour, double-well
potential by green colour, triple-well potential by cyan colour, four-well potential by purple colour; the number of detected wells bigger than 4 is denoted
by yellow colour. ACF- and DFA-propagators were calculated with a fixed sliding window of size 500.

To simulate the potential data in samples 1–2, 4–7, we used the Euler schemewith step size h, sampling every 5000 time
steps. The potential model equations were as follows (potential U(z) = z4 − 0.16z3 − 0.4z2 + 0.016z for six simulated
datasets; see Figs. 3–5):
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Fig. 4. Three samples (4–6) of artificial data provided for the test, and their potential colour plots and propagators (upper 9 panels). Artificial data
reconstructed from the analysis of the test data, their potential plots and propagators (lower 9 panels). In the contour plots, detected one-well potential
is denoted by red colour, double-well potential by green colour, triple-well potential by cyan colour, four-well potential by purple colour; the number of
detected wells bigger than 4 is denoted by yellow colour. ACF- and DFA-propagators were calculated with a fixed sliding window of size 500.

Sample 1

dz = −U ′(z)dt + σdW , σ = 0.1, h = 0.008.
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Fig. 5. Three samples (7–9) of artificial data provided for the test, and their potential colour plots and propagators (upper 9 panels). Artificial data
reconstructed from the analysis of the test data, their potential plots and propagators (lower 9 panels). In the contour plots, detected one-well potential
is denoted by red colour, double-well potential by green colour, triple-well potential by cyan colour, four-well-potential by purple colour; the number of
detected wells bigger than 4 is denoted by yellow colour. ACF- and DFA-propagators were calculated with a fixed sliding window of size 500.

Sample 2

dz = −U ′(z)dt + σdW , σ = 0.15, h = 0.0001.
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Table 1
Parameter values used for generating test samples 1–7.

Sample σ σ1 A τ

1 1.11 – – –
2 1.26 – – –
3 1.26 0.40 – –
4 0.79 – 4.0 500
5 0.73 – 4.0 500
6 0.79 – 4.0 150
7 0.95 – 4.0 150

Sample 3
Although the potential analysis clearly detected the sample as double-well-potential, we were unable to find model

parameters of the Langevin equation that would produce a similar time series. This may be due to a more complex model
used to generate the series.
Sample 4

dz = −U ′(z)dt + σdW + A sin(2πz/τ), σ = 0.1, h = 0.0003, A = −0.1, τ = 630.

Sample 5

dz = −U ′(z)dt + σdW + A sin(2πz/τ), σ = 0.1, h = 0.003, A = −0.03, τ = 320.

Sample 6

dz = −U ′(z)dt + σdW + A sin(2πz/τ), σ = 0.11, h = 0.0032, A = −0.03, τ = 200.

Sample 7

dz = −U ′(z)dt + σdW + A sin(2πz/τ), σ = 0.05, h = 0.93, A = −0.03, τ = 125.

Two other datasets (samples 8 and 9) were simulated as follows
Sample 8

f (x) = K [sin (2πx/τ1) + sin (2πxτ2) + sin (2πx/τ3)] , K = 3, τ1 = 340, τ2 = 140, τ3 = 80.

Sample 9

dz
dt

=


(C − B)dt + σdW , C = A0, z < Zmax,
z = Zmin, C = 0.1 · A0, z ≥ Zmax,

A0 = 0.1, z0 = 0, Zmax = 50, Zmin = 0, B = 0.01, σ = 0.5.
In Figs. 3–5, we show the propagators of the simulated data, and we note that, similarly to the test data, the propagators

are able to detect the abrupt transitions. The main patterns of the simulated potential plots are the same as for the test data,
and the non-potential character of the last sample is confirmed by the same patchy behaviour as in the test sample.

3.3. Actual modelled data

The generated data are the generic non-trivial models of bimodal behaviour, which is seen in many real measured data
series—in much the same way as an Ornstein–Uhlenbeck process is generic for a noisy linear process.

The nine samples of time series generated for the independent test were as follows:
The samples 1, 2 were generated by a Langevin equation:

dz = −U ′(z)dt + σdW , (2)

where the drift term is generated by a symmetric double-well potential

U(z) = 5z4 − 10z2. (3)

Sample 3 is the sum of a process generated as sample 2 and a white noise with intensity σ1. samples 4–7 are stochastic
resonance processes generated by:

dz = (−U ′(z) + A sin(2πz/τ))dt + σdW .

The parameters are listed in Table 1.
Sample 8 is a realisation of the x component of the chaotic Rössler system:

ẋ = −y − z
ẏ = x + a y
ż = b + −z (x − c)



V.N. Livina et al. / Physica A 391 (2012) 485–496 493

15

10

5

0

–5

–10
–2 –1 0 1 2

Fig. 6. Comparison between the potential used for generating the test samples (full) and the estimated potential used for generating the ’simulated’
samples (dashed). All samples of potential test data were simulated using double-well-potential model (1).

with (a, b, c) = (0.1, 0.1, 14). Finally, sample 9 is generated by a Langevin equation with a constant drift and a jump when
a threshold is crossed:

dz =


Cdt + σdW , z < Zmax,
−(Zmax − Zmin), z ≥ Zmax,

where C = 0.1, Zmax = 50, Zmin = 0, and σ = 0.5.

4. Discussion: comparing test and estimated generators

The tested methods identified the governing equations for test data samples 1 and 2 to be generated using a constant
potential and test data samples 4–6 using the same potential and an additional time varying component, which are
thus stochastic resonances. The generating equations for these 6 first test samples, except for sample 3, were essentially
reconstructed correctly.

In order to compare the suggested models with those actually used to produce data from Eq. (2), the following
transformation is used,

dz = −λU ′(z)d(t/λ) +
√

λσd(W/
√

λ)

= −Ũ ′(z)dt̃ + σ̃dW̃ ,

where t̃ = t/λ. The potential used above thus rescales to Ue(z) = λ(z4 − 0.16z3 − 0.4z2 + 0.016z).
Furthermore, a further rescaling of the estimated parameters is necessary. Defining U(z) = 5z4 − 10z2 and Ue(z) =

z4 − 0.16z3 − 0.4z2 + 0.016z, the rescaling is done by using the variable ze = µ(z − z0), such that we approximately
have Ũ ′

e(ze) ≡ Ue(ze/µ + z0) = 0 ⇔ U ′(z) = 0. The minima for Ue(z) are z− = −0.402 and z+ = 0.502, while the
local maximum is at z0 = 0.020. Since the corresponding extrema for the potential U(z) are in ±1 and 0, respectively,
we can use µ = 1/0.46 = 2.17. By this change of variables the Langevin equation for the variable ze becomes dze =

−µ2Ũ ′(ze)dt + (µσ)dW ≡ −Uf (ze)dt + σf dW .
Finally, we have for sample 1

Uf (z) = 8.5z4 − 1.5z3 − 16.3z2.

The ‘‘true’’ potential (full) and the estimated potential (dashed) are shown in Fig. 6.
The sample 7 has a step size too large to be well represented by the equation stated above in Section 3.3, it must rather

be considered a difference equation generated by the map:

zn+1 = f (5000)(zn),

where f (z) = z − h(4z3 − 0.48z2 − 0.8z + 0.016) +
√
hση and η is a Gaussian random variable with zero mean and unit

variance. In this case, the harmonic component A sin(2πz/τ) is completely negligible, since |A/h ≈ |10−6, the estimated
period for the harmonic τ = 125 time units is, even though close to the correct stochastic resonance period, not relevant
for their test sample 7, which does not have a periodic component.
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Table 2
Estimated parameter values used for samples 1–6.

Estim. σe σe
√

λ σf = σe
√

λµ −A −Aλ τ

1 0.10 0.63 1.37 – – –
2 0.15 0.11 0.23 – – –
4 0.10 0.12 0.27 0.1 4.0 630
5 0.10 0.39 0.84 0.03 1.2 320
6 0.11 0.44 0.96 0.03 1.2 200
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Fig. 7. Comparison between realisations of the test dynamics (left column) and the ‘simulated’ dynamics (right column). This is now for a time period five
times longer than what was provided to my co-authors.

Sample 8 is chaotic, but even though the suggested model is not correct, the method identifies correctly that the data
cannot be generated by an effective potential.

The analysis of sample 9 seems rather uninformative, suggesting that the correct guess on the very simple governing
equation is more based on direct inspection of the data than on the result of the analysis.

Comparison between the actual and the estimated parameters (see Table 1, Table 2 and Fig. 6) shows that the method
is not superior in quantitative estimation of parameters. This is always a delicate problem for short samples. To illustrate
this data samples equivalent to samples 1, 2, 4, 5 and 6 but now five times longer than the ones provided for analysis,
were generated. This was done using the same parameters as before for both the provided and the estimated samples.
The realisations are shown in Fig. 7. From these, clear differences are seen. With the knowledge of the type of generating
dynamics (2), which the analysis did not have, the uncertainty in estimation of parameters can be assessed by Monte Carlo
simulation. To illustrate this, the (maximum likelihood) potential from different realisations of length 4000 time units of the
dynamics generating test sample 1 has been calculated. The potential is calculated from the stationary probability density
p(z) by solving the Fokker–Planck equation with respect to the drift term:

U(z) = −
σ 2

2
log p(z).
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Fig. 8. A 20000 time unit realisation of the process generating test sample 1. The potential (black curve) is estimated from the probability density by
solving the Fokker–Planck equation. The blue estimate is obtained by using the full time series, while the five red curves are obtained by using only data
within the 4000 time unit slots indicated by vertical lines in the top panel.

For simplicity it is assumed that σ , which can be estimated independently, is known. In Fig. 8, the potentials estimated in
five 4000 time unit sections of the 20000 time unit realisation (in red) are compared with the ‘true’ potential (black curve).
The estimate in blue is obtained by using the probability density of the full 20000 time unit realisation. The estimate with a
too shallow left well corresponds to the last 4000 time unit period, where by chance the system is mostly in the right well.
The observation that the red curves in Fig. 8 are closer to the ‘true’ potential than the dashed curve in Fig. 6 is an indication
that themethod ismainly applicable for qualitative identification of time varying effective potentials generating time series.

5. Conclusion

The techniques tested here were able to successfully detect changes of state and abrupt potential jumps in the test time
series. The potential analysiswas able to detect the number of states and to recognise a samplewith non-potential behaviour.
The modified degenerate fingerprinting was able to detect but not forecast changes of state, due to their abrupt and noise-
induced character in the test data. Based on this analysis and visual observation of the test series, statistical models were
proposed that reproduced the behaviour of the test series with analogous properties.

The generating equations for the six first test samples, except for sample 3, were reconstructed correct. For sample 8, the
model suggested was not correct, but the tested statistical methods identified correctly that the data cannot be generated
by an effective potential. The guess on sample 9 was correct, but more based on direct inspection of the data than on the
result of the analysis.

Overall, the potential analysis method is suitable for detecting potentials in cases where such potentials are generating
the data. However, for the case (sample 3), where an additional uncorrelated noise masks the dynamics, the method
fails in detecting the potential. Hence the method can provide false rejection if the null hypothesis is that a generating
potential exists. Conversely, themethod has (for the test datasets examined) not made any false rejections of the alternative
hypothesis that the data was not generated by an effective potential.

We conclude that the methods of potential analysis and degenerate fingerprinting are suitable for analysing system
potentials and are able to detect noise-driven jumps between system states. We note that the quantitative estimation
of potential parameters may be inaccurate in the case of short data samples. We suggest that, although unconventional,
independent testing allows one to objectively assess the reliability and limitations of methods of time series analysis. This
is particularly important in the area of climate change research, where knowledge is highly contested (especially in a social
context). A public web database detailing general rules and procedures could be set up if others are willing to test their
methods in this manner.
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