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Abstract. Point measurements of chemical tracers transported via the atmosphere
contain information regarding origins, atmospheric mixing, scavenging, and in situ
chemical processes. A new technique for accessing this information is presented.

The method is based on the physical constraints that are naturally imposed on the
data. In order to evaluate the performance of this new technique, we have applied
it to artificially generated data sets. Furthermore, the method is used to analyze

eight chemical time series obtained from ice core data. Three distinct source vectors
dominate the composition throughout the last 41 kyr period. By comparing ratios
among the eight chemical species within each source vector, it is possible to show
that they describe three source types: oceanic, continental, and biochemical land

sources.

1. Introduction

It is often interesting to apportion tracers in the at-
mosphere, measured at one or more stations, into dis-
tinct sources. In particular, identifying contributions
from sources that have a fixed mass balance among dif-
ferent chemical species can provide useful information
related to pollution or atmospheric transport proper-
ties. However, this information is partly lost through
mixing and chemical reactions en route to the receptor
points where tracers are measured.

Techniques for retrieving as much information as pos-
sible on source identification are called receptor mod-
els. Two main approaches can be taken: chemical mass
balance (CMB) models that assume identification of
sources and in which the fixed mass balances among the
different chemical species is known a priori, and multi-
variate or factor analysis that attempts to both identify
sources and their respective loadings from the collected
data alone [Henry et al., 1984]. An intermediate ver-
sion between these two can be generated by utilizing a
priori knowledge in any realistic case.

A major problem for factor analysis models is that
the obvious physical constraints, such as nonnegative

is often underdetermined [Henry, 1987]. It is thus im-
portant when validating the results to be able to es-
timate how much information is obtainable from the
data. In other words one should avoid unique answers
to ill-posed questions.

In section 2 we present a very simple model based on
the physical constraints of the data. The model permits
any hybrid splitting between a priori and a posteriori
additional information and constraints. In section 3 we
argue that factor analysis models are unsuitable for re-
covering identifiable sources, and in section 4 we show
how this new model performs on an artificial data set.
Finally, in section 5 we apply the technique to ice core
data obtained from the Greenland Ice Sheet Project
(GISP) ice core [Mayewski et al., 1994; Mayewski et
al., 1993].

2. Model

We assume that the data, c*(t),a = 1,..,v, com-
prises v time series of chemical tracers obtained at one
station. Index t could trivially be extended to a spa-
tial index or any combination of a spatial index and a

source components and loadings, are not automatically
satisfied. Singular value decomposition (SVD) and prin-
ciple component analysis (PCA) are based on second-
order statistics of the data, thus a straightforward in-
terpretation of the data in terms of source vectors is
difficult. The problem of finding source compositions
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temporal index. For simplification and to keep nota-
tion to a minimum, we assume ¢ to be time only and
we measure at one station. In order to subtract the de-
sired information from the data, we make the following
assumptions: (1) the chemical tracers originate from n
different source types and (2) each of these sources has
a constant relative chemical abundance over the whole
time series. This means that chemical activity in the
atmosphere, changing the mass balance within a given
source, is assumed to result in a constant change (inde-
pendent of temperature, etc.) of the mass balance. This

5649



5650

process is represented by the source vectors, z&,7 = 1,n
and a = 1, v, with the relative loading from each source
vector z$ given by coefficients a;(t). The measured con-
centration c*(t) for a given species « is then

=meﬁ+wm

Here n(t) is a noise term accounting for contribu-
tions not originating from any of the n predominant
sources. To minimize complications, we assume mea-
suring errors to be negligible and uncorrelated between
the different species.

To retain information regarding the dominant source
types, we must have n < v, regardless of the length
of the data record (or number of stations). Values of
the individual species concentrations, ¢*(t),a = 1,v,
can be thought of as lying within a ray spanned by n
source vectors z{' in v-dimensional space. The analysis
now takes two steps. First, the number of predominant
sources are found, and then an error minimization is
performed to determine the source vector components.
The number of predominant source types n can be re-
solved from an embedding analysis.

The Grassberger and Procaccia [1983] method as-
sumes that for points situated evenly on an n-dimensiona
manifold within a v-dimensional space, the number
of points N(r) within a sphere of radius r scales as
N(r) ~ r™. To prevent the over domination of one
species due to large absolute values, all species are nor-
malized with respect to their individual series means.
Geometrically, this is just a rescaling of the axis in v-
dimensional space. This assumes the various species are
equally important in determining the sources. The em-
bedding analysis technique has been used previously in
the context of climate data in an attempt to determine
a climate attractor from 680 records [Maasch, 1989].
It was observed by Grassberger [1986] that spurious,
low-dimensional estimates can arise from short time se-
ries and that thousands of independent points in time
are required to obtain a reliable estimate of attractor
dimension. This is especially true when attempting to
characterize a potentially non integer dimensional at-
tractor in a phase space of N degrees of freedom, where
N is large.

The problem is twofold: (1) the number of points
needed for filling the space grows as 2V and (2) a low
dimensional attractor could lie on some complicated
folded manifold such that N(r) ~ r? holds only over
short distances, and many more points are then required
to obtain the correct dimension. However, in this anal-
ysis we want to characterize a much simpler geomet-
ric object: the data cluster within the v-dimensional
species space. In our experience this can be performed
reliably with a few hundred points n of each species. In
fact, in the §'80 study the embedding analysis was per-
formed on a single time series with as little as N = 180
points, and by assuming ergodicity, embedding attrac-
tors were constructed using Ruelle’s [1981] method of

(1)
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delays. With v = 8 and n = 200 we have an equivalent
of N = 1600, points which would thus appear sufficient.
By combining the embedding analysis with an a poste-
riori justification for model selection, penalizing for the
number of degrees of freedom, we have confidence in our
dimensional analysis.

When v is found, the error minimization is performed,
such that the angles between the source vectors and the
number of points falling outside the ray spanned by the
vectors are minimized, combined with an optimal best
fit to the actual data. Points falling outside of the ray
result in negative loads from one or more sources. The
geometry is schematically shown for two dimensions in
Figure 1, where it is obvious that the data are equally
well spanned by any set of vectors spanning a larger
angle, including the one found from the minimization.
In this respect the problem is underdetermined, but by
minimizing with respect to the angles in the ray, we
assume that there are enough data in the “true” phase
space, such that the “minimum angle” vectors are the
most likely. With a more careful statistical analysis and
uniform distribution, one would assume that the most
likely angles between the source vectors are larger by
an O(1/N) factor. So with 100 data points the error
is of the order of 1%. The minimization of the angles
spanning the ray is the major difference between this
method and traditional factor analysis models.

3. Comparison With Factor Analysis
Models

Conventional factor analysis models are based on the
correlation structure (a mean-centered statistic) present
within the data. The PCA base vectors determined in
this way are the orthogonal eigenvectors of the covari-
ance matrix of the data (in meteorology often referred
to as empirical orthogonal functions (EOFs)). These
vectors (principle components (PCs)) will, in general,
have negative components and in this form cannot be
interpreted as source vectors for the following reason.
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Figure 1. The data points lie within a ray spanned by
the source vectors. We determine the vectors spanning
the ray (solid lines), but the problem is obviously under-
determined since the data could be equally well spanned
by the dashed vectors. The major assumption is that
the true source source vectors collapse around the data
such that the angle between them is minimized (solid
vectors).
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If the PCs are to be interpreted as source vectors, the
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the PCs have negative components, as we end up with
the unphysical requirement that source areas are “suck-
ing out” chemical species from the system. Only after
the mean vector is added back to the dominant PCs is
it possible, though, by no means, guaranteed, for them
to regain the requirement of positivity. Furthermore,
projecting the data onto each of the principle compo-
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Since the PCs are eigenvectors of the covariance matrix,

the time series are, hv r*nnth‘nnhnn uncorrelated (fpm-

poral orthogonahty), so that negatlve coefficients must
exist at some times. Each coefficient time series ef-
fectively describes the contribution from its related PC
with respect to the mean vector. Even if the PCs are all
positive as a result of adding the mean vector, the coef-
ficient time series will still contain negative values owing
to the orthogonality requirement, and we still have the
unphysical problem of sucking out chemical species.
Rotation techniques, e.g., varimax [Richman, 1986),
have been constructed in order to avoid such problems.
They require that the dominant PCs are known prior to
the rotation, which itself is a nontrivial problem. How-
ever, in general, the actual rotation process is not based
on physical constraints of the system in question but
rather, is a somewhat arbitrary numerical method de-
signed to replace a “rotation by eye” in order to em-
phasize data clusters, if they exist. Relaxing the or-
thogonality requirement and rotating the few dominant
PCs within the full space is essentially a noise reduction
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points allows for a direct comparison of the statistical
significance of the method with the real data discussed
in section 5.
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spanned by the source vectors. Figure 2a sh

ing obtained from eight artificial species data sets gener-
ated from d = 2,3 4, and 5 source vectors, res

As seen from plotting the function N(r) ~ r* on the
log-log plot, the dimensions of the data cluster are re-
produced over a good range of scales. Adding 5% noise
(equation (1)) has the effect of “smearing out” the data
cluster, which is seen from the breakdown in scaling at

1 Tag di 1+~ +h I £
small scales from a dimension equar 1o the number of

generating source vectors to the eight dimensions of the
full species space (F‘wnrp ‘)h\ In other words, at scales

d

r < 0.2, measured from any data point, the noise will
dominate and the points surrounding the central data
point will be evenly distributed in eight-dimensional
space. Thus the scaling N(r) ~ r® for r < 0.2 is ob-
tained. However, for r > 0.2 the noise is negligible and
a limited region with the scaling N (r) ~ r¢ exists. From
the scaling in this region the number of sources can be
determined. Deviations from the linear slope as r in-

creases are caused by boundary effects; eventually, all
points will be inside a sphere when the radius is larger
than the maximum distance between two points in the
cluster. For large data samples, intermediate scaling
regimes < d can arise from points being situated within
a narrow ray, thus at larger scales the data appear to
lie in a lower-dimensional subspace. This feature is well
captured in the analysis of ice core data in section 5

(see Figure 6a). From the examples in Figure 2b we

technique. In the current context of source attribution
this could be improved by including further optimiza-
tion demands based on physical constraints, similar to
our model discussed in section 2. However, as discussed
in section 4, the method for selecting the number of
dominant PCs is marginal, and we argue that the tech-
nique of embedding analysis is more robust.

4. Artificial Data

In order to understand the properties of the model,
artificial species data are generated with known source
vectors = and coefficient time series ¢*. Each source
vector is selected to have eight components that are
chosen randomly and then normalized. The coefficient
time series are also generated randomly, each contain-
ing 200 points. Combining the artificial source vectors
and coefficient time series as in (1) produces eight arti-
ficial species, each containing data for 200 consecutive
time intervals. As long as the number of sources are less
than the number of species, any number can be gener-
ated for this purpose. It is with this species data that
we assume no prior knowledge and apply the model in
an attempt to reproduce the source vectors and their re-
spective coefficient time series. The choice of 200 data

estimate that 200 points is marginal for an embedding
analysis with a 5% noise level.

The dimension of the subspace spanned by the source
vectors can be determined as well by calculating how
many dominating eigenvalues the correlation matrix
has, i.e., the PCs. This is usually achieved by calcu-
lating the amount of relative signal variance captured
in each PC and arbitrarily choosing a suitable cutoff
so that the main features of the signal are retained.
However, in the current context the cutoff for signifi-
cant eigenvalues corresponding to source vectors is not
always as obvious as the significant vectors obtained
from the log-log slope of an embedding analysis. This
could be a result of the fact that elements of the corre-
lation matrix are squared differences (second-moment
statistics), while the distances between points in the
embedding analysis are first order quantities (first-order
statistic). The two methods of analysis thus put a dif-
ferent weight on outlying points.

Having approximately found the dimensionality of
the data clusters’ subspace from the embedding anal-
ysis, it is possible to search for the source vectors them-
selves and their coefficient time series by performing the
minimization with a prescribed number of sources. A
minimum requirement for this procedure is that it must



5652
10000
1000 d=7
C) C)
= 100 =
10
1
0.01 0.10 1.00
r r
10000 10000
1000 d=3 1000 d=8
z z
> 100 > 100 A
10 10
1 1
0.01 0.10 1.00 0.01 0.10 1.00
r r
10000 10000
1000 d=14 1000
= =
= 100 > 100
10 10
1 1
0.01 0.10 1.00 0.01
r r
10000 10000
1000 a=5 1000 d=8
3 3 d=5
= 100 > 100
10 10
1 1
0.01 0.10 1.00 0.01 0.10 1.00
r r
a b
Figure 2.

DITLEVSEN AND MARSH: CHEMICAL TIME SERIES SOURCE IDENTIFICATION

§ 8 20.0
o
56 17.8
o o
5 ‘ = 15.6
§ 2
w Q 13.4
2 4 6 8 2 4 6 8
number of sources number of sources

15 20.1

10 18.9

17.8

standard error
o o
AIC

16.6

2 4 6 8
number of sources

2 4 6 8
number of sources

23.3

22.0

20.6

e

19.3

standard error
o o o o
AIC

2 4 6 8
number of sources

2 4 6 8
number of sources

25 26.6

24.4

22.3

standard error
—_ = N

oo o o o
AIC

20.1

2 4 6 8
number of sources

2 4 6 8
number of sources

c d

(a) Embedding analysis of the eight artificial species data, where the values are

normalized to the same mean. The average number of points within a sphere of radius r, N(r)
is plotted against r. On a log-log scale the relation N(r) ~ r? is a straight line with slope d.
This would correspond to the points being situated on a d-dimensional manifold embedded in
the eight-dimensional space. From top to bottom the slopes of the overplotted straight lines are
d=2,3,4,and 5. (b) Embedding analysis performed on the same data as in Figure 2a but
with 5% noise added. The noise blurs the data clusters’ sub-space into the full eight-dimensional
species space at small scales. The additional straight line has a slope of d = 8 in all cases. (c)
The standard error and (d) Akaike information criteria (AIC) estimates for fitting the artificial
species data of Figure 2b with a range of source vectors. This suggests that even with noise, it
is possible to resolve the correct number of predominant sources.

produce a reconstructed set of species data that is a
good fit to the original data. With no noise present, the
reconstructed species data will be perfect, as long as the
reconstructed species vectors span the same subspace as
the original one. For illustrative purposes we perform a
minimization on the species data that produce the scal-
ing dimension, d = 3, in Figure 2b. Figure 3 shows that
even with 5% noise added, the reconstructed data give
a good fit.

Owing to the uncertainty in the number of vectors re-
quired to span the data subspace, an independent check
can be performed by repeating the optimization for a
range of source vectors n = 1,2,..,8. A best fit model
can be found from minimizing the mean square error
or standard error. For each value n the standard er-
ror is defined as the sum of the integrals of differences
squared between the generated data and the artificial
data (normalized). Figure 2c shows the standard error
analysis performed on the artificial data for source vec-

tors that generate the scaling observed in Figure 2b. It
is clear that the error decreases as the number of source
vectors are increased, reaching a plateau where the opti-
mal number of vectors are used. Increasing the number
of source vectors thereafter has a minimal effect on the
error, with the additional vectors capturing the uncor-
related residual noise. To check the significance of this
observation, one should include a penalty on the num-
ber of independently adjusted parameters. This can be
achieved using the Akaike information criteria (AIC)
[Tong, 1990], where the minimum of the function

AIC(k) = —2log(maximum likelihood) + 2k (2)

will occur when the most likely number of source vec-
tors are used. Here the maximum likelihood is defined
as the inverse of the standard error, and the number
of independent parameters, k = (v — 1) + (n — 1), cor-
responds to a model of n source vectors describing v
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Figure 3. The eight artificially generated species data from three source vectors with 5% noise
added (thick lines). Overplotted are the reconstructed data obtained after the minimization has

been performed (thin lines).

species. Figure 2d shows AIC estimates that reveal a
clear minimum for the correct number of vectors as-
suming n = 2,3. However, it is marginal for n > 4
since this analysis was performed on only 200 points;
with a greater number of points we would achieve more
significant results for n > 4.

With knowledge of the number of sources, the source
vectors can be determined by a best fit to the data,

vectors the fit is reasonable. Any disagreement between
original and reconstructed vectors arises from the fact
that the minimization selects the source vectors that op-
timize a best fit to the data cluster. Only if a data point
falls exactly on each of the axes of the original source
vectors will they be recovered completely. The problem
will, in general, be underdetermined, as seen from Fig-
ure 1. The data plotted could as well be spanned by the

combined with collapsing the vectors such that they
just touch the ray containing the data (see Figure 1).
This amounts to minimizing the angles between the
vectors under conditions of positive coefficients. The
source vectors and corresponding coefficient time series
obtained from the data that generated the scaling prop-
erties of Figure 2b produce a remarkably good fit. For
two source vectors (not shown) the fit is near perfect, for
three source vectors (Figure 4) and four source vectors
(Figure 5) the fit is very good, and even with five source

two dashed vectors as by the two solid vectors in Fig-
ure 1. There may be physical explanations for the true
subspace not being filled completely, resulting from in-
herent correlations between the pure source vectors be-
cause of geographic location and transportation to the
deposition site. This would result in the reconstructed
source vectors possessing a projection from two or more
of the pure source vectors. In effect, the vectors have
been rotated into their true subspace such that only a
part of it is spanned, a result of demanding the a priori
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Figure 4. Reconstructions of source vectors and their respective coefficient time series performed
on the artificial species data of Figure 3, showing (left) the original source vectors (thick lines)
and the reconstructed source vectors (thin lines) and (right) their respective original coefficient
time series (thick lines) and reconstructions (thin lines).

constraint of nonnegative components. Such a poste-
riori information can only be accessed when using real
data and comparing the chemical mass balances within
each reconstructed source vector with those from known
pure sources, i.e., oceanic or continent [Holland, 1978].
The following example is of this type of case where a
posteriori validation is necessary.

5. GISP Ice Core Data

Concentrations of eight different ions have been mea-
sured from the GISP ice core at Greenland summit

vector 1

[Mayewski et al., 1994; Mayewski et al., 1993]. Sub-
stantial changes in the concentrations of the ions are
observed throughout the last glaciation. Changes in
the generic source areas of the chemical species depend
on; sea level changes [MacAyeal, 1993; Bond and Lotti,
1995], changes in among others vegetation (desertifica-
tion), and glacial extent [Hammer et al., 1985], all of
which have typical timescales of several hundred years.
Variations in atmospheric transport related to individ-
ual storms, on the other hand, take place at much faster
timescales. It is not possible from point measurements
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Figure 5. Same as Figure 4 but with four source vectors and coefficient time series.
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Figure 6. (a) Embedding analysis of the eight chem-
ical time series obtained from the Greenland Ice Sheet
Project ice core, (Figure 2 caption for more details). At
large values of r the scaling breaks from 3 to 1 because
the data are situated in a narrow three-dimensional
ray. (b) AIC estimates in fitting the eight chemical
species, depending on the number of source vectors as-
sumed, strongly suggesting there are three dominant
source types describing the chemical species.

to distinguish between effects resulting from changes
in source area strength and transport processes [Bales
and Wolff, 1995]. However, it is believed that variations
at time scales greater than 200 years are dominated
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by source area changes and large-scale changes in the
mean atmospheric flow pattern [Marsh and Ditlevsen,
1997a). Thus we analyze the 200 years mean of these
signals, providing 206 points for each of the eight mea-
sured ions; CI= Nat, K+, Ca2t, Mg+, SO3~, NHf,
and NOj3 , covering the last 41 kyr. In order to allow
for effects resulting from changes in precipitation lev-
els, the ion concentrations are converted to fluxes by
using the empirical relationship between snow accumu-
lation and 6'80; accumulation = 0.23 exp [0.14(6 — do)]
meters ice per year [Johnsen et al., 1989]. The flux is
then given as flux = accumulation x concentration since
wet deposition dominates [Wolff, 1993]. Contributions
resulting from volcanic activity [Clausen et al., 1993],
aging snow [Silvente and Legrand, 1993], extraterres-
trial material, etc., occur at timescales much shorter
than 200 years and with magnitudes that are smoothed
out into the noise level at this resolution.

Figure 6a shows the result of the embedding analysis
performed on the species flux data, where the line with
a slope of d = 3 indicates that there are three predom-
inant sources. This analysis obtains the same number
of predominant sources as does the EOF analysis of
Mayewski et al [1993] who claimed that the first three
EOFs account for 82% of the variance in the signal.
The error minimization was then performed assuming
three sources; the resulting vectors are displayed in Ta-
ble 1, and the normalized vectors are shown graphically
in Figure 7.

The number of data points (206) in the time series is
arguably marginal for performing an embedding analy-
sis. This is seen from the limited scaling regime in Fig-
ure 6a. In order to substantiate the assumption that
there are three base vectors, we identify the best fit
model from the standard error assuming n = 1,2..,8
different sources and penalizing against the number of
degrees of freedom as described in section 4. The AIC
as a function of number of source types n is displayed in
Figure 6b. This confirms that three source vectors pro-

Table 1. Source Vectors Obtained From Greenland Ice Sheet Project Data

Species Vector 1 - Oceanic Vector 2 - Continental Vector 3 - Biochemical

cl- 4.03 (0.53) 1.86 (0.25) 0.87 (0.11)

Nat 2.25 (0.55) 1.09 (0.26) 0.21 (0.05)

K* 0.18 (0.33) 0.19 (0.36) 0.07 (0.13)
Ca?t 0.49 (0.03) 10.52 (0.66) 0.14 (0.01)
Mgt 0.52 (0.30) 0.79 (0.45) 0.07 (0.04)
S0;3~ 6.76 (0.37) 5.43 (0.30) 3.14 (0.17)
NH} 0.06 (0.06) 0.11 (0.10) 0.91 (0.79)
NOj 3.37 (0.28) 0.99 (0.08) 6.87 (0.56)

The three source vectors are the relative abundance of each species in absolute values with
units 1073 gm/m3yr, where the abundance of each species is first normalized with respect to
its mean before performing the analysis. The values in parentheses are the normalized vector
components that are non-dimensional and represent the relative importance of the different

species within a specific vector.
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Figure 7. Reconstructed source vectors and coefficient time series from minimizing the fit to the
eight normalized chemical species. (left) Dominant species in each source vector that generates
the (right) corresponding coefficient time series. Table 1 displays the non normalized data values

(see text).

vide a best fit minimum for the model. With only one
source a vector similar to the dominating EOF found by
Mayewski et ol [1993] is obtained, while assuming two
sources gives vectors similar to those corresponding to
the ocean and continental sources in Table 1. With the
number of sources n > 3, the three vectors of Table
1 are retained, with the remaining vectors describing
noise. At a resolution of 200 years the noise term has
buried within it any unresolved sources, including ef-
fects resulting from aging snow processes at timescales
of days [Silvente and Legrand, 1993] and volcanic de-
posits at timescales of a few years [Clausen et al., 1993]
which will be smoothed out.

The eight generated species data, resulting from the
reconstructed vectors and coefficient time series (Figure
7), are seen to match almost perfectly with the mea-
sured data in Figure 8. With confidence established for
these reconstructed source vectors, their chemical mass
balance must be analyzed before further interpretations
can be made.

6. Interpretation and a Posteriori
Validation

By considering possible source areas for the eight
species and highlighting the dominant chemical compo-
nents; we present a physical interpretation of the three
vectors as follows. Vector 1 is strongly dominated by
chlorine and sodium, with an absolute value ratio of 1.8
as observed in bulk sea water (BSW) [Legrand and Del-
mas, 1988; Holland, 1978], suggesting this vector could
represent an oceanic source. Sulfate, also with signifi-
cant dominance, has a much higher ratio than expected
from BSW, which can be explained when considering
that only a fraction of sulfate is released directly from

the ocean into the atmosphere through ocean spray
[Legrand, 1993], while a much larger oceanic contri-
bution comes from the oxidation of dimethyl sulfide
(DMS), a gas released by seawater that can account for
up to two thirds of natural atmospheric sulfate [Burg-
ermeister et al., 1990] . However, potassium and mag-
nesium, which are strong contributors to vector 1, pos-
sess an enrichment factor [Legrand and Delmas, 1988]
twice that of BSW ratios. By repeating the analysis
with one vector forced to contain the BSW ratios of
chlorine, sodium, potassium, and magnesium [Legrand
and Delmas, 1988], no observable change occurred in
the remaining “free” components of all three vectors.
Probably because of resolution, the analysis may have
rotated the vector slightly. Calcium, and ammonium
are of very little significance to this vector.

The strongest contributors to vector 2 are calcium,
magnesium, potassium and sulfate. Calcium is a good
indicator of continental dust [Grip members, 1993],
resulting from weathered rock, which can also include
magnesium, if silicate rich rocks are present (MgSiOs3),
sulfate in the form of gypsum ( CaSQOy,), and potassium
[Hammer et al., 1985; Wayne, 1991]. The alkaline cal-
cium aerosols are capable of absorbing gaseous sulfur
compounds in the atmosphere [Legrand and Delmas,
1988], which is likely to have been an influential source
of sulfate in Greenland ice during the last glacial with
its massive increase of calcium content [Grip members,
1993] over present-day values. This vector is then dom-
inated mainly by continental source types, although
there are also substantial components of chlorine and
sodium, with a ratio of 1.8 as expected from BSW. If
our initial assumption is correct, i.e., that the relative
chemical abundance in source areas is constant through-
out the 41 kyr period, then the continental coefficient
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Figure 8. The 200 year averages of the chemical species concentrations through the ice core.
Thick lines are measured data, while thin lines are the concentrations obtained from optimizing

the three predominant source types.

time series contains signals of pure continental source
areas and a correlated, fixed ratio contribution from
ocean source components.

Ammonium is by far the strongest contributor to vec-
tor 3, and it is well known that its sources are the
result of the decomposition of organic waste and aer-
obic biology in soils [Wayne, 1991]. Other than ni-
trate, all species in this vector are of insignificant im-

chemical source types.

The origins of nitrate in the Greenland ice are still
uncertain, at present. However, the major sources are
probably tropospheric lightning, stratospheric sources,
and soil exhalation [Wolff, 1993]. Soil exhalation natu-
rally occurs over vegetated regions’, thus an element of
nitrate fluxes would be expected to correlate with am-
monium. Comparison between the species time series
of nitrate and ammonium over the last 41 kyr reveals

similarities in agreement with the strong presence of ni-
trate in vector 3 [Wolff, 1993]. The more dominant
sources are from lightning, which occurs predominantly
over land and in the tropics [Orville and Hendersen,
1986] and the photochemical oxidation of NoO in the
stratosphere. Both these processes are likely to con-
tribute to the production of a more global background
source, though the low levels of nitrate in the conti-

€ al VECUO g S ce O ad

tures trends in the global background, which partially
explains the relatively poor reconstruction of nitrate in
Figure 7. Contributions from the global sources of ni-
trate may then artificially spill into any of the three
vectors without affecting the ratios between the other
chemical components. To confirm this, the analysis
was repeated on seven species, excluding nitrate, which
made only a minimal change to the distributions of the
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other chemical species in the source vectors. It may well
be that an analysis with higher-resolution data would
reveal an additional, fourth vector describing a back-
ground signal.

Following the previous discussion, the three source
vectors are described as oceanic, continental, and bio-
chemical, respectively. However, as mentioned earlier,
it is not possible to directly separate source area and
transport effects, thus the resulting vectors are un-
likely to represent pure sources but, instead, will be
mixed with additional contributions due to transport-
ing air parcels with an “unclean” background. The
corresponding coefficient time series a;(t) (Figure 7),
will then depend on contributions from the loading of
the dominant pure source and the strength of contam-
ination from global sources and/or other much weaker
sources that are not revealed by the analysis at this
resolution. Correlations exist between these series with
correlation coefficients of

oceanic-continental = 0.38
oceanic-biochemical = -—0.66
continental-biochemical = -0.73

These time series are then of a different nature than
those obtained from an EOF analysis, which, by con-
struction, are uncorrelated [Preisendorfer, 1988].

The continental vector, in particular, is the most
contaminated. Though dominated by terrestrial dust,
it contains substantial chemical components associated
with seawater and possessing ratios similar to those seen
in the ocean vector. This could be the result of two
processes: (1) air transporting terrestrial dust takes a
path or mixes with air that passes over an ocean source
area or (2) the dust originates from newly exposed con-
tinental shelves that are rich in sea salt [Marsh and
Ditlevsen, 1997b]. As a result, the ocean source vec-
tor must then contain (1) excesses or (2) a completely
separate ocean signal originating from air/sea interac-
tions. Since calcium, a good tracer for terrestrial dust,
is only present in this continental vector, the trends of
its species time series (Figure 8) dominate the conti-
nental source vector time series. Thus, for periods of
very strong calcium content, the continental vector will
be strong and, subsequently, so will, the related ocean
components. Depending on the extent of ocean loading,
this may be enough to capture all contributions from the
ocean source, if it is correlated with continental sources.
Any excess to the ratio between these dust/ocean com-
ponents would then appear in the ocean time series cor-
related to the continental time series. However, if the
ocean and continental time series possess negative cor-
relations, the ocean source could be of a different origin
than any ocean components captured in the continental
source. As such, the calcium content of the continental
vector is then acting as an identification tag for the cor-
related ocean source. By understanding the geographic
location of calcium sources, i.e., glacial desertified areas,
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and physically reasonable transport routes to Green-
land, it should be possible to separate the total ocean
signal into components originating from two different
regions, e.g., the North Atlantic and the Pacific.

A more detailed discussion of the coefficient time se-
ries and their implications for glacial-deglacial dynamics
is given by Marsh and Ditlevsen [1997b].

7. Summary

A new method has been developed for analyzing mul-
tiple time series obtained from a single spatial receptor
point. The method can be trivially generalized to the
case of more receptor points. By maintaining the physi-
cal restriction that any reduced system must be positive
and based on the assumption that source areas main-
tain a constant relative abundance in time, the source
vectors can be isolated. We have demonstrated that the
method captures the structure of an artificially gener-
ated noisy signal.

The chemical data obtained from the GISP ice core
have been analyzed using this new technique. Three
predominant sources are identified. Through interpre-
tation of the chemical ratios within each vector (a poste-
riori), it has been possible to show that they capture the
basic chemistry of oceanic, continental, and biochemical
source types. The respective coefficient time series pos-
sess correlations, that indicate, that although the source
types are geographically independent, their transport
routes within the atmosphere are not. This is quite
different from previous EOF studies where the source
types and corresponding time series are all independent.
Ready to use codes for performing this analysis can be
obtained freely by request to pditlev@pditlev.gfy.ku.dk.
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