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ABSTRACT

The rapid climate shifts observed in the glacial climate are analyzed. The transitions into the warm

interstadial states, the onsets, are easily identifiable in the record. The distribution of waiting times between

consecutive onsets is well fitted, assuming that the remaining residence time in each state is independent of

the past. This implies that it has a simple no-memory exponential waiting time distribution, but with the

mean waiting time depending on the climate state. The mean waiting time from one onset to the next is

around 2400 yr. The most likely (maximum likelihood) distribution derived solely from the onset sequence

is rather insensitive to the mean waiting time in the warm interstadials in the range of 400–1200 yr. When

extending the analysis to include the transitions from the warm interstadials to the cold stadials observed

with a larger uncertainty, the distributions in the two states are well fitted to exponential distributions, with

mean waiting times of around 800 yr in the warm state and around 1600 yr in the cold state. This observation

is an important piece in the climate puzzle, because the fact that the climate is a no-memory process

indicates that the transitions are noise induced and the mean residence time in one state indicates how

stable that climate state is to perturbations. The possibility of a hidden periodic driver is also investigated.

The existence of such a driver cannot be ruled out by the relatively sparse data series (containing only 21

onsets). However, because the record is fitted just as well by the much simpler random model, this should

be preferred from the point of view of simplicity.

1. Introduction

The Dansgaard–Oeschger (DO) events of rapid cli-

mate shifts in the glacial climate observed in the Green-

land ice cores are still not well understood. It is debated

to which extent this is either a regional or a more global

in nature phenomenon (Wunsch 2006), but it seems to

be agreed that there are two quasi-stationary climate

states: the glacial or stadial and the DO or interstadial

states. These represent reorganizations of the climate

system either related to changes in the North Atlantic

oceanic circulation (Weaver et al. 1991), the extent of

the ice sheets (MacAyeal 1993), sea ice (Gildor and

Tziperman 2003), or even changes in the mean state of

the atmospheric flow (Wunsch 2006). The state-of-the-

art global circulation models are not capable of simu-

lating the events, which should be of high priority in

order to test if the models resolve the true dynamical

range of possible climate changes. The mechanism for

triggering a DO event could be externally driven pos-

sibly by solar variations (Braun et al. 2005), related to

either internal nonlinear free oscillations (Haarsma et

al. 2001) or random noise-driven jumps between quasi-

stationary climate states (Cessi 1994; Ditlevsen 1999).

To approach this enigma from an observational point

of view, the waiting time statistics could be used both to

distinguish between the different possibilities and to be

a benchmark for modeling the events. From the spec-

tral content of the signal it has been proposed that the

triggering might be periodic (Schulz 2002). However, it

was demonstrated in Monte Carlo simulations that the
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apparent periodicity is not significantly different from

what would be found in a random signal (Ditlevsen et

al. 2007). Likewise, it was demonstrated that a stochas-

tic resonance model (Alley et al. 2001) would have too

small a strength of the periodic forcing to be detected

above the noise level for the DO events (Ditlevsen et

al. 2005).

The waiting time statistics relies on accurate dating of

the events observed in the ice core records. The dating

of the North Greenland Ice Core Project (NGRIP) ice

core has been completed by annual layer counts going

back to 60 kyr BP with unprecedented accuracy (Svens-

son et al. 2008). The quoted dating uncertainty (one

sigma) accumulates to 1300 yr at 60 kyr BP. Thus, an

approximate uncertainty of (1300/
ffiffiffiffiffi

60
p

)
ffiffiffi

n
p

’ 168
ffiffiffi

n
p

y accumulates during n kyr. Herein this measuring un-

certainty is not included in the analysis of the data read

from the NGRIP isotope record.

The isotope record from NGRIP is shown in Fig. 1.

The numbers refer to the original numbering of DO

events (Dansgaard et al. 1993). The red circles indicate

the initiations of DO events. A discussion of criteria for

determining the initiations can be found in Ditlevsen et

al. (2005). The green circles indicate the terminations of

the DO events. As seen in the blow up in the lower

panel, these are much less well determined than the

initiations.

2. Distribution of the time between consecutive

DO events

The fact that the time points of initiation of the DO

events are much more precisely identified than the

points of termination motivates us to first study the

statistical properties of the stream of initiation points by

themselves.

In appendix B, we investigate whether it is compat-

ible with the observed sequence of consecutive time

distances between the DO events to assume that these

chronologically ordered distances are mutually inde-

pendent. This is done by transforming the observed

time distances into approximately normally distributed

numbers, followed by calculating the ‘‘autocorrelation’’

coefficients of the transformed sequence. The devia-

tions from zero of these ‘‘number lag’’ correlation co-

efficients are found to be insignificant. The property of

zero correlation is not a sufficient condition for inde-

pendence in the case of normal marginal distributions.

However, the simplest possible consistent assumption is

that the bivariate distribution is normal, implying that

the two variables become independent. The dataset is

far too small for rejection of the bivariate normal hy-

pothesis with any reasonable confidence.

The simplest suggestion of a model of a random point

stream with statistically independent consecutive time

FIG. 1. (top) NGRIP isotope record with red circles indicating the transitions from the

stadial to the interstadial state (off–on), while the green circles indicate the transitions from

the interstadial to the stadial state (on–off). The numbers are the canonical numbering of DO

events. (bottom) Close-up view of the period 38–48 kyr BP, where it is seen that the deter-

mination of the on–off transitions are much more uncertain than determining the sharp off–on

transitions. This is indicated by the error bars. The transition times in years BP based on the

NGRIP Greenland Ice Core Chronology 2005 (GICC05) time scale used here are as follows:

off–on5 [11 660, 14 600, 23 300, 27 740, 28 800, 32 480, 33 680, 35 440, 38 200, 40 140, 41 440, 43

320, 46 820, 49 260, 54 200, 54 960, 55720, 58020, 58240, 59 040, 59 420]; on–off5 [12 900, 23 180,

27 440, 28 560, 32 040, 33 340, 34 740, 36 540, 39 840, 40 770, 42 000, 44 260, 48 190, 51 620, 54 840,

55 280, 56 440, 58 120, 58 540, 59 260].
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distances is that these have a common probability dis-

tribution characterized by a lack of memory in the fol-

lowing sense: The probability distribution of the re-

maining time distance to the first point after any chosen

instant is the same independent of how far back in time

from the instant the previous point occurred. This as-

sumption implies that the exponential distribution is

the only possible distribution for the time distance be-

tween two consecutive points in the stream (Johnson

and Kotz 1970). The point stream is then a so-called

homogeneous Poisson process.

The observed sample consists of 20 distances and has

the empirical distribution function plotted as circles in

Fig. 2 {plotting position after ordering the sample as [ti,

1/40 1 (i 2 1)/20], where t1 # t2 # . . . # ti # . . . # t20}.

Moreover, the exponential distribution function with

the mean equal to the average 2388 yr of the observed

sample is shown. The systematic misfit that appears

between the empirical distribution and the exponential

distribution indicates that the assumption of lack of

memory may not be fully convincing.

A next step of choice of a simple and also physically

reasonable model that includes memory is to assume

that the system can be in two different states, and that

For t1 6¼ t2, the probability density at the point (t1, . . . ,

tn) in the n-dimensional space of the n sample of T is

Lðt1; t2; t1; . . . ; tnÞ5 ðt1 ÿ t2Þÿn
Y

n

i51

ðeÿti=t1 ÿ eÿti=t2Þ;

ð2Þ

according to the multiplication rule for statistically in-

dependent random variables. This density calculated

for the actual sample t1, . . . , tn is called the likelihood of

the parameters (t1, t2) and as function of these param-

eters, L(t1, t2; t1, . . . , tn) is called the likelihood func-

tion. It is obviously a reasonable principle to estimate

FIG. 2. (left) The exponential distribution function FT(t) 5 1 2 exp[2t/E(T)], t . 0, corre-

sponding to the mean E(T) 5 2388 yr, together with the observed 20-sample distribution fun-

ction. (right) A better fit by the distribution function FT(t)5 12 [t1exp(2t/t1)2 t2exp(2t/t2)]/

(t1 2 t2), t . 0, corresponding to the maximum likelihood estimates t1 5 493 yr, t2 5 1895

yr obtained from the sample so that t1 1 t2 5 E(T).

the only memory element is the current state of the

system.

This is tantamount to the assumption that the glacial

climate varied in time as a realization of a stationary

on–off jump process [where the interstadials (D–Os)

are the ‘‘on’’ state and the stadials are the ‘‘off’’ state] in

which the jumps between the two states occur com-

pletely at random and at any time statistically indepen-

dent of the past. It is emphasized that such an on–off

model does not imply that there must be statistically

stationary behavior (stability) within each state. At this

level of modeling the within-state variations are of no

concern except for the lack of memory. Physically the

triggering of the jumps could come from the fast time-

scale chaotic variations (noise), which are temporally

uncorrelated on the observed climatic time scales. The

assumed within-state lack of memory implies that the

durations of the interstadials and the durations of

the stadials become exponentially distributed, but not

necessarily with the same mean values.

Adopting this model we have T 5 T1 1 T2, where T1

and T2 are independent exponentially distributed ran-

dom variables of means t1 and t2, respectively. The sum

of the two has the probability density

fT1 1T2
tð Þ5

ðt

0

1

t1
eÿs=t1

1

t2
eÿ tÿsð Þ=t2 ds5 ðt1 ÿ t2Þÿ1ðeÿt=t1 ÿ eÿt=t2Þ for t1 6¼ t2

tÿ2teÿt=t for t1 5 t2 5 t

�

:
ð1Þ
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the true values of the parameters by the point at which

their likelihood is maximal.

It is a simple exercise to see that the maximum like-

lihood estimate of t1 from a sample t11, . . . , t1n of the

exponentially distributed variable T1 is the average of

the sample, and similarly for t2. From this fact it does

not follow that the maximum likelihood estimate of

t1 1 t2 is the sum of the two averages, that is, the av-

erage of the sample t11 1 t21, . . . , t1n 1 t2n, except if

t1 5 t2. However, the sample average estimator of t1 1

t2 is consistent with the fact that E(T) 5 t1 1 t2. This

means that the maximum likelihood estimate of t1 1 t2
is biased while the average is not. Thus, we remove this

bias by maximizing L under the restriction

t1 1 t2 5
1

n
å
n

i51
ti: ð3Þ

The sample size is n5 20 and the average is �t 5 2388 yr.

The value of t1 for which L is maximal is t15 493 yr.

Figure 2 (right panel) shows the corresponding distri-

bution function, together with the observed 20-point

sample distribution function. The improvement of the

fit from the left panel to the right panel is striking.

However, it should be noted that there is a very small

sensitivity of the distribution function in the right panel

to variations of the parameter values t1 and t2 given the

sum t1 1 t2. This is clear from inspecting the bunch of

distribution function graphs in the left panel of Fig. 3.

These correspond to the distribution functions of T for

different values of the ratio t1/(t1 1 t2) ranging from 0

(exponential distribution) over 0.1, 0.2, 0.3, 0.4, to 0.5

(gamma distribution). For the obtained maximum

likelihood estimate the ratio is 493/2388 ’ 0.21. The

right panel of Fig. 3 shows the conditional distribution

functions (each obtained from 10 000 simulated 20-

point samples) of the ratio of the maximum likelihood

estimator of t1 and the average estimator of t1 1 t2,

given the ratio r 5 t1/(t1 1 t2) for r 5 0.0, 0.1, . . . , 0.5.

It is remarkable that there is a probability of about 0.36

(the jump at x 5 0.5) that the maximum likelihood

estimate of t1 and t2 becomes equal even if the true

ratio t1/(t1 1 t2) is as small as 0.2, close to the obtained

estimate 0.21. Thus, the gamma distribution is wrongly

selected with a probability of 0.36, if a sample of size of

20 is drawn and the maximum likelihood estimate of t1
is calculated from that sample.

It is also seen that if the exponential distribution is

assumed to be the true distribution of T, then there is

only about a 10% probability to get an estimate larger

than 0.2 of t1/(t1 1 t2). Thus, it is not unreasonable to

look for a better model than the exponential. This is

further supported by the physically reasonable hypoth-

esis of the existence of two states.

It is an obvious task to investigate whether it is pos-

sible to construct an equally well fitting distribution

function under some deterministic DO event triggering

mechanism. For example, this mechanism might be

some hidden periodic forcing. Such amodel is considered

in appendix A. One might defend its more complicated

nature if the detected periodicity could be given

some geophysical or astronomical cause. Otherwise, the

simple pure randomness model is just as good. It seems

difficult to go further in the direction of determinism

when considering the possibility of the existence of two

different states of random duration.

The indication of the existence of two states of inde-

pendent exponentially distributed durations by the

quite good fit obtained in the right panel of Fig. 2 in-

FIG. 3. Plots showing distribution parameter insensitivity. (left) The family of distribution

functions FT(t)5 12 [t1exp(2t/t1)2 t2exp(2t/t2)]/(t1 2 t2), t. 0, corresponding to the mean

E(T) 5 t1 1 t2 5 2388 yr and the ratios t1/(t1 1 t2) 5 0.1, 0.2, 0.3, 0.4, 0.5 (from left to right

in the lower part of the diagram). (right) The conditional distribution functions of the ratio of

the maximum likelihood estimator of t1 and the average estimator of t1 1 t2 given that r 5

t1/(t1 1 t2) 5 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, respectively. At x 5 0.5 all the distribution functions

jump to the value 1, since by definition t1 # t2.
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vites further inspection of the record to see if the states

are visible and measurable with acceptable accuracy.

3. Estimation of the exponential distributions

The estimation of the parameters t1 and t2 will ob-

viously be improved if the 20 realizations of the (T1, T2)

pair are included in the estimation. However, in the

d18O isotope record the interstadials have the charac-

teristic saw-tooth shape, which is not present in the

records of dust concentrations. By inspecting the d18O

record displayed in Fig. 1 it is recognized that because

of the saw-tooth shape it is considerably more difficult

to accurately read the time points of transition from

interstadial to stadial states than from the stadial to the

interstadial states analyzed in the previous section. In

addition to the duration variables T1 and T2 we need,

therefore, to introduce an error-of-identification vari-

able R assigned with suitable distributional properties.

From the relations B (p, q) 5 G(p) G(q)/ G(p 1 q) and

G(p 1 1) 5 pG(p) it is directly seen that
Ð 1
0 xp 1ÿ xð Þqÿ1

dx 5 B p; qð Þp= p1 qð Þ, so that we get the conditional

expectation

E RjT1 5 t1; T2 5 t2ð Þ5 t1 1 t2ð Þ p

p1q
ÿ t1: ð5Þ

We will model the error correction R so that it has the

conditional mean value E (R|T1 5 t1, T2 5 t2) 5 mt1t2,

where m is some constant. This model reflects that the

error must vanish in the two limits t1 ! 0 and t2 ! 0. It

follows from (5) that this property is obtained if q is

defined as

q5
t2ð1ÿ t1 mÞ
t1ð11 t2 mÞ

p: ð6Þ

To obtain the joint distribution of X1, X2 we note that

x1 1 x2 5 t1 1 t2. Thus,

Specifically write T 5 X1 1 X2, where X1 and X2 are

random variables that represent the identified inter-

stadial and stadial durations, respectively. Next write

X1 5 T1 1 R, X2 5 T2 2 R, where, for given (T1, T2) 5

(t1, t2), R is a random variable with values that by ne-

cessity is limited to the interval2t1 , R, t2 becauseX1

and X2 both are positive. This means that the usual

normal distribution model for an error distribution is

not applicable here. Instead, an applicable sufficiently

extensive and mathematically convenient distribution

family is represented by the beta-distribution family,

for which the standard form of the probability density is

fb(x; p, q) 5 xp21 (1 2 x)q21/B(p, q), 0 , x , 1, where

p and q are positive parameters, and B p; qð Þ 5
Ð 1

0

xpÿ1 1ÿ xð Þqÿ1
dx (the beta function). Thus, for given

(T1, T2) 5 (t1, t2), the random variable (T1 1 R)/(T1 1

T2) is assumed to have the conditional probability den-

sity

fRjT1;T2
rjt1; t2ð Þ5 1

t1 1 t2ð ÞB p; qð Þ
r1 t1

t1 1 t2

� �pÿ1

1ÿ r1 t1

t1 1 t2

� �qÿ1

; r 2 ÿt1; t2ð Þ: ð4Þ

fX1;X2jT1;T2
x1; x2jt1; t2ð Þ5 d x2 ÿ t1 1 t2 ÿ x1ð Þ½ � fX1jT1 ;T2 x1jt1;t2ð Þ

5 d t2 ÿ x1 1 x2 ÿ t1ð Þ½ � fRjT1;T2
x1 ÿ t1jt1; t2ð Þ

5 d t2 ÿ x1 1 x2 ÿ t1ð Þ½ � 1

ðt1 1 t2Þ
f b

x1

t1 1 t2
; p;

t2 1ÿ t1mð Þ
t1 11 t2mð Þ p

� �

: ð7Þ

Removing the conditioning by use of the total probability theorem, (7) gives the joint probability density

fX1;X2
x1; x2ð Þ5 1

t1t2

ð

‘

0

ð

‘

0

eÿt1=t1eÿt2=t2 fX1;X2jT1;T2
x1; x2jt1; t2ð Þdt1 dt2

5
eÿ x1 1 x2ð Þ=t2

t1t2 x1 1 x2ð Þ

ðx11x2

0

eÿt 1=t1ÿ1=t2ð Þf b
x1

x1 1 x2
; p;

x1 1 x2 ÿ tð Þ 1ÿ mtð Þ
t 11m x1 1 x2 ÿ tð Þ½ � p

� �

dt; ð8Þ

which, with the restriction t2 5 a 2 t1 [see (3)], a 5 2388 yr, gives the likelihood function

L t1; p;m; x11; x21ð Þ; . . . ; x1n; x2nð Þ½ �5
Y

n

i51

fX1;X2
x1i; x2ið Þ: ð9Þ
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The maximum is obtained for t1 5 802 yr, t2 5 1586 yr,

p 5 698, and m 5 39.1 1026 yr21. The average of the X1

sample is 846 yr, that is, 44 yr larger than t1. We note

that mt1t2 ’ 50 yr.

Figure 4 shows the estimated conditional distribu-

tions of the error term R for a selected set of values of

T1. Even though the conditional standard deviations of

R are not insignificant for values of T1 in the range

somewhat larger than from about t1 to about t2, the

error practically averages out in its influence on the

estimated distribution functions shown in Fig. 5. Only a

small influence comes from the bias away from zero of

the mean of R.

The obtained ratio t1/(t1 1 t2) 5 802/2388 ’ 0.34 is

not in conflict with the ratio 0.21 estimated from the

on–on data in the previous section. In fact, if we assume

that 0.34 is the true value of the ratio, then it follows

from the corresponding conditional distribution func-

tion in the right panel of Fig. 3 that the probability of

obtaining an estimate of the ratio less than 0.21 is about

25% when drawing a random 20 samples from the as-

sumed distribution.

A simple evaluation of the statistical uncertainty of

the maximum likelihood estimators of t1 and t2, inter-

preted as the mean values of two independent expo-

nentially distributed random variables, are the standard

deviations t1=
ffiffiffi

n
p

5 802=
ffiffiffiffiffi

20
p

5 179 yr, and t2=
ffiffiffi

n
p

5

1586=
ffiffiffiffiffi

20
p

5 355 yr. Thus, the standard deviation of the

estimator of a 5 t1 1 t2 is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1792 1 3552
p

5 398 yr.

The estimated distribution functions fit quite rea-

sonably to the observed 20-sample distribution function

values shown as circles in Fig. 5. The statistically inex-

perienced reader may express doubt about this. How-

ever, it is important for the judgment of the quality of

the fit to be aware that for a sample size of no more than

20, deviations of a size as seen in Fig. 5 must be expected

with high probability. To convince the reader, a dem-

onstration of the effect of this kind of statistical uncer-

tainty is given in the next section.

The obtained distribution results, based on the as-

sumption that T1 and T2 are statistically independent, to

some degree also support the independence hypothesis.

For further support, the scatterplot of the 20 pairs of

observations of (X1, X2) (transformed to standard nor-

mal distribution) are shown (see Fig. C1). The empiri-

cal correlation coefficient is calculated to be as small as

about 0.01. It should be noted that zero correlation

between T1 and T2 implies that there is some correla-

tion between X1 5 T1 1 R and X2 5 T2 2 R. For

completeness the correlation coefficient between X1

and X2 is calculated in appendix C only by use of the

model and the obtained parameter estimates. The the-

FIG. 4. Examples of estimated conditional distributions of the

error term R given (T1,T2) 5 (t1, 2388 yr 2 t1). The vertical lines

mark the point r5 0. It is noted that R is positive in the mean with

a bell-shaped probability density of appearance as a normal dis-

tribution.

FIG. 5. Exponential distribution functions FTi
(t)5 12 exp(2t/ti), t. 0, corresponding to the

maximum likelihood estimates (left) t1 5 802 yr and (right) t2 5 1586 yr obtained from the

sample of (on–off, off–on) duration pairs (dashed curves) together with the estimated mar-

ginal distribution functions of Xi obtained by simulation for the maximum likelihood esti-

mates t1 5 802 yr, p 5 698, and m 5 39.1 3 1026 (full curves). The small circles show the

observed 20-sample distribution functions of X1(left) and X2 (right).

15 JANUARY 2009 NOTE S AND CORRESPONDENCE 451



oretical correlation coefficient is obtained to 0.02, that

is, it is negligibly small. In the same calculation the

standard deviation of R is found to be about 90 yr.

The findings in this section increase the confidence

that the hypothesis of the exponential distribution of

the consecutive distances between the DO events

should be rejected. This is because the hypothesis that

T1 1 T2 has exponential distribution is inconsistent with

the finding that T1 and T2 are uncorrelated and expo-

nentially distributed (or just close to being exponen-

tially distributed). The exponential probability density

aexp(2at) for the sum would be generated if T1 and T2

are independent with gamma probability densities pro-

portional to tr2lexp(2at) and ts21exp(2at), respec-

tively, where r 1 s 5 1, r . 0, s . 0. These gamma

densities are infinite for t5 0. However, the data do not

support an assumption of infinite probability densities

at t 5 0.

4. Demonstration of the actual statistical

uncertainty

Figure 6 shows six independent examples of empir-

ical distributions obtained by generating 20 samples

from the standard exponential distribution with density

function f (x) 5 e2x, x . 0. The corresponding distri-

bution function F (x) 5 1 2 e2x is shown in each panel.

Thus, large deviations occur without inconsistency with

FIG. 6. Documentation of the effect of statistical uncertainty. Each panel shows the expo-

nential distribution function F(x) 5 1 2 e2x together with the empirical distribution function

of 20 samples generated from the exponential distribution according to the formula X 5

2log(U), where U is a uniformly distributed random variable on the interval (0, 1).
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the theoretical probability distribution. Visual compari-

son with the deviations seen in Fig. 5 shows that there

is no reason to expect a fit of better quality than that

obtained there.

Returning to Fig. 2, it is seen in the perspective of Fig.

6 that the exponential distribution for the on–on time

distances cannot be excluded as the valid distribution.

In fact, earlier we read from the right panel in Fig. 3 that

there is a probability of about 10% that the estimate of

the ratio t1/(t1 1 t2) becomes larger than 0.2 under

the assumption that the ratio is zero. Thus, the path of

observation point deviations seen in the left panel of

Fig. 2 does not occur so rarely for the exponential model

that one is entitled to reject the exponential model as

the valid model. To reject the exponential model with

confidence it is essential that supplementary informa-

tion is considered, for example, such as the information

that two independent states are detectable in the iso-

tope record.

5. Interpretations and concluding remarks

The waiting time distribution observed in the ice core

record is well fitted by a random on–off process. The

mean waiting times in the two states are different, in-

dicating that the waiting time depends on the climate

state. In the warm state the mean waiting time (’800

yr) is markedly shorter than the mean waiting time in

the cold state (’1600 yr). The random nature of the

waiting times indicates that the jumping is triggered by

internal climatic fluctuations. A possible exception is

the transition into the present warm Holocene period,

which has been stable for 12 000 yr. This could indicate

either that the Holocene climate is a distinctly different

climate from the interstadials or that the internal cli-

mate fluctuations become so small in the Holocene cli-

mate that the triggering of jumps into the cold state is

exponentially suppressed. Both possibilities could be

argued to be caused by the disappearance of the Lau-

rentide and Fennoscandian ice sheets, which makes the

Holocene distinctly different from the interstadials.

From the random no-memory nature of the climatic

jumps it should be expected that there are no correla-

tions between consecutive climate periods, so that a

short interstadial period is not preferentially followed

by either a long or a short stadial period, and vice versa.

This is independently checked and is indeed the case, as

is shown in detail in appendixes B and C. In principle

this observation could constraint the possibilities for

how glacier buildup or Atlantic sea-saw connections

influence the Dansgaard–Oeschger climatic shifts.

In the glacial period the internal climate fluctuations

are observed to be larger in the cold stadial state than

in the warm interstadial state (Ditlevsen et al. 2002).

Naively, one should expect that from a purely noise-

induced transition the waiting time in the cold state

should be shorter than in the warm state, in contrast to

the observations. Thus, it can be concluded from the

observations that the cold state is more stable than the

warm state and the barrier for noise-induced transition

is highest from the cold to the warm state. This is an

important benchmark for high-resolution climate mod-

els, if these can be constructed to simulate the two cli-

mate states and the transitions between the two states.

At present the two climate states have been simulated

by so-called water hosing experiments in intermediate

complexity models, and are thus not internally noise

generated in these models (Schmittner et al. 2002).

As seen from appendix A, other statistical models,

including hidden periodic triggers, can explain the data

record as well. This is an unfortunate consequence of

the limited size of the record. From a philosophical

point of view one should, in our opinion, refer to the

principle of Occam’s razor, favoring the simplest model

with fewest assumptions to explain the data, unless in-

dependent evidence selects a different model. In that

sense the purely random model seems at present to be

the first choice.

As a final remark it should be mentioned that the

observation of a simple statistical structure of the cli-

mate shifts does not imply a simple underlying climate

dynamics. The jump process and threshold crossing dy-

namics is a highly nonlinear phenomenon.

APPENDIX A

Model with Hidden Periodic Trigger

In the last paragraph of section 2 the question is

posed whether the distribution of the ice core on–on

time data can be constructed from a model by which the

DO events are triggered by some hidden periodic

mechanism of period t. To investigate this problem we

adopt the probabilistic model

T i 5 t0 1Nit1 Si ðA1Þ

for the times T1, T2, . . . of occurrences of the consecu-

tive DO events. Here t0 is some unknown time origin,

N1, N2, . . . is an increasing random sequence of inte-

gers, and S1, S2, . . . are independent random slack times

(i.e., delay times that can be positive as well as nega-

tive) of identical probability density, which is zero out-

side a bounded interval of length at most equal to the

period t. The model is formulated so that not all the

mechanism periods necessarily trigger a DO event. As

suggested by P. Hedegård (2007, personal communica-
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tion), the successful periods with respect to DO events

are reasonably chosen at randomwith some probability a.

Instead of proceeding with (A1), we change from

absolute time to relative time considering only the time

differences

Ti11 ÿ T i 5 Ni11 ÿNið Þt1 Si11 ÿ Si; i5 1; . . . ; n;

ðA2Þ

whereby t0 is eliminated. The variables Xi 5 Ni11 2 Ni

are defined as mutually independent random variables

with the common frequency function

P X i 5 xð Þ5a 1ÿ að Þxÿ1; x5 1; 2; . . . ðA3Þ

(the geometric distribution). For convenience we write

Ti11 2 Ti as Ti, with observations t1, . . . , tn. As prob-

ability density type for the mutually independent ran-

dom variables S1, . . . , Sn11 we will adopt the beta dis-

tribution density (see Fig. A1),

f S sð Þ5 1

tB p; pð Þ
1

4
ÿ s

t

� �2
� �pÿ1

; s 2 ÿt=2; t=2ð Þ

ðA4Þ

with mean E(S) 5 0 and variance

Var Sð Þ5 1

4 2p1 1ð Þ t
2; ðA5Þ

which we will denote as s2. The likelihood function of

the unknown parameters a, t, and p becomes too com-

plicated even for numerical calculations to be com-

pleted within reasonable time. Instead, the much sim-

pler method of moments is applied. Noting that the

identically distributed random variables given by (A2)

are of the form as T5Xt 1 S2 2 S1, where E(X)5 1/a,

E(X2) 5 (2 2 a)/a2 {easily obtained by repeated

differentiation of the probability generating function c

(u)5 E(Xu)5 au/[12 (12 a)u] and setting u5 1}, and

E(S2 2 S1) 5 0, E[(S2 2 S1)
2] 5 2s2, it follows that

E Tð Þ5 t=a; ðA6Þ

E T2
ÿ �

5 t=að Þ2 2ÿ að Þ1 2s2: ðA7Þ

Elimination of t and substitution of s2 gives the equa-

tion

a 2 ÿ 2 2p1 1ð Þa1 2 2p1 1ð Þ 2ÿ E T2
ÿ �

E Tð Þ2

" #

5 0

ðA8Þ

in a for each given value of p. With the given data of

n 5 20 sample values and the sample means E T j
ÿ �

’

nÿ1å
n
i51t

j
i ; j 5 1, 2, we get the results displayed in Fig.

A2. By visual judgment it seems most reasonable to

adopt the uniform distribution for S, which corresponds

to p 5 1. The corresponding parameter estimates are

t 5 854 yr and a5 0.357. It is difficult to distinguish the

goodness of fit from that of the right panel in Fig. 2.

It is remarkable that with this simple model the most

probable period is considerably shorter than the period

of 1470 yr proposed in the literature (Schulz 2002). Fur-

thermore, the obtained point process model is quite

peculiar. The time distance from a point to the next

point is generated almost correctly by tossing a dice

repeatedly until either one dot or two dots are obtained

(probability 1/3 per toss approximating a). Next, the

period t is multiplied by the used number of tosses.

Finally the obtained time is corrected by adding two

numbers chosen independently and completely at ran-

dom from the interval (2t/2, t/2). The authors consider

this model as an artificial mathematical approximation

construct rather than an indication of a hidden period.

Moreover, the model contains no room for the exis-

tence of two states. With a sample size as small as 20 it

is possible to construct many different mathematical

models that cannot be rejected by a statistical test based

on the sample. We have shown in this paper that what-

ever sophisticated model is constructed for generating

the point process, it might as well be generated by a

simple two-state process with complete randomness

from small time interval to next small time interval (i.e.,

a so-called two-state Markov process).

FIG. A1. Graphs of the beta density fb(x; p, p) 5 [x(1 2 x)]p21/

B(p, p) for different values of the parameter p. The probability

density (A4) is obtained by the transformation s 5 t (x 2 1/2).
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APPENDIX B

Test of Lack of Correlation between Consecutive

DO Point Distances

The estimation of the distribution function for the

time distances between the DO events described in sec-

tion 2 is not dependent on whether or not there is some

dependence structure in the sequence of consecutive

time distances. Any reordering of the sequence leads to

the same distribution function, of course. To see wheth-

er the sequence taken in chronological order as mea-

sured shows signs of a dependent structure that is es-

sentially different from that of the same sequence of

time distances obtained by randomizing the order, the

15 first ‘‘number lag’’ correlation coefficients are shown

in Fig. B1 for the measured sequence and three other

randomized versions of the measured sequence. To be

more specific, the measured sequence of time distances

are first transformed one to one into a sequence y1,

y2, . . . , y20 with standard normal distribution of the

elements. Next, the sequence of 20 2 i pairs (y1, yi11),

(y2, yi12) . . . , (y202i, y20) is constructed for each i 5 1,

2, . . . , 15, where i is called the number lag, and the

empirical correlation coefficient is calculated for each i.

The results are shown as circle marks in the upper-left

panel of Fig. B1. The other three panels in Fig. B1

shows the empirical correlation coefficients as small

square marks for the three randomized versions. The

dashed curves are distribution function quantiles of the

correlation coefficient estimator under the assumption

that the correlation coefficient is zero, an assumption

that is true for the randomized versions of the se-

quence, of course. Comparison of the upper-left panel

with the three other panels gives no reason to reject the

hypothesis that the measured distances comply with a

model where the number lag correlation coefficients

are all zero.

APPENDIX C

Test of Lack of Correlation between Interstadial

Duration and the Next Following Stadial Duration

The scatterplot in Fig. C1 shows that the assumption

of independence between T1 and T2 in no way is con-

tradicted by the observed data. However, to be careful,

the size of the correlation induced between X1 and X2

FIG. A2. Estimated distribution function of on–on time differences in periodic model with

beta distributed S variables for given p 5 0.25, 1, 2, 4, and the corresponding empirical

distribution function defined by the given sample of 20 values. The standard deviations of the

S variables are 441, 247, 186, 136 yr, respectively. The judgmentally most reasonable fit is seen

in the upper-right panel and is obtained for the period t 5 854 yr, S uniformly distributed in

the interval (2427,427) yr, and the probability of 0.36 for DO event occurrence.
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by the correcting term R must be evaluated. The fol-

lowing derivations address this.

Assuming that T1 and T2 are independent, we have

the expectation E (T1T2) 5 E(T1)E(T2) and the covari-

ance Cov(T1, T2) 5 E(T1T2) 2 E(T1)E(T2) 5 0. More-

and the last term is obtained from the variance Var(W)5

pq/[(p 1 q)2(p 1 q 1 1)] of the standard beta distri-

bution combined with (6) and the linear transformation

W 5 (R 1 t1)/(t1 1 t2) that defines the probability den-

sity (4). This complicated expectation term must be cal-

culated by numerical integration or simple Monte Carlo

FIG. B1. Estimated number lag correlation coefficients for the sequence of consecutive time

distances between DO events. (top left) The correlation coefficients for the measured se-

quence with the distances in chronological order. The three other panels correspond to order

randomized versions of the measured sequence. The dashed curves are distribution function

quantiles of the estimator given that the correlation coefficient number lag correlation coef-

ficient is zero.

Cov T1 1R;T2 ÿ Rð Þ5Cov R;T2ð Þ ÿ Cov R;T1ð Þ ÿVar Rð Þ; ðC1Þ

Cov R;T1ð Þ5Cov E RjT1;T2ð Þ;E T1jT1;T2ð Þ½ � 1 E Cov R;T1jT1;T2ð Þ½ �
5mCov T1T2;T1ð Þ5mE T2ð ÞVar T1ð Þ5mt2t

2
1; ðC2Þ

Cov R;T2ð Þ5mE T1ð ÞVar T2ð Þ5mt1t
2
2; ðC3Þ

and

Var Rð Þ5Var E RjT1;T2ð Þ½ � 1 E Var RjT1;T2ð Þ½ �5m2Var T1T2ð Þ1E
T2

1ð1ÿ mT1ÞT2ð11mT2Þ2
T1ð11mT2Þ1 pðT1 1T2Þ

" #

; ðC4Þ

where

Var T1T2ð Þ5Var T1ð ÞVar T2ð Þ 1 E T1ð Þ2Var T2ð Þ1E T2ð Þ2Var T1ð Þ5 3t21t
2
2 ðC5Þ

over, by assumption we have E(R|T1, T2) 5 mT1T2.

Finally,E(T1)5 t1,E(T2)5 t2, VarðT1Þ 5 t21; VarðT2Þ 5
t22 because of the exponential distribution. By the rules

of calculations with expectations and covariances it

then follows that
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simulation. To obtain the correlation coefficient we fur-

ther need

Var T1 1Rð Þ5Var T1ð Þ1Var Rð Þ1 2Cov T1;Rð Þ
5 t21 1mt21t2 1Var Rð Þ; ðC6Þ

Var T2 ÿ Rð Þ5Var T2ð Þ1Var Rð Þ ÿ 2Cov T2;Rð Þ
5 t22 ÿ mt1t

2
2 1Var Rð Þ: ðC7Þ

By substitution of the estimated parameters t1 5 802 yr,

t2 5 1586 yr, p 5 698, and m 5 39.1 yr21, we find that

the standard deviation of R becomes estimated to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Rð Þ
p

’ 90 yr; and that the correlation coefficient

between X1 and X2 becomes Cov T1 1R;T2 ÿ Rð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var T1 1Rð ÞVar T2 ÿ Rð Þ
p

’ 0:02; that is, a value so

close to zero that it has no importance for the testing

the independence of T1 and T2 by use of the observa-

tion pairs (x1, x2).
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FIG. C1. Scatterplot of the 20 observation pairs (x1, x2) after

transformation into the approximately standard normally distrib-

uted pairs (y1, y2), yi 5 F
ÿ1 eÿx1 =avðx1Þ½ �; avðxiÞ 5 average of xi

sample i 5 1, 2. The correlation coefficient is estimated to the

insignificant value of 0.01.
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