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The climate on the Earth varies on many different spatial and temporal
scales. In order to understand the predictability and dynamical origin of
climatic changes we need very long records. The instrumental records of
temperatures and other meteorological parameters only date about a century
back. This is to short a period to obtain the full range of natural variability,
which is the background on which eventual man caused climate changes must
be assessed. Climate variations dating much further back, most prominent
being the big ice-ages, are recorded through geological markings, such as
the characteristic moraine landscapes created by the glaciers. Other more
detailed paleoclimatic records are tree-ring thickness, corrals, lake and ocean
sediments and ice-core records. All of these indicators are indirect recordings,
which are more or less local in nature, of the past climate. Some of the longest
records with high temporal resolution are the ice-core records. From analysis
of these records it is possible to deduce part of the dynamical behavior of
the climate system. Before performing an analysis of the ice-core series a
few basic tools applied in climate data analysis will be derived and reviewed,
in order to make this text selfcontained for readers not familiar with all the
details in statistial analysis of time series.
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Basic time series analysis

When investigating a climatological time series one would be interested in
characterizing and quantifying to what degree the signal is periodic, persis-
tent, random, chaotic etc. Figure 1 shows three examples of present days
direct climatic time series. Figure 1 (a) shows the twice daily (12 noon and
12 midnight) temperatures in Nuuk, Greenland through two years (1985-86).
Figure 1 (b) shows the annual mean global temperature anomaly, which is
the estimated area averaged global temperature with the 1951-80 mean sub-
tracted. Finally, figure 1 (c) shows the Southern Oscillation Index (SOI)
which is the sea surface pressure difference between Tahiti and Darwin (Aus-
tralia). This index is related to the El Nino in the Pacific. The three time
series seems quite different. The first contains a strong periodic component,
the annual cycle. The second seems to vary with a trend all the way through
the record, while the third seems to vary irregularly with a typical time scale
of 3-6 years. Imagine that the series were all we had to predict the future
development of the curves. In the first case we have some idea that a few
days ahead the temperature will be about the same, 6 months ahead the
season will have changed so if its summer now it will be colder in 6 months
and visa versa. In the second case we can see that the variations over, say, a
decade is relatively small so that if we have a cold/warm anomaly the same
will probably be true in 10 years, but not in 30 years. On top of that there
seems to be an overall positive trend. In the third case the signal seems
to have forgotten its value after about 1-2 years which would then be the
prediction limit, if we could only predict from the signal itself.

This kind of memory in the signal is characterized in the autocorrelation
function which is defined as,

c(r) =(z(t)z(t + 7)) = ]imT_m% /TT//22 x(t)z(t + 7)dt. (1)

It follows directly from the definition that ¢(—7) = ¢(7) and ¢(0) > 0 is
the variance of x plus the mean of x squared, which we can always take to
be zero by defining = as the deviation from the mean (the anomaly) as has
been done in figures 1 (b),(c). The autocorrelation function indicates how
quickly the signal varies. The autocorrelations corresponding to figure 1 are
shown in figure 2.

The autocorrelation of a pure harmonic signal, z(t) = o cos(wt), is easily
calculated. Since the signal is periodic it is enough to integrate over one



period, and we get,

zd i T
c(r) = o7 o /_ﬂ/w cos(wt) cos(w(t + 7))dt = 5 cos(wT). (2)
Compare this with figure 2 (a), here there is a small oscillation on top of a
smooth curve. This oscillation reflects the diurnal cycle with warmer tem-
peratures at noon and colder temperatures at midnight. Figure 2 shows that
for 7 larger than some characteristic time 7 the autocorrelation becomes
numerically small in comparison to the variance ¢(0). This time 7, which
will be defined more precicely later, is called the correlation time. It is the
typical time scale for the memory in the system.
An equivalent way of describing a signal is by calculating the spectral
density or power spectrum of the signal. This is defined from the Fourier
transformed, Z(w) = limy_, 4 fTﬁQ z(t)exp(iwt)dt, of the signal as,

P(w) = #(w)2(~w). (3)

The power spectrum is, as the autocorrelation function, symmetric so that
we always only consider w > 0 (and 7 > 0 for the autocorrelation function).
Furthermore, since the signal is real we have Z(—w) = Z(w)* and the power
spectrum is positive. The power spectrum tells how much weight the signal
has on each frequency but nothing about the phases of the wave-components
at that frequency. The power spectrum is simply the Fourier transformed of
the autocorrelation function:

tw) = /C(T) exp(iwT)dT = (4)
/ /x(t)m(t + 7) exp(iw(t + 7)) exp(—iwt)dtdr =

/ { / 2(t + 7) exp(iw(t + 7))d(t + 1)} (t) exp(—iwt)dt =
#(w)z(—w) = P(w).

Here we have supressed integration boundaries (remember that we define

[ = 2, = limp o fTﬁZ), interchanged integrations, and translated one
integration variable. It is left to the reader to show that the symmetry of the
autocorrelation function ensures the positivity of the power spectrum. From

this it follows that the Fourier transforms can be expressed as



= 2/ ) cos(wt)dt, (5)
= 2/ ) cos(wt)dw. (6)

The power spectra of the signals in figure 1 are shown in figure 3. Figure
3 (a) shows that there is a periodic component of the signal in figure 1 (a),
with a period of 1 year.

A given climate signal will in general be composed of variations from
many different causes and on many different time scales. This means that
the signal will have spectral weight on many frequencies. When analyzing
such a signal, in order to understand the dynamics governing the signal, it
is often helpful to characterize it in terms of a few simple types of power
spectra.

A few types of signals
Periodic signals

Periodicities such as the diurnal and annual cycles will naturally occur in
climate signals. Other oscillatory external forcings, such as the 11 years Sun
spot cycle or the orbital Milankovitch cycles, can also be identified in climate
variations. Finally, the possibility of internal dynamical oscillations or limit
cycles in climate dynamics are of interest. The autocorrelation function for
the harmonic signal, z = x4 cos(wot) was found in (2). From this the power
spectrum is easily calculated using Eulers formula,

Pw) = / %3 cos(wpt)exp(iwt)dt = (7)

5 [ (ewplife +)t) + eaplies — wo)t))dt =

%(5@ +wo) + d(w — wp)),

where the §-function (which is really a distribution) is defined by:

d(z) = 0forxz #0 (8)
[ 3@)f@)dz = £ 0). ©)
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So for the integral of the power spectrum we have, taking wg > 0,

¢(0) = 2 /O°° P(w)dw = 2 /0°° 205w — wo)dw = 23, (10)

So the integral of the power spectrum is another way of expressing the
variance of the signal. A periodic signal with period 7 can be expressed as a
Fourier series,

o0
z(t) = > cpexp(i2mn(t/T)). (11)
n=-—o0o0
It is left as an exercise to find the power spectrum of this signal. Consider
what this is in terms of overtones.

Random signals

As we will discuss shortly, a natural way of describing the chaotic and erratic
part of the variations is to consider the signal to be random. The most
commonly used model of a random signal is that of an independent identically
distributed (i.i.d) signal (with zero mean). Such a signal is generated by
picking at each sampling time a random (stochastic) variable from a given
distribution, independently from any previously chosen variable. For 7 #
0 the autocorrelation for this signal must vanish since each data point is
independent from the other points, (z(t)z(t+7)) = (x(t)){z(t+7)) = 0. For
7 = 0 the autocorrelation just gives the variance, (z?) = o2, of the signal.
Thus we have

c(t) = a?6(2). (12)

The power spectrum is then,

p(w) = /c(t)ea:p(iwt)dt =o? / §(t)exp(iwt)dt = 0. (13)

This signal has equal weight on all frequencies and is therefore, in analogy
to the spectrum of visible light, called white noise. Other continuous spectra
with weight on low/high frequencies are, from the same analogy, termed
red /blue noise.



Scaling noise

In many chaotic dynamical systems the power spectrum of the variables has
a power-function power spectrum,

P(w) ~ w®. (14)

This relationship turns up as straight lines with slope « on log-log plots,
which are therefore often used when plotting power spectra. The power-
function relation is also called a scaling relation since we have P(\w) =
A*P(w). An important consequence is that within the range of frequencies
or time scales fulfilling the scaling relation there are no characteristic time
scales. The generic physical examples are turbulence, where the flow in the in-
ertial range has a self-similar structure, and critical phenomena where at the
critical point the spatial correlation structure also shows self-similarity, de-
scribable in terms of renormalization group theory. Understanding to which
extent these two examples are relevant for describing climate is one of the
fundamental challenges in climate research. The white noise is a scaling noise
signal, other power-function spectra can sometimes be predicted from scaling
properties of the governing dynamical equations or be seen in the data from
the behavior of a range of quite complex systems. They are also frequently
seen in climatic data. When o &~ —1 this is called 1/f (one over f) noise,
which is seen in a wide range of phenomena.

Stochastic climate models

The climate is characterized by the interaction between components with
very different typical time scales. The atmospheric variations, weather pat-
terns, are typically of days to weeks duration while variations in ocean cur-
rents are on much longer time scales, years to centuries. The forcing of the
slowly varying components, ocean, ice-sheets, comes from the atmosphere
through wind, heat exchange, precipitation etc. So the time scales where the
slow climate variables change appreciably are beyond the correlation time
for the fast variables. At these time scales the fast variables are effectively
decorrelated and could then be described as stochastic [21]. Assume that
we can describe the system by a set of governing equations for the system
variables which can be split in separate variables represented by the vectors

T = (21,..0; T4, ...) a0d Yy = (Y1, .-, Yjy ---),



y=yg(z,y) (15)

where we can associate a typical time scale 7., and 7,, respectively to each
variable such that 7, < 7, for all 7,j. The second equation describes the
dynamics of the large scale observable. For brievity we drop vector notations,
and consider z and y as scalar variables. The extension to more dimensions
is mostly straight forward. In the effective dynamics for y we can write the
small scale variable as x = (z|y) + «’, where the bracket denotes the average
of z conditioned on y. Inserting this into the second equation, using that x
varies much faster than y we obtain,

y=g((zly) +2',y) = g((z]y),y) + 09((x|y), y)z' = gog(y) + o(y)n. (16)

Here we have substituted a stochastic white noise, n(t), with (n(t)n(t')) =
d(t — t') for the short time correlated variations z’(t). The noise intensity is
o(y) = 0z9({zly), y)1/{x"?). The last term will depend on the first equation
in (15). The equation (16) is called a Langevin equation. In the simplest
form we will assume the noise intensity to be independent of the climate
state y, rewriting F'(y) = gog(y) we have,

y=F(y) +on. (17)

If the noise is small the y component will in one dimension settle into a stable
fixed point, yo, defined by F(yy) = 0 and F'(yy) = —a < 0. Without loss of
generality we can take yo = 0 and expand F'(y) in (17) to first order,

Yy =—ay + on. (18)

This is called the Ornstein-Uhlenbeck process [16]. A simulation of this
stochastic differential equation for y is shown in figure 5. The equation (18)
for y can be used to derive a linear differential equation for the autocorrelation
function for y:

Lem=2 [uwernd= (9)
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[ @it +m)dt = [y(t)(=ay(t+7) +on(t +7))dt =

—oz/y(t)y(t-l-T)dt—l—a/y(t)n(t-l-T)dt =

—acy (7).

The integral involving y(¢) and n(t 4+ 7) vanishes for 7 > 0 since 7 is an
independent (white) noise. From this it follows that ¢,(7) = ¢y exp(—ar) for
7 > 0. It is left to the reader to show that c,(7) = coexp(ar) for 7 < 0. The
solution to (20) is,

¢y(7) = co exp(—al7]). (20)

The prefactor ¢y = ¢,(0) = (y?) is the variance of the process y which
will be determined using the fluctuation-dissipation theorem shortly. The
system has a typical time scale of memory, a~!, which is the time it takes
for the autocorrelation to drop by a factor of e. It is solely determined by
the dynamics of y (through F(y)). The power spectrum of y is the Fourier
transformed of the autocorrelation function given in (20):

P,(w) = / co exp(—alt]) exp(iwt)dt = (21)
co /0 T leap((—a + iw)t) + exp((—a — iw)t) bt =
1 1 _ 2¢
Co(a—i-iw + oz—iw) T o

The autocorrelation function and the power spectrum are shown in figure
4. For w < « we have P(w) ~ 1, that is, y itself is a white noise signal on
time scales long in comparison to the typical time scales of the y-dynamics.
For w > o we have P(w) ~ w™2, which is a scaling red noise spectrum.

In general n need not be a white noise. We can derive a relation between
the autocorrelation functions of y and 7 from (18). Starting with the auto-
correlation function for 7, ¢,(7), using (18) to express 7 in terms of y and
integrating by parts we get,

o’cy(T) = o? / n(t)n(t+ 7)dt = (22)
[ @) + ay(e) it +7) + ay(t + ))dt =

9



i/y(t)y(t+7)dt+0z2/y(t)y(t+7')dt+

dr
o [{a@y(t+7) + y(O)it + )yt =
d2

(~5 + %) (r)

where the boundary terms in oo vanish. From this it follows that the
integration constant ¢y can be determined from the variance, 2. By Fourier
transforming the autocorrelation functions for n and y we immediately get
the expression,

Py(w)
If n is a white noise source, we get the result from before,
1

The Fokker-Planck equation

The Langevin equation (16) results in a stochastic realization, y(t), of the
signal depending on the specific history of the noise. However, a deterministic
behavior is recovered for the probability density. The probability density will
fulfil a diffusion equation, the Fokker-Planck equation, which expresses the
probabability density for the variable y as a function of time, given some
known initial condition. Because of the central role played by diffusion in a
large class of physical problems, we will give a short heuristic derivation of
the Fokker-Planck equation from the Langevin equation. For doing that, we
rewrite the Langevin equation in mathematics jargon,

dr = f(z)dt + o(x)dB. (25)
Here dx denotes the increment in x during time dt under the influence of a
drift f(z)dt and a diffusion odB. The noise dB is called a Brownian motion
and it will be clear shortly why this is called a diffusion.

Brownian motion and coin tossing

The Brownian motion is the continuum limit of a sum of independent stochas-
tic increments with a finite variance. Due to the central limit theorem, this

10



will always result in a gaussian distribution independent of the distribution
for the individual increments. We can thus construct the Brownian motion
from a sum of coin tosses, or a discrete random walk. The increment AB
over the time interval At is defined as a sum of N coin tosses with val-
ues X; = £1 x ¢(N). The mean and variances are simply (X;) = 0 and
(X2) = o(N)2. We thus have,

N
AB =Y X, (26)
=1

from which we have (AB) = 0 and (AB?) = No(N)?® Since we want
to perform the limit N — oo this must be independent of N and we get
o(N) = C(At)/v/N. Now by doing the same calculation on the time inter-
val mAt we obtain the equation m[C(At)]? = [C(mAt)]? with the solution
C(At) = v/At. Finally, in the continuum limit we obtain the statistics for
the Brownian increment,

(dB) = 0, (dB%) = dt (27)

This is the fundamental ingredient for deriving the Fokker-Planck equation
and the starting point for the It6 calculus which we shall not describe here.

The conditional probability

The Fokker-Planck equation describes the development of the conditional
probability p(z,t|zo,%y). The conditional probability is just the probability
density for the value x at time t given that the system was in state x, at
time ty. The conditional probability will fulfil the obvious relation, called the
Chapman-Kolmogorov equation,

p(, t|zo, to) = /dyp(xaﬂy:tl)p(yat1|x05t0)a to <t1 <t (28)

which just sums all the possible paths between x¢(ty) and x(¢) at time ;.
The Fokker-Planck equation can be derived as a differential form of this equa-
tion. The Fokker-Plack equation is a partial differential for the conditional
probability. Here we will derive it in a straight forward way by introducing
an arbitrary stochastic function ¥[z(t)] of the position z(¢). The value of the
function at time ¢t 4 dt can be expressed through a Taylor expansion,

Y[z + dx] = Y[z] + ¢'[z]de + "' [z]d2? /2 + o(dz?). (29)

11



We can now perform an average with respect to the increments (25),

(dz) = f(z)dt, {dz®) = o*(2){dB?) + o(dt?) = o?dt + o(dt?), (30)

and we obtain the following to first order in dt,
dyla] = Ylo + dz] = Yla] = {¢/[2]f(z) + ¢"[a)o®(2)/2}at.  (31)
This is 1t6’s formula for the derivative of a stochastic function. To derive

the equation for the conditional probability we express the derivative of the
mean of the stochastic function conditioned on the position z (%),

Sl = & [ dwvlalpla, tao, t0) = [ drolela(a, tro,te) (32

This can as well be expressed using (31) as

gt = L (o 0s + 21 L) (33)

= [ao{onwish s+ 2D 4 ot tan o

= [ aovia){-oi@ oo )] + 22| S pto, e )|}

In the last line we have performed integration by parts, twice for the last term.
Surface terms vanish by assuming p(4-00, t|zg,to) = 0zp(F00, t|zo,t0) = 0.
By comparing (32) and (34) and noting that i[x] is arbitrary we arrive at,

Ot o) = =0 F ot o )]+ 22 [ T ptaton, )] (30

This is the Fokker-Planck equation for the conditional probability.

The potential and the stationary distribution

The Langevin equation (17) can be interpreted as the governing equation for
a randomly forced massless classical viscous particle moving in a potential
U(z), where the drift term F' is the negative derivative of the potential,

12



b=—— + on. (35)

The stable/unstable fix points for F' corresponds to minima/maxima for
U. The stationary distribution p(x) = p(z, co|zg,tp) will be independent of
the initial state. For the process (35) the stationary distribution is obtained
from solving the Fokker-Planck equation, observing that the stationary distri-
bution is time independent, d;p(z) = 0, and we have the ordinary differential
equation,

dy(pd,U + 02dyp/2) = 0 = pd,U + o’dyp/2 = c. (36)

From the boundary condition p(doco) = 0 the integration constant must
vanish, ¢ = 0, and we have,

2
d,U = —%dm Inp = p = c; exp(—2U/c?), (37)

where the integration constant c; is determined from the requirement that
p(z) is a probability density, [ p(z)dx = 1. This important result states that
the potential is simply minus the logarithm of the stationary probability
density multiplied by half the the noise variance. For the special case of
the harmonic potential U(z) = a(x — y)?/2, with equilibrium position at ¥,
which is the Ornstein-Uhlenbeck process the solution to the time dependent
Fokker-Planck equation (34) with initial condition p(z,0|zg,0) = é(x — x¢)
gives,

alr —y— g exp(—at)]Q] (38)
o?[1 —exp(—2at)]
The evolution of the probability is now easy to understand. The maximum
for the distribution is located at y + xo exp(—at), thus the system is drifting
towards y with a ’speed’ determined by the size of —a, which is the drift term
in (35). The variance at some small time ¢ is o(¢)* = o%[1 —exp(—2at)]/2a ~
ot which is characteristic for a diffusion process. Thus the last term in (34)
is called the diffusion term.
The stationary distribution ¢ — oo gives a gaussian distribution function,

p(z, t]xo, 0) ~ exp[—

p(a) ~ expl—a T TSy (39)

from which we immediately obtain the fluctuation-dissipation theorem,

13



0.2

(o = 0)) = 5

It is instructive to derive the fluctuation-dissipation theorem directly from
the Langevin equation doz = —axdt + odB. The variance of the process is,

(40)

{(z 4+ dz)?) = ((x — azdt + 0dB)?) =
(z%) + (0 — 2a{x?))dt + o(dt?). (41)

Stationarity implies that the left hand side is identical to the first term on
the right hand side and the fluctuation-dissipation theorem appears from the
first order in dt terms.

The double well potential

Going beyond the linear regime more minima for U, separated by potential
barriers, could exist. One example of such a situation is the Stommel two
box ocean model. Taking the salinity to be the slow component, y, using
that temperature adjusts much more quickly, and the freshwater forcing to
be a white noise we end up with an equation of the form (35) where the
potential U is a double well potential,

4 2

Uy) = 4805 - ). (42)

A is the height of the potential barrier, shown in figure 6. Now, it is
easy to imagine how this system will behave. If the variance of the noise
is small in comparison to the potential barrier (62 << A) then the system
will reside in one of the wells for a long time behaving essentially as in the
case above. For (02 >> A), on the other hand, the system will frequently
jump from one minimum to the other. It can be shown, from the Fokker-
Planck equation (34), that the typical waiting time 7 can be expressed by
the Arrhenius formula,

T ~ exp(A/o?). (43)

The typical behavior of this system is shown in a numerical realization in
figure 6 (b).
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Stochastic resonance

We have a description similar to the one above in the Sellers-Bodyko types
of energy balance models [17]. The two minima of the double well potential
here corresponds to a glaciated and an ice-free planet. How can we now
explain a periodic jumping from one state to the other? One way is to have
a periodic changing of the potential such that the one stable state becomes
unstable (through a saddle-node bifurcation), such that the system falls into
the other state. Then by changing the potential back to the opposite situation
where the new state becomes unstable and the system jumps back into the
first state again. This is the usual hysteresis loop, shown in the cartoon in
figure 8.

The problem with this description in connection with glacial cycles is
that the periodically changing forcing from the variations in solar insulation
(Milankovitch forcing) is to weak to be able to generate such a behavior.
The Milankovitch forcing will rather result in a small wobbling as depicted
in figure 8. If in this case the system also experienced a random forcing we
would describe the system by (35) where the potential is defined by,

Uly) = ALA(yZ4 - y;) + Uy cos(wt). (44)

The potential barrier is now in the extreme case (for ¢ = 0) asymmetric
with a barrier height of A 4+ U; from one side and A — U; from the other
side. The time scales for penetrating the barrier from the shallow well (a)
to the deep well (b) is then, 7,4 ~ exp(—(A — U;)/0?), and the other
way Tpsq ~ exp(—(A + Uy)/o?). If the system is to jump between the two
climatic states periodically, with the period, T = 27/w, we must have the
variance, o2, of the noise such that 7,,;, << T, else the potential barrier has
grown before the system had a chance of penetrating the barrier. But on
the other hand we must also have T" << 7_,,, else the system has time to
jump forwards and backwards more times independently from the periodic
changes of the potential. This means that there is a range for the variance
of the noise in which the weak periodic forcing results in a noise induced
periodic change in the climatic state. This is called a stochastic resonance
[2, 29].
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Ice-core records

Equipped with the basic tools for analyzing time series we will now examine
one of the most important paleo-climatic records which exists. The ice-core
records not only extend back in time into climate states different from the
present, namely the last glacial period. They also have a high temporal res-
olution enabling an analysis of dynamics on a wide range of temporal scales.
The ice-core to be analyzed here is obtained by coring at the summit of the
Greenland ice-sheet. The ice-sheet is formed through snow deposition and
can be viewed as an atmospheric sediment. The isotope ratio 0 /0 in
the ice is a proxy for paleo-temperatures, while the dust concentrations in
the ice yield information about the paleo-wind strength [23]. At the summit
of the ice-sheet the ice-flow is slow and vertical thus an undisturbed §'%0
chronology for at least the last glacial cycle has been obtained through the
deep ice-cores GRIP [10] and GISP2 [19]. The isotope ratio is defined as the
deviation from the ’standard mean ocean water’ (s.m.o.w.) and measured
in permil; 6'°0 = {[*0/'°0 — (**0/"°O)s.m.0.w.]/ (**O/°0)s.m.0.w.} x 1000
permil. The ice-core record covering the past 90 kyrs is shown in figure 9 (a).
The dating of the core, which is the translation of the depth to age, is done
through counting of annual layers in the top of the record and using a flow
model describing the thinning of the annual layers in depth where the annual
cycle can no longer be resolved. The ice-core record of the last glacial cycle
contained several surprises. Firstly, the present interglacial period seems to
be very stable in comparison to the glacial period. Secondly, rapid climate
changes between two quasi-stable states during the last glacial period were
observed [9]. These shifts between interstadials, called Dansgaard-Oeschger
(D-O) events, and stadials or deep glaciation have later been seen in Atlantic
sediment records [4] and perhaps even in an isotope record fro cave stalag-
mites in China being an East Asian Monsoon proxy [35]. This indicates a
global extend of the D-O events. An essential part of estimating the antro-
pogenic climate changes is the evaluation of the natural variability of the
climate itself. The ice-core records show indisputably very rapid and large
climate changes in pre-historical times. Since the record is uptained with
very high temporal resolution and a precise dating, it is possible to extract
information on various components of the climate system and to contrast
different periods.
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Separating time scales

The present climate is, in comparison to the climate of the last glacial maxi-
mum (LGM), relatively stable. The abrupt changes, D-O events, in temper-
ature on time scales of a thousand years in the glacial period are associated
with ice-surges, Heinrich events, from the large ice-sheets are not seen in
the Holocene record. The presence of the ice-sheets impacts the atmospheric
dynamics in glacial times. By comparison of very high temporal resolution
ice-core records, covering the Holocene and the last glacial periods, we are
able to observe differences in the coupled atmosphere-ocean dynamics be-
tween the two periods.

The ice-core data analyzed in the following, shown again in high resolution
in figure 9 (a), covers the Holocene and the glacial period with a temporal
resolution ranging from seasons in the present to approximately 10 years at
91 kyrs BP (17496 points). The data is based on sampling slices of specified
increments down through the ice-core. The temporal resolution thus varies
through the record due to the temperature dependence of the accumulation
and thinning of the annual layers with depth. The mean resolution in the
glacial period is 5.5 year averages with a maximum resolution of about 3.5
year averages near a D-O event. For details see reference [23].

The power density spectrum is calculated from interpolating the data
series to regular time intervals. The spectrum is shown in Figure 10.

There are two regimes of behavior in the power spectrum separated at
around a few hundred years. For time scales longer than 100 — 200 years
the spectrum is a continuous red noise spectrum without dominant peaks
signifying long time scale correlations. For time scales shorter than 100 —
200 years the spectrum is a white noise spectrum signifying short time scales
or no temporal correlations. In order to separate the climate information of
these two regimes we split the signal in the high and the low frequency part
using a spectral cut at 150 years, figure 9 (b) is the 150 years low-pass, and
(c) is the high-pass.

The characteristic "saw-tooth” D-O events are represented in the low-
pass filtered signal. The climate dynamics of these events are related to
surging and buildup of the ice-caps, and coupling to the ocean circulation.
The surging is a very rapid process while the buildup takes more than a few
hundred years, since the ice has to be transported as precipitation through the
atmosphere. This could explain the saw-tooth shapes, which are maintained
in the low-pass signal.
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The residual high-pass signal, figure 9 (c), represents time scales faster
than a few hundred years. This part of the signal contains the information on
the atmospheric dynamics and the atmosphere-ocean couplings on the ENSO
time scales of a few years. The most striking feature of this signal is that the
envelope of the fluctuations is correlated with the degree of glaciation — or
the temperature as represented by the 680 itself. Figure 9 (d) shows the 10
kyears low-pass of §'80 (9 (a)) and figure 9 (e) shows the 10 kyears low-pass
of the absolute value of the high-pass (9 (c)). The §'®O signal is a proxy for
the local temperature through the relation that in the cold climate, storm
tracks move southward and the transport route for the precipitation is longer
increasing the depletion of '80. Thus we interpret the increased variance as
a direct result of a more stormy - or turbulent - state of the atmospheric flow
during last glacial maximum (LGM).

Due to the presence of the ice-sheets and a substantially colder northern
ocean in the glacial period larger thermal gradients between equator and the
glaciers are expected than in the present climate. This would cause a more
energetic and turbulent atmosphere through increased baroclinic activity in
the glacial climate. This spectral analysis of the ice-core isotope record is
the first observation of changes in the atmospheric circulation from paleocli-
matic records for the LGM. It confirms atmospheric general circulation model
(AGCM) studies of the LGM climate and indicates that the atmosphere was
in a state characterized by more storminess and more variability.

The Dansgaard/Oeschger events

The changes in the state of thermohaline ocean circulation probably underlies
the differences between the glacial state and the intermediate D-O state.
Climate models of varying complexity from simple to fully coupled ocean-
atmosphere general circulation models now more or less reliably reproduce
the present and the glacial climate [34, 13]. However, at present the models
are not capable of identifying the mechanisms responsible for the climatic
changes observed in the records.

There are two major competing viewpoints for the occurrences of the
shifts. The first viewpoint is that the shifts are caused by a de-stabilization of
the state which the system occupies so that it is forced into the other stable
state through a bifurcation [5, 28]. The second viewpoint is that internal
fast time scale fluctuations acts as an effectively random forcing erratically
triggering shift between quasi-stable climate states [8, 18, 6.
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The first viewpoint is inspired by the demonstration [31, 37] that high
resolution ocean models exhibits a bifurcation diagram similar to the one
found in simple ocean box models [33]. In an ’intermediate complexity’
climate model Ganopolski and Rahmstorf [15] recently simulated the D-O
events by periodically forcing the model not quite to the bifurcation point,
but such that the internal noise in the model induced a penetration of the
reduced barrier. This is the stochastic resonance scenario [2].

The second viewpoint, that internal fluctuations in the system acts as a
noise pushing the system across the barrier separating two quasi-stationary
states, implies that de-stabilization of either state is irrelevant for the dynam-
ics. From an analysis of the high resolution §'¥O climate proxy signal from
the GRIP ice-core [23] it is possible to decide in favor of the latter of these
two theories, namely that the shifts are governed by internal fluctuations.
The way to decide between the two theories from data is by observing the
distribution of waiting times between jumps from one state to the other. Here
the waiting times are obtained as the times between consecutive separation
points in the 100 years running mean of the isotope record. The separation
points are identified as first up-crossings (down-crossing) through a constant
level I, (I;) near the mean interstadial (stadial) level following a first down-
crossing (up-crossing) through a constant level ; (I,) near the mean stadial
(interstadial) level. This identifies the beginnings of the interstadial (stadial)
states. The terminations are found by the same procedure run backwards in
time. The times between termination of one state and beginning of the next
is the transition time. This procedure identifies the D-O events in accordance
with the visual identification performed by Dansgaard et al. [10].

Figure 11 (a) shows the distributions of durations of the glacial state in
between interstadials and figure 11 (b) shows durations of the interstadials.
Figure 11 (c) shows the pooled distribution. All three panels unambiguously
show exponential distributions with mean waiting times of 1700 years, 1100
years and 1400 years respectively. The mean waiting times are represented
by the slopes of the straight lines. The occurrence of exponential distribu-
tions indicates a Poisson process with noise induced transitions. This finding
disfavors the proposals of periodic internal climate oscillations [20, 3, 30] or
a stochastic resonance [1].
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The climatic noise and intermittency

The high-pass signal in figure 9 (c) can be interpreted as a rough represen-
tation of the noise component inducing the climatic shifts. The noise is in
this context variations on the time scales of the ENSO and other variations
coupling the ocean and atmosphere. A characteristic of the state of the tur-
bulent atmospheric flow is the intermittency or occurrence of extreme values
in the temperature field as represented through the probability density func-
tion (PDF)[32]. In present day temperature records one finds gaussian PDF’s
when subtracting the annual and diurnal cycles. To compare this with the
ice-core record, we can analyze the record covering the last 3 kyears. This
part of the ice-core has been measured with a temporal resolution of ap-
proximately one month (26244 points). This is referred to as the Holocene
(present climate) signal in the following. The Holocene signal is compared
with the signal covering 14.4 — 29 kyears BP with a temporal resolution of
approximately 3.7 years (3888 points), referred to as the LGM (Last Glacial
Maximum) signal in the following. The Holocene signal has a white-noise
power spectrum down to 5 — 10 years, see figure 10, where it bends of. This is
similar to spectra obtained from present days climatological data [36]. Note
the annual cycle in the spectrum. In order to subtract the low-frequency
variability, related to non-atmospheric components of the climate system, we
extract the high-pass filtered signal, and examine the PDF as a function of
the high-pass cutoff frequency. The high-pass signal is normalized with the
running variance in a window of 500 data points. The PDF’s are fitted to
Laplace type of distributions [24] of the form,

Po(z) = 1/(27PT(1 +1/B)0) exp(~|z/0]’/2), (45)

which for § = 2 is the normal distribution and for 8 = 1 is the Laplace
distribution. Figure 12 (a) shows the normalized 30 year high-pass for the
Holocene signal, figure 12 (b) shows the cumulated distribution on a normal
probability scale and figure 12(c) shows the fitted PDF. This signal is very
close to being gaussian. Figure 12 (d),(e) and (f) shows the same for the
normalized 30 year high-pass of the LGM signal. In this case there is a
significant deviation from a gaussian distribution. The kurtosis, x, and the
best fit § = [(k) parameter, are shown in figure 13 as a function of the
high-pass cutoff frequency. Triangles are Holocene — and diamonds LGM
data. The error bars represent the 95 % confidence level [25]. The present
Holocene climate shows a gaussian distribution for all time scales, while the
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LGM signal becomes more intermittent for the faster time scales. This could
indicate that the climate system was in a dynamical regime during the glacial
period different from the present. From a naive point of view we would expect
the glacial atmosphere to be in a state of more storminess during glacial times
because the temperature gradient between the tropics and the ice-rim was
much larger during the glacial times, where the polar regions were 20-30
degrees colder than today while the tropics were only about 5 degrees colder
and the ice-rim of the glaciers was more advanced toward the tropics.

Exotic statistics

The observation of intermittency in the glacial record inspires to more spec-
ulative interpretations of the climatological time series.

In the following we will show that the Calcium record from the GRIP ice-
core is consistent with the picture of a stochastic climate dynamics described
by a Langevin equation and a bi-stable climate pseudo-potential is derived
[12]. It is found that the fast time scale noise forcing the climate contains
a component with an a-stable distribution. As a consequence of this inter-
pretation the abrupt climatic changes observed could be triggered by single
extreme events. These events are related to ocean-atmosphere dynamics on
annual or shorter time scales and could indicate a fundamental limitation in
predictability of climate changes.

The Calcium signal from the GRIP ice-core is the highest temporal res-
olution continuous glacial climate record which exists [14]. The logarithm
of the calcium signal is (negatively) correlated with the 6'*O temperature
proxy with a correlation coefficient of 0.8 [38, 27], thus we use the logarithm
of calcium, figure 14 (a), as a climate proxy since it is related to dust in the
ice and therefore does not diffuse in the ice and firn as the §'80 signal does.
The temporal resolution of log(Ca) is about annual from 11 kyr to 91 kyr
B.P. (80,000 data-points). This is an order of magnitude higher than that of
§'80. The probability density function (PDF) of the signal, figure 15, shows
a bi-modal distribution with peaks corresponding to the warm interstadials
and the glacial states.

From the premise of the stochastic dynamics represented by the Langevin
equation and the data we can now uniquely determine the climate pseudo-
potential, U(y), and the structure of the noise term.

The noise term (diffusion term) is to first order, neglecting the drift term,
defined as the derivative of the signal estimated as (y;1a¢ — y¢)/At, shown in
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figure 14 (b). This signal is stationary except for a slow trend through the
record which is partly due to smoothing with depth in the ice-core so that
the intensity of the noise is approximately independent of log(Ca). Note
the implication that the intensity of fluctuations in calcium concentration is
proportional to the calcium signal itself (dz/dt = x dlogx/dt) and thus to
the degree of glaciation [11].

The noise has a strongly non-gaussian distribution. Figure 16 (a) shows
the probability density function for the noise, figure 16 (b) shows the cumu-
lated probability in a scale on which a gaussian distribution is a straight line
(probability paper scale). Finally, figure 16 (c) shows the two tails of the
distribution on a log-log plot magnifying the behavior of the tails. This has
in an intermediate range a power function scaling with a power of about 2.75
and an additional extreme tail. The signal can be described by a Langevin
equation,

dy = —(dU/dy)dt + o1dz + o9d L. (46)

The first noise component, oidx, is generated by an additional Langevin
equation, dz = —xdt ++/1 + 22dB, where z is an (unmeasured) independent
variable and dB is a unit variance Brownian noise. The stationary distri-
bution for x is a t-distribution which fits to the observed tail distribution
for the noise on y. The second noise term is an a-stable noise with stability
index a = 1.75. The a-stable distributions, corresponding to o < 2, have
cumulative probability tails which scales as £=® implying that only moments
of order less than « exists ({|z|*) = cofor 8 > ). The a-stable distributions
fulfill a generalized version of the central limit theorem, namely that the
distributions of sums of identically distributed random variables with cumu-
lative distribution tails scaling as x=*' converges to an a-stable distribution
with o = «;.

A generalization of the Fokker-Planck equation for the two coupled Lange-
vin equations with a-stable noise excitations connects the stationary density
solution to the pseudo-potential U(y). However, only the marginal distribu-
tions are known since z is not observed. For y this is the PDF for log(Ca)
shown in figure 15. The pseudo-potential, shown in figure 17, is thus de-
termined iteratively by simulation starting from a solution to the stationary
one-dimensional Fokker-Planck equation using the marginal distribution.

In order to validate that the log(Ca) signal can be described by (46),
a simulation using the derived pseudo-potential, fitting o; and oy from the
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noise structure of the signal, figure 16, should be compared with the log(Ca)
signal. The simulated signal is shown in figure 18, which should be compared
with figure 14 (a). The thin lines in figures 15 and 16 are derived from the
simulated signal. As seen in the figures the agreement between the data and
the simulation is astonishing. Judged from different simulated realizations
the two signals only deviate within the statistical uncertainty.

For the calcium data to be consistent with the dynamics described through
a Langevin equation, the driving noise must be of the form described here.
In order to understand the underlying climate dynamics it is important to
establish the connection between this climatic proxy and the climate. It is
especially important to interpret the two noise terms and connect them to
the atmosphere-ocean dynamics. The presence of an a-stable noise compo-
nent could imply that the triggering mechanisms for climatic changes are
single extreme events. Such events, being on the time scale of seasons, are
fundamentally unpredictable and never captured in present days numeri-
cal circulation models. All coupled general circulation models will due to
smoothening and coarse resolution almost certainly show gaussian statistics.
This could explain why these models have yet never succeeded in simulating
shifts between climatic states.

Summary and outlook

Climate history recorded in ice-cores shows changes on many different time
scales. By applying the time series analysis tools we obtain information about
the dynamics of climatic changes. The glacial climate is much more variable
than the present Holocene climate. One the time scales of a few years, where
the most prominent climate variation in the present climate is the ENSO,
we observe a more intermittently varying glacial climate. On time scales of
hundreds to thousands of years the climate jumps between two quasi-stable
states, the D-O state and the deep glacial state. The waitingtime distribu-
tion indicates a noise induced jumping. The stronger and more intermittent
fast time scales variations in the glacial period could be the trigger. The
weakening of this climatic noise could then be the reason for the apparent
strong stability of the present Holocene climate. The cause for the more
intense noise in the glacial climate could be a stronger temperature gradi-
ent between the tropics and the polar regions. The common paradigm is
that the different quasi-stable states are caused by the existence of different
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quasi-stable modes of the Atlantic thermohaline circulation [5]. However,
the indications of D-O events in tropical paleoclimatic records challenge this
view. Perhaps the ENSO, which is a strong tropical climate variation, plays
an important role in the glacial climate variability [7]. Answering the ques-
tion of the mechanism behind the observed natural climate changes is a future
challenge and perhaps a benchmark for understanding the nature of present
days antropogenic climate changes.
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Figure 1: Three different climatic time series. (a) shows two years of the
temperature record from the weather station in Nuuk, Greenland. The tem-
perature is measured twice a day. (b) Shows the global temperature anomaly,
defined as the global mean temperature subtracted the mean temperature for
the period 1950-1979. The global mean temperature is obtained for the cen-
tury long period where measurements have been done. The global mean is
defined with a procedure for area averaging depending on the measurement
coverage. The series is biased toward temperatures over land, since very few
measurements exist over the oceans. The signal has been smoothed within a
10 years running window. (c) is the Southern Oscillation Index (SOI), which
is defined as the pressure difference between a weather station in Tahiti and
one in Darwin, Australia. The SOI is closely related to the El Nino in the
Pacific ocean.
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Figure 2: The auto-correlation functions corresponding to the three signals
in figure 1. For the Nuuk temperature record (a) the auto-correlation is
calculated from a 30 years record including the two years plotted in figure 1.
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Figure 3: The power spectra for the three signals in figure 1.
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Figure 4: The auto-correlation function (a) and the power spectrum (b) for
the climate variable y, governed by equation (18)
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Figure 5: A simulation of the Langevin equation (18), (a) shows the white
noise forcing, 7. (b) shows the climate variable, y.
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Figure 7: A weak periodic variation of the potential only changes the heights
of the potential barrier.
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Figure 9: (a) The high resolution §'®0 signal from the Greenland ice-cap.
6180 is the difference between 80 content of the ice and *O content in
present day’s ocean water. Empirically it has been shown that there is ap-
proximately a constant linear relationship between §'80 in precipitation and
the air temperature where the precipitation falls [22]. The ice-cap thus con-
stitutes a record, which is a proxy for the climate, as old as the ice itself
that is of the order of 250 — 500 kyrs at the bottom. The exact relationship
between temperature and isotope ratio depends in an intricate way on the
sea/air temperature of evaporation, cloud temperature of condensation, and
the path followed by the vapor before falling out as snowflake. Furthermore,
the isotope ratio in the ice depends on molecular diffusion and mixing in the
ice. The ice-core §'80 ratio is therefore a proxy for some spatially and tem-
porally averaged temperature signal, conditioned by a precipitation event.
However, one can expect that these processes act as independent noise to
the climatic temperature signal contained in the record. (b) is the 150 year
lowpass of the §'80 signal showing the D/O events, (c) is the corresponding
residual 150 years highpass, which is just the difference between (a) and (b).
(d) is the 10 kyears running mean ofthe 6'°0 signal (a), and (e) is the 10
kyears running mean of the root mean square of (c).
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Figure 10: Power density spectra for the §'80 record covering 0 — 91 kyear BP
with a temporal resolution of approximately 10 years at 91 kyears BP (17496
points). The rightmost, Holocene, spectrum covers 0 — 3 kyears BP, with a
temporal resolution of approximately 1 month (26244 points). The spectrum
has a spectral slope of approximately -1.6 for time scales larger than 100 —
200 years, indicated by the sloping line. For time scales smaller than 100 —
200 years the spectrum is white until timescales of 5 — 10 years. The strong
damping of the high frequencies corresponding to time scales smaller than 5
— 10 years is partly due to diffusion of the signal in the firn and ice. Note
the annual peak in the spectrum.
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Figure 11: The distribution of waiting times between consecutive crossings
of an upper and a lower level corresponding to the inter-stadials and stadials
respectively. Probabilities P(7 > t) of a waiting time 7 longer than ¢ as a
function of ¢ are plotted. The straight lines represents exponential distri-
butions. Panel (a) shows the waiting time from entering a stadial state to
entering an interstadial state, the straight line is an exponential with mean
waiting time of 1700 years. Panel (b) shows the same for waiting times
from entering an interstadial until going to a stadial. The straight line is an
exponential with mean waiting time of 1100 years. Panel (c) shows the dis-
tribution of the pooled waiting times from entering one state until entering
the other state. The straight line is an exponential with mean waiting time
of 1400 years.
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Figure 12: (a) The 30 years highpass filtered Holocene signal, covering 0
— 3 kyears BP (26244 points). The signal is normalized with the variance
in a 500 points running window, (b) is the cumulated probability on a nor-
mal probability scale, (c) is the PDF, which is gaussian. The right panels
(d),(e),(f) are the same as (a),(b),(c) but for the LGM signal, covering 14.4
— 29 kyears BP (3888 points). This signal is intermittent.
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Figure 13: (a) The kurtosis, x = (z*)/(2?)?, as a function of the highpass
cutoff frequency. The kurtosis is 3 for the gaussian distribution and 6 for
the laplacian distribution. Triangles are for the Holocene and diamonds for
the LGM. The errorbars are the 95 % confidence levels. The Holocene signal
is gaussian for all cutoffs, while the LGM becomes more intermittent when
subtracting the longer timescales.
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Figure 14: (a) The logarithm of the calcium concentration as a function of
time (BP) in the GRIP ice-core. The dating of this upper part of the record
is rather precise. The temporal resolution is about 1 year, much better than
the 6'80 record since the dust does not diffuse in the ice. The signal is a
proxy for the climatic state. (b) The derivative of the signal in (a). This
approximately stationary signal is strongly intermittent.
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Figure 15: The probability density function (PDF) of the log(Ca) signal
shows the bimodal distribution. The thin curve is the PDF of the simulated
signal (figure 18).
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Figure 16: (a) The probability density of the noise (figure 14 b). (b) The
cumulated distribution of the noise. The scale is a ’probability paper scale’
where a gaussian distribution shows up as a straight line. This signal is
strongly non-gaussian. (c¢) The two tails of (b) on a log-log plot. For the
upper tail the probability of values larger than the abscissa is shown. The thin
curves are from the simulation, showing that the signal is well described as

containing a t-distributed noise component and an a-stable noise component.
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Figure 17: The climate pseudo-potential is a double-well potential with the
left well representing the interstadial state and the right well representing
the full glacial state. The potential is obtained from a generalized stationary
Fokker-Planck equation.
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Figure 18: An artificial log(Ca) obtained from simulating a sample solution
to the Langevin equation using the climate pseudo-potential, an o = 1.75
white noise and o7/0o = 3. This should be compared to figure 14 a. The
two signals are statistically similar, showing that the log(Ca) signal can be
generated by the stochastic dynamics.
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