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Big data and large-scale machine learning have had a profound impact on science and
engineering, particularly in fields focused on forecasting and prediction. Yet, it is still
not clear how we can use the superior pattern-matching abilities of machine learning
models for scientific discovery. This is because the goals of machine learning and science
are generally not aligned. In addition to being accurate, scientific theories must also be
causally consistent with the underlying physical process and allow for human analysis,
reasoning, and manipulation to advance the field. In this paper, we present a case study
on discovering a symbolic model for oceanic rogue waves from data using causal analysis,
deep learning, parsimony-guided model selection, and symbolic regression. We train
an artificial neural network on causal features from an extensive dataset of observations
from wave buoys, while selecting for predictive performance and causal invariance.
We apply symbolic regression to distill this black-box model into a mathematical
equation that retains the neural network’s predictive capabilities, while allowing for
interpretation in the context of existing wave theory. The resulting model reproduces
known behavior, generates well-calibrated probabilities, and achieves better predictive
scores on unseen data than current theory. This showcases how machine learning can
facilitate inductive scientific discovery and paves the way for more accurate rogue wave
forecasting.

ocean waves | rogue waves | machine learning | symbolic regression | causality

Rogue waves are extreme ocean waves that have caused countless accidents, often with fatal
consequences (1). They are defined as waves whose crest-to-trough height H exceeds a
threshold relative to the significant wave height Hs. The significant wave height is defined
as four times the SD of the sea surface elevation. Here, we use a rogue wave criterion
with a threshold of 2.0:

H/Hs > 2.0. [1]

A rogue wave is therefore by definition an unlikely sample from the tail of the wave
height distribution and can in principle occur by chance under any circumstance. This
makes them difficult to analyze and requires massive amounts of data. Therefore, research
has mostly focused on theory and idealized experiments in wave tanks, often considering
only 1-dimensional wave propagation (2). However, the availability of large observation
arrays (3) makes them an ideal target for machine-learning based analysis (4, 5).

In this study, we present a neural network-based model that predicts rogue wave
probabilities from the sea state, trained solely on observations from buoys (6). The
resulting model respects the causal structure of rogue wave generation; therefore, it can
generalize to unseen physical regimes, is robust to distributional shift, and can be used
to infer the relative importance of rogue wave generation mechanisms.

While a causally consistent neural network is useful for prediction and qualitative
insight into the physical dynamics, the ability for scientists to analyze, test, and manipulate
a model is crucial to recognize its limitations and integrate it into the research canon.
Despite advances in interpretable AI (7), this is still a major challenge for most machine
learning models.

To address this, we transform our neural network into a concise equation using
symbolic regression (8, 9). The resulting model combines several known wave dynamics,
outperforms current theory in predicting rogue wave occurrences, and can be interpreted
within the context of wave theory. We see this as an example of “data-mining inspired
induction” (10), an extension to the scientific method in which machine learning guides
the discovery of new scientific theories.

We achieve this through the following recipe (Fig. 1):

1. A priori analysis of causal pathways that leads to a set of presumed causal parameters
(Section 1).
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Fig. 1. Overview of our study. Starting out with large amounts of tabular data from wave buoys, we use a causal analysis to identify the most important
features for predicting rogue waves. We then train an ensemble of neural networks on subsets of these features and select the best one based on its predictive
performance and causal invariance. Finally, we use symbolic regression to distill the model into a concise mathematical equation. We analyze the neural
network and symbolic expression in terms of their performance on unseen data and compare them to existing theory. This closes the arc between data,
machine learning, and theory.

2. Training an ensemble of regularized neural network predic-
tors, and parsimony-guided model selection based on causal
invariance (Section 2).

3. Distillation of the neural network into a concise mathematical
expression via symbolic regression (Section 3).

Finally, we analyze both the neural network and symbolic model
in the context of current wave theory (Section 4). Both models
reproduce well-known behavior and point toward insights
regarding the relative importance of different mechanisms in
the real ocean.

1. A Causal Graph for Rogue Wave Generation
To create a causal machine learning model, it is crucial to
expose it only to parameters with causal relevance. Otherwise,
the model may prefer to encode spurious associations over true
causal relationships, simply because they can be easier to learn.
This requires us to identify the causal structure of rogue wave
generation.

There are several hypothesized causes of rogue waves see
ref. 11, for an overview. Typically, research focuses on linear
superposition in finite-bandwidth seas (12), wave breaking (13),
and wave-wave interactions in weakly nonlinear seas (14, 15)
or through the modulational instability (16). Apart from these
universal mechanisms, there are also countless possible inter-
actions with localized features such as nonuniform topography
(17), wave-current interactions like in the Agulhas (18) or the
Antarctic Circumpolar Current (19), or crossing sea states at high
crossing angles affecting wave breaking (20). We call this set of
mechanisms the physical effects Φ.

Since ocean waves are generated by a complex dynamical
system, their true cause is a set of extrinsic environmental con-
ditions E that are high-dimensional and not feasible to capture
in full detail. However, most physical effects are mediated by

one or several sea state parameters P , which are the characteristic
aggregated parameters that appear in theoretical models of the
respective wave dynamics and that are included in operational
wave forecasts. In this study, we would like to obtain a model
that relates relevant sea state parameters P to wave observations
O, which ideally also lets us infer the relative importance of
physical effects Φ.

The go-to tool to analyze causal relationships is a causal DAG
[Directed Acyclic Graph; (21)]. In a causal DAG, nodes represent
variables and edges A→ B imply that A is a cause of B [usually in
the probabilistic sense in that the probability distribution P(B)
depends on A].

We create a causal graph for rogue wave formation based
on the hypothesized causal mechanisms discussed above and
their corresponding theoretical models and parameters (Fig. 2).
Following this causal structure, we use the following set of sea
state parameters as candidates for representing the various causal
pathways (see the Materials and Methods for more information
on each parameter):

• Crest–trough correlation r, to account for the linear effect
of wave groups on crest-to-trough rogue waves (22). r is the
dominant causal factor behind linear rogue wave formation
(4).

• Steepness " governing weakly nonlinear effects, such as second-
order and third-order bound waves, and wave breaking
(13, 23).

• Relative high-frequency energy Eh (fraction of total energy
contained in the spectral band 0.25 Hz to 1.5 Hz) as a proxy
for the strength of local winds (24).

• Relative depth D̃ (based on peak wavelength), which is central
for nonlinear shallow-water effects (25, 26) and wave breaking
(13).

• Dominant directional spread �� , which has an influence on
third-order nonlinear waves (26) and wave breaking (20).
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Fig. 2. The causes of rogue waves as a causal DAG (directed acyclic graph). Arrows A→ B imply that A causes B.

• Spectral bandwidth �f (narrowness) and �f (peakedness),
appearing, for example, in the expression for the influence
of third-order nonlinear waves (26).

We also include a number of derived parameters that commonly
appear in wave models and govern certain nonlinear (wave-wave)
phenomena:

• Benjamin–Feir index BFI, which controls third-order nonlin-
ear free waves (26) and the modulational instability (27).

• Ursell number Ur, which quantifies nonlinear effects in shallow
water (28).

• Directionality index R (the ratio of directional spread and
spectral bandwidth), which has an influence on third-order
nonlinear free waves and is typically used in conjunction with
the BFI (26).

These parameters cover most causal pathways toward rogue wave
generation. Still, there are some at least partially unobserved
causes, as we do not have access to data on local winds,
topography, or currents. Additionally, our in situ measurements
are potentially biased estimates of the true sea state parameters,
and there is no guarantee that any given training procedure will
converge to the true causal model. This implies that we cannot
rely on a model being causally consistent by design; instead, we
perform a posteriori verification on the learned models to find
the perfect trade-off between causal consistency and predictive
performance (Section 2C).

2. An Approximately Causal Neural Network
A. Input Data. We use the Free Ocean Wave Dataset [FOWD,
(6)], which contains 1.4 billion wave measurements recorded by
the 158 CDIP wave buoys (3) along the Pacific and Atlantic coasts
of the US, Hawaii, and overseas US territories. Water depths
range between 10 m to 4,000 m, and we require a significant
wave height of at least 1 m. Each buoy records the sea surface
elevation at a sampling frequency of 1.28 Hz, producing over
700 y of time series in total. FOWD extracts every zero-crossing
wave from the surface elevation data and computes a number of
characteristic sea state parameters from the history of the wave
within a sliding window.

Due to the massive data volume of the full FOWD catalogue
(∼1 TB), we use an aggregated version that maps each sea state
to the maximum wave height of the following 100 waves as in

ref. 4. This reduces the data volume by a factor of 100 and inflates
all rogue wave probabilities to a bigger value p̂. We correct for
this via p = 1− (1− p̂)1/100, assuming that rogue waves occur
independently from each other. This is a good approximation in
most conditions but may underestimate seas with a strong group
structure (Section 5B).

The final dataset has 12.9M data points containing over
100,000 rogue waves exceeding 2 times the significant wave
height. Our dataset is freely available for download (Data,
Materials, and Software Availability).

B. Neural Network Architecture. The probability to measure a
rogue wave based on the sea state can be modeled as a sum of
nonlinear functions, each of which only depends on a subset of
the sea state parameters representing a different causal path (act
via different physical effects in Fig. 2):

logit P
(
y = 1

∣∣ x) ∼∑
i

fi
(
x(Si)

)
+ b. [2]

Here, y is a binary label indicating whether the current wave is a
rogue wave, x(Si) is the i-th subset of all causal sea state parameters
x, logit(p) = log(p) − log(1 − p) is the logit function, fi are
arbitrary nonlinear functions to be learned, and b is a constant
bias term.

By including only a subset x(Si) of all parameters x as input for
fi, we can restrict which parameters may interact nonadditively
with each other, which is an additional regularizing constraint
that increases interpretability and prevents interactions between
inputs from different causal pathways. For example, to include
the effects of linear superposition and nonlinear corrections for
free and bound waves as in ref. 29, Eq. 2 can be written as

logit P
(
y = 1

∣∣ x) ∼ f1(r)︸︷︷︸
linear

+ f2(BFI, R)︸ ︷︷ ︸
free waves

+ f3(", D̃)︸ ︷︷ ︸
bound waves

. [3]

We use a neural network with fully connected layers (FCN) to
model the functions fi, which are universal function approxima-
tors (30), and that can be trained efficiently for large amounts
of data. The set of functions fi can be represented as a single
multihead FCN with a linear output layer (Fig. 3). We use a
small feed-forward architecture with 3 hidden layers and ReLU
activation functions [rectified linear units, (31)].

The neural network outputs a scalar p̃ ∈ (−∞,∞), the log-
odds of a rogue wave occurrence for the given sea state. For
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Fig. 3. Neural network architecture (multihead FCN) used to predict rogue wave probabilities. Each input head receives a different subset of the full parameter
set x to limit the amount of noncausal interactions between parameters.

training, we use the Adam optimizer (32) and backpropagation
to minimize a cross-entropy loss for binary classification with an
added `2 regularization term for kernel parameters:

L(p, y, �) = y · log(p) + (1− y) · log(1− p) + �‖�‖2, [4]

with predicted probability p = logit−1(p̃), observed labels
y ∈ {0, 1} (rogue wave or not), and neural network kernel
parameters �.

To estimate uncertainties in the neural network parameters and
resulting predictions, we use Gaussian stochastic weight averaging
[SWAG, (33)]. For this, we train the network for 50 epochs,
then start recording the optimizer trajectory after each epoch
for another 50 epochs. The observed covariance structure of the
sampled parameters is used to construct a multivariate Gaussian
approximation of the loss surface that we can sample from. This
results in slightly better predictions and gives us a way to quantify
how confident the neural network is in its predictions.

C. Causal Consistency and Predictive Accuracy. Although we
include only input parameters that we assume to have a direct
causal connection with rogue wave generation, there is no
guarantee that the neural network will infer the correct causal
model. In fact, the presence of measurement bias and unobserved
causal paths makes it unlikely that the model will converge to
the true causal structure. To search for an approximately causally
consistent model, we will have to quantify its causal performance.

We achieve this through the concept of invariant causal
prediction [ICP; (34, 35)]. The key insight behind ICP is that
the parameters of the true causal model will be invariant under
distributional shift, that is, an intervention on an upstream
“environment” node in the causal graph that controls which
distribution the data are drawn from. Retraining the model on
data with different spurious correlations between features should

still lead to the same dependency of the target on the features see
also ref. 36.

We split the dataset randomly into separate training and
validation sets, in chunks of 1M waves. We train the model
on the full training dataset and perform ICP on the validation
dataset, which we partition into subsets representing different
conditions in space, time, depth, spectral properties, and degrees
of nonlinearity (Table 1). This changes the dominant characteris-
tics of the waves in each subset (representing, e.g. storm and swell
conditions), inducing distributional shift. Then, we retrain the
model separately on each subset and compute the Rms difference
between predictions of the retrained model Pk and the full model
Ptot on the k-th data subset x(k):

E2
k =

1
nk

nk∑
i

(
logit Pk

(
x(k)i

)
− logit Ptot

(
x(k)i

))2
. [5]

As the total consistency error, we use the rms of Eq. 5 across all
environments:

E =

√√√√ 1
nE

nE∑
k

E2
k . [6]

Under a noise-free, infinite dataset and an unbiased training
process that always identifies the true causal model we would
find E = 0, i.e., retraining the model on the unseen data subset
would not contribute any new information and leave the model
perfectly invariant. Since all of these assumptions are violated
here, we merely search for an approximately causal model that
minimizes E .

However, we cannot use E as the only criterion when selecting
a model. The invariance error can only account for change in
the prediction (variance), but not for its overall closeness to the
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Table 1. The subsets of the validation dataset used to
evaluate model performance and invariance
Subset name Condition # waves

Southern-California Longitude ∈ (−123.5,−117)◦, 265M
latitude ∈ (32,38)◦

Deep-stations Water depth > 1,000 m 28M
Shallow-stations Water depth < 100 m 154M

Summer Day of year ∈ (160,220) 51M
Winter Day of year ∈ (0,60) 91M
Hs > 3 m Hs > 3 m 58M

High-frequency Relative swell energy < 0.15 43M
Low-frequency Relative swell energy > 0.7 46M
Long-period Mean zero-crossing period > 9 s 100M

Short-period Mean zero-crossing period < 6 s 42M
Cnoidal Ursell number > 8 40M
Weakly-nonlinear Steepness > 0.04 83M

Low-spread Directional spread < 20◦ 25M
High-spread Directional spread > 40◦ 25M

Full (all validation data) 472M

true solution (bias). Therefore, we select a model that is Pareto-
optimal with respect to the invariance error E and a predictive
score L. This will not establish absolute causal consistency but
will allow us to select a model that is near-optimal given the
constraints.

For L, we use the log of the likelihood ratio between the
predictions of our neural network and a baseline model that
predicts the empirical base rate yk = 1

n
∑n

i yk,i, averaged over all
environments k:

L(p, y) =
1
nE

nE∑
k

(
I(pk)− I(yk)

)
, [7]

I(x) = x · log(x) + (1− x) · log(1− x). [8]

To evaluate model calibration (the tendency to produce over- or
underconfident probabilities), we compute a calibration curve by
binning the predicted rogue wave probabilities. We then compare
each bin to the observed rogue wave frequency, and compute the
weighted rms residual between measured (yi) and predicted (pi)
log-odds:

C =

√√√√ nb∑
i=1

wi
(

logit(pi)− logit(yi)
)2

. [9]

To account for uncertainty in the observations (e.g., close to
the extremes), the weights wk are based on the 33% credible
interval of yi ∼ Beta(n+

i , n
−

i ) with n+
i rogue and n−i nonrogue

measurements. This is similar to the expected calibration error
(37) but models data uncertainty directly. We use a uniform bin
size (in logit space) of 0.1.

D. Model Selection. We train a total of 24 candidate models
on different subsets of the relevant causal parameters (as
identified in Section 1) and varying number of input heads
(between 1 and 3). We evaluate their performance in terms
of calibration, predictive performance, and causal consistency
(Table 3).

We observe a clear anticorrelation between model complexity
and predictive score on one hand and causal consistency on the
other hand (Fig. 4). This is evidence that more complex models
are indeed less biased but exploit more noncausal connections.
We perform model selection based on parsimony: A good model
is one where a small increase in either predictive performance
or causal consistency implies a large decrease in the other, i.e.,
where the Pareto front is convex. This is similar to the metric
used by PySR (9) to select the best symbolic regression model
(Section 3).

Based on this, we choose model 18 with parameter groups
S1 = {r}, S2 = {", �� , �f , D̃} (i.e., a model with two input heads)
as the reference model for further analysis. The chosen model
produces well-calibrated probabilities (Fig. 5) and is among the
5 best models in terms of predictive performance on the test
dataset (not used during training or selection), despite using only
5 features with at most 4-way interactions.

The relatively low number of input features allows us to analyze
the model in detail using explainable AI methods (Section 4A).

3. Learning an Empirical Equation for Rogue
Wave Risk
To make our model fully interpretable, we transform the
learned neural network into an equation via symbolic regression.
Common approaches to symbolic regression include Eureqa
(39), AI Feynman (40), SINDy (41), and QLattice (42). Here,

Fig. 4. There is a clear trade-off between causal invariance (E) and predictive performance (L) of our neural network predictors. We choose the model that
lies in the most convex part of the Pareto frontier. Scores are evaluated on validation data. Test performance is based on prediction scores on held-out test
data (from unseen stations).

PNAS 2023 Vol. 120 No. 48 e2306275120 https://doi.org/10.1073/pnas.2306275120 5 of 12
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Fig. 5. Our model outputs well-calibrated probabilities, even for unseen
stations. Shown is the binned predicted probability p vs. the observed rogue
wave frequency y on the test data. Error bars for p indicate 3 standard
deviations estimated via SWAG sampling. Error bars for y indicate 95%
credible interval assuming y i ∼ Beta(n+i , n−i ). Bins with less than 10 observed
rogue waves are excluded. The dashed line indicates perfect calibration.
Solid line indicates probability as predicted by linear theory in the narrow-
bandwidth limit [Rayleigh distribution; (38)].

we use PySR (8, 9), a symbolic regression package based on
genetic programming (43). Genetic algorithms build a large
ensemble of candidate models and select the best ones, before
mutating and recombining them into the next generation. In
the case of symbolic regression, mathematical expressions are
represented as a tree of constants and elementary symbols. In
principle, this allows PySR to discover expressions of unbounded
complexity.

PySR’s central metric to quantify the goodness of an equation
is again based on parsimony, in the form of the derivative of
predictive performance with respect to the model complexity—if
the true model has been discovered, any additional complexity
can at best lead to minor performance gains (by overfitting to
noise in the data).

In our case, we seek to find an expression f from the space
of possible expression graphs TO with allowed operators O that
approximates the rogue wave log-probability as predicted by the
neural network N over the dataset x:

Find f ∈ TO that minimizes
∑
i

1
Var(yi)

[
f (xi)2

− �(E[yi])2
]
,

where �(x) = − log(1 + exp(−x)), and yi is the set of SWAG
samples from N (xi). A sensible set of operators O is key to
ensure interpretability of the resulting expression; we choose
the symbols O = {+,−,×,÷, log, ·−1,√ , ·2} to facilitate
expressions that are similar to current theoretical models of
the form P ∼ A exp(B). We normalize all input features to
approximately unit scale by converting directional spread to
radians.

PySR assembles a league of candidate expression and presents
the Pareto-optimal solutions of increasing complexity to the user.
We select the best solution by hand, picking the expression
with the best parsimony score that contains all input features
and at least two terms containing the steepness " (to account
for the various causal pathways in which steepness affects rogue
waves). The final equation is shown in Fig. 8, and discussed in
Section 4B.

4. Results
A. Neural Network. We analyze the behavior of our neural
network predictor, which reveals important insights about the
physical dynamics of rogue waves and their prediction.
A.1. Rogue wave models should account for crest–trough corre-
lation, steepness, relative depth, and directionality. Only this
parameter combination achieves good causal consistency and
predictive scores at the same time, and experiments that exclude
any of these parameters perform unconditionally worse in either
metric. Especially the exclusion of crest–trough correlation leads
to catastrophic results, even when including other bandwidth
measures like �� in its place (Table 3).

This suggests that the above set of parameters represents
the dominant rogue wave generation processes in the form of
linear superposition in finite-bandwidth seas with a directional
contribution and weakly nonlinear corrections.

The crest–trough correlation r is still lacking mainstream
adoption as a rogue wave indicator for example, it is not part
of ECMWF’s operational forecast; (29), despite being a key
parameter for crest-to-trough rogue waves (4, 22, 44). The other
parameters are consistent with other empirical studies such as
Fedele (45), which considers the same parameters in conjunction
with rogue crests during storms. They are also similar to the
ingredients to ECMWF’s rogue wave forecast (29), which is based
on the effects of second and third-order bound and free waves
and uses steepness, relative depth, directional spread, and spectral
bandwidth. However, in our model, these parameters are com-
bined differently; a model enforcing the same interactions (steep-
ness and relative depth for bound wave contribution, BFI, and
directionality index for free wave contribution) performs poorly.

Numerous previous studies have found the BFI to be a poor
predictor of rogue wave risk in realistic sea states (4, 14, 15, 45–
48) due to its strong underlying assumptions such as unidirec-
tionality. This study extends this to the fully nonparametric and
nonlinear case.

We study how our model uses different parameters by
visualizing their impact on the prediction of the respective
head of the neural network. For this, we make use of the
accumulated local effects decomposition [ALE, (49)], which
measures the influence of infinitesimal changes in each parameter
on the prediction outcome see also ref. 7. From the ALE plot
(Fig. 6), we find that crest–trough correlation has by far the
biggest influence of all parameters and explains about 1 order
of magnitude in rogue wave risk variation, which is consistent
with earlier model-free approaches (4). To first order, higher
crest–trough correlation, lower directional spread, larger relative
depth (deep water), and higher steepness lead to larger rogue wave
risk, but parameter interactions can lead to more complicated,
nonmonotonic relationships (for example, in very shallow water;
see Section 4A.3).
A.2. The Rayleigh distribution is an upper bound for real-world
rogue wave risk. Despite the clear enhancement by weakly
nonlinear corrections, the Rayleigh wave height distribution
remains an upper bound for real-world (crest-to-trough) rogue
waves. The Rayleigh distribution is the theoretical wave height
distribution for linear narrow-band waves (38), i.e., the limit
r→ 1, "→ 0, �f → 0, D̃→∞, and �� → 0, and reads:

P(H/Hs > k) = exp(−2k2). [10]

Only in the most extreme conditions does our model predict a
similarly high probability, for example for �� = 13◦, " = 0.008,

6 of 12 https://doi.org/10.1073/pnas.2306275120 pnas.org
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Fig. 6. ALE (accumulated local effects) plot matrix for experiment 18. Shown is the change in rogue wave risk (in logits) from the average as each parameter
is varied. The total effect is the sum of all 1D, 2D, and higher-order contributions (not shown).

�f = 0.14, r = 0.88, and D̃ = 0.6, which gives the same
probability as the Rayleigh distribution, p = 3.3× 10−4.

In the opposite extreme, rogue wave probabilities can fall to
as little as 1 × 10−5 for low values of r and high values of ��

Fig. 7. Our model predicts a positive association between steepness and
rogue waves in deep water and a negative association in shallow water.
Shown is the 1-dimensional ALE (accumulated local effects) plot in both cases.
Here, deep water corresponds to sea states with D̃ > 3 and shallow water
with D̃ < 0.1.

(such as in a sea with a strong high-frequency component and
high directional spread). This suggests that bandwidth effects can
create sea states that efficiently suppress extremes.
A.3. There is a clear separation between deep water and shallow
water regimes. All models with high causal invariance scores
include an interaction between steepness and relative water depth.
Looking at this more closely, we find that a stratification on
deep and shallow water sea states reveals 2 distinct regimes
(Fig. 7).

In deep water, rogue wave risk is strongly positively associated
with steepness, as expected from the contribution of second and
third-order nonlinear bound waves (26). The opposite is true
in shallow water (D̃ < 0.1), where we find a clear negative
association with steepness. This is likely due to depth-induced
wave breaking (23). In very shallow waters, more sea states
have a steepness close to the breaking threshold, which removes
taller waves that tend to have a higher steepness than average
(Fig. 8).

B. Symbolic Expression. The final expression for the rogue wave
probability, as discovered via symbolic regression, is given in
Fig. 8. It consists of an exponential containing five additive terms:

PNAS 2023 Vol. 120 No. 48 e2306275120 https://doi.org/10.1073/pnas.2306275120 7 of 12
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Fig. 8. Our empirical equation for rogue wave risk, as identified through the distillation of our neural network predictor via symbolic regression. This equation
outperforms existing wave theory on unseen stations from our dataset, while being fully interpretable. Numbered terms are discussed in Section 4B. All floating
point coefficients are rounded to two significant digits.

(I) −12+3.8r. The term with the largest coefficients is the one
containing r, as expected. Comparison with the exponential
term in the Tayfun distribution Pt , Eq. 28, reveals that this
is approximately a linear expansion around r ≈ 1:

log Pt(H/Hs > h) ∼ −
4h2

1 + r
, [11]

= −12 + 4r +O(r2)
∣∣h=2
r≈1 . [12]

This is an important sanity check for the model since it
shows that it is able to rediscover existing theory purely
from data.

(II) − log ��/2. This encodes the observed enhancement for
narrow sea states and has no direct relation to existing
quantitative theory. Its functional form is somewhat prob-
lematic since it causes the model to diverge for �� → 0
(unidirectional seas). However, the model has only seen
real-world seas with �� ≳ 0.2, so we may replace this term
with one that yields similar predictions for the relevant range
of �� , and does not diverge for �� → 0.

One possible candidate is

1− ��
1 + ��

, [13]

which has a relative RMS error of about 5% over the range
�� ∈ (20, 90)◦ compared to the original term.

(III) 66"2. Encodes the influence of weakly nonlinear effects for
large values of " ≳ 0.1.

(IV) −
√
". This term encodes the observed negative association

between steepness and rogue waves for low values of " that
could be due to wave breaking or may be an artifact of our
sensor.

(V) 0.23"/(D̃ · �f ). Since D̃ ∼ kpD and " ∼ kpHs, this term is
proportional to the relative wave height � = Hs/D and
1/�f . � is the most important parameter in the theory
of shallow-water waves and appears for example in the
Korteweg-de Vries equation (25). Accordingly, this term
dominates the dynamics in very shallow water. Dependen-
cies on 1/�f occur in current theory (26) but are usually
paired with �� to form the directionality index R. This
suggests that term V may be incomplete and missing physical
dynamics that are not prevalent in the data.

Overall, the equation is able to reproduce the same qualitative
behavior as observed from the neural network, with the same
well-calibrated outputs (C = 0.14) and predictive performance
(Section 5A) on the test data.

5. Discussion
A. Validation Against Theory. We test our models (neural net-
work and symbolic equation) against existing wave theory based
on their mean predictive score L across the environments from
Table 1 on the held-out test data (unseen stations). As theoretical
baselines, we use the models from Longuet-Higgins (Rayleigh,
38), Tayfun (22), Mori & Janssen (50), and a hybrid combining
Tayfun and Mori & Janssen (Materials and Methods).

The results are shown in Fig. 9. Since the Rayleigh and Mori &
Janssen models do not account for crest–trough correlation, their
predictions vastly overestimate the occurrence rate of observed
rogue waves. The Tayfun and hybrid models perform better
but are still outperformed by our models except in cnoidal seas.
Our models are better predictors than the baseline (predicting
the empirical per-environment rogue wave frequency) in all
environments.

Fig. 9. Comparison between our models and existing theory on held-out test data. Our models perform similar to each other and outperform existing theory
on this dataset in all but one data subset (cnoidal seas). x-scale is linear in (−1× 10−3 ,1× 10−3), and logarithmic otherwise.
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The neural network performs better than the symbolic
equation in all environments, albeit only by a small margin. This
shows that the symbolic equation is able to capture the main
features of the full model, despite its compact representation.

B. Limitations. Using only wave buoy observations for our
analysis, we acknowledge the following limitations:

• We did not have sufficient data on local winds, currents, or
topography, which implies that some relevant causal pathways
are unobserved (Fig. 2). While we expect these effects to play a
minor role in bulk analysis, they could dramatically affect local
rogue wave probabilities in specific conditions, for example,
over sloping topography (17) or in strong currents (51).

• We only have one-dimensional (time series) data and cannot
capture imported parameters, such as solitons generated else-
where that travel into the observation area. While we expect
this to play a minor role, it could underestimate the importance
of nonlinear free waves.

• Systematic sensor bias is common in buoys and can lead
to spurious causal relationships. This may obscure the true
causal structure and hurt model generalization to other sensors.
However, this adaptation to sensor characteristics may be
desirable in forecasting scenarios, where it allows the model
to synthesize several noisy quantities into more robust ones.

• By aggregating individual waves into 100-wave chunks, we
underestimate the per-wave rogue wave probability in sea states
in which rogue waves do not occur independently of each other,
such as seas with a strong group structure.

These limitations could potentially reduce our model’s ability to
detect relevant causal pathways and underestimate the true rogue
wave risk. Our analysis is agnostic to the data source and can be
repeated on different sources to validate our findings.

6. Next Steps
A. An Improved Rogue Wave Forecast. Our empirical model
can be compared directly to existing rogue wave risk indicators
by evaluating them on forecast sea state parameters. ECMWF’s
operational rogue wave forecast (29) focuses on envelope wave
heights which does not account for crest–trough correlation and is
conceptually similar to the Mori & Janssen model in Section 5A.
Therefore, we are confident that substantial improvements are
within reach in terms of predicting crest-to-trough rogue waves,
even without using a black-box model.

B. Predicting Superrogue Waves. Observed wave height distri-
butions often show a flattening of the wave height distribution
toward the extreme tail (11, 14, 52). Therefore, we expect rogue
wave probabilities to be more pronounced for even more extreme
waves for example with H/Hs > 2.4, as recently observed in
ref. 53.

The lack of sufficient direct observations in these regimes calls
for a different strategy. One approach could be to transform this
classification problem (rogue wave or not) into a regression, where
the predicted variables are the free parameters of a candidate
wave height probability distribution (such as shape and scale
parameters of a Weibull distribution). Then, a similar analysis
as in this study could be conducted for these parameters, which
may reveal the main mechanisms influencing the risk for truly
exceptional waves, and whether this flattening can be confirmed
in our dataset.

C. Commoditization of Data-Mining Based Induction. There is
a pronounced lack of established methods for machine learning
aimed at scientific discovery. We have shown that incorporating
and enforcing causal structure can overcome many of the short-
comings of standard machine learning approaches, like poorly
calibrated predictions, noninterpretability, and incompatibility
with existing theory. However, the methods we leveraged are
still in their infancy and rely on further community efforts to
be end-to-end automated and adopted at scale. Particularly,
parsimony-based model selection (as in Sections 2D and 3) is
still a manual process that requires a firm understanding of model
intrinsics and the domain at hand. Nonetheless, we believe that
the potential benefits of causal and parsimony-guided machine
learning for real-world problems are too great to ignore, and
we hope that this study will inspire further research in this
direction.

Materials and Methods
Sea State Parameters. Here, we give the definition of the sea state parameters
used in this study. For a more thorough description of how parameters are
computed from buoy displacement time series, see Häfner et al. (6).

All parameters can be derived from the nondirectional wave spectrum
S(f), with the exception of directional spread �� , which is estimated from
the horizontal motion of the buoy and taken from the raw CDIP data.

Most parameters are computed from moments of the wave spectrum, where
the n-th moment mn is defined as

mn =

∫
∞

0
fnS(f) df . [14]

The expressions for the relevant sea state parameters are as follows:

• Significant wave height:
Hs = 4

√
m0, [15]

• Spectral bandwidth (narrowness):

�f =
√
m2m0/m

2
1 − 1, [16]

• Spectral bandwidth (peakedness):

�f =
m2

0
2
√
�

(∫
∞

0
f · S(f) df

)−1
, [17]

• Peak wavenumber kp, computed via the peak period as in ref. 54:

Tp =

∫
S(f)4 df∫

f · S(f)4 df
. [18]

Table 2. Hyperparameters used in experiments
Hyperparameters

Optimizer Adam
Learning rate 1× 10−4

Number of hidden layers 3
Neurons in hidden layers (32/

√nh,16/
√nh,8/

√nh)
`2 penalty �2 1× 10−5

Number of training epochs 50
Number of SWAG epochs 50
Number of SWAG posterior samples 100
Train-validation split 60% train, 40% test

nh : number of input heads.

PNAS 2023 Vol. 120 No. 48 e2306275120 https://doi.org/10.1073/pnas.2306275120 9 of 12
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Table 3. Full list of experiments
Feature groups Scores

ID 1 2 3 L× 104 E × 102 C × 102

1 {r} 4.51 8.23 3.35
2 {r, R} {Ur} 5.42 9.94 5.54
3 {r, R, BFI} 5.43 10.50 5.60
4 {r, R} {Ur, R} 5.46 9.99 4.57

5 {r, R} {", D̃} 5.53 11.20 5.79
6 {r, ", D̃} 5.20 11.00 3.60
7 {r, ", R} 5.31 11.40 6.97
8 {r, D̃, R} 5.41 11.50 7.31

9 {", D̃, R} -0.13 24.80 7.60
10 {�f } {", D̃, R} 3.93 13.60 9.02
11 {r} {", D̃, R} 5.41 10.60 7.18
12 {r} {", D̃} {BFI, R} 5.41 11.10 6.02

13 {r, R} {D̃, ", ��} 5.99 12.40 4.06
14 {r, R} {D̃, ", �f } 5.82 11.80 6.37
15 {r, R} {D̃, ", R} 5.62 11.00 5.45
16 {r, ", D̃, ��} 5.83 11.60 5.94

17 {r} {", D̃} {BFI, �f , ��} 5.85 11.80 6.40
18 {r} {", D̃, �f , ��} 6.06 11.30 4.43
19 {r, ", D̃, R, �p} 5.86 13.50 7.13
20 {r, ", D̃, �� , �} 6.18 12.80 6.78

21 {r, ", D̃, �� , �, Eh} 6.19 14.10 6.71
22 {r, ", D̃, �� , �f , �, Eh} 6.42 15.70 4.97
23 {r, ", D̃, �� , �f , Eh, BFI, R} 6.60 17.00 5.75
24 {r, ", D̃, �� , �f , Eh, Hs, T , �, �, �p} 6.51 19.50 4.95

L, Prediction score (higher is better);E , Invariance error (lower is better);C, Calibration error (lower is better); Color coding ranges between (median−IQR,median+IQR) with interquartile
range IQR, with dark green indicating best and dark red worst. Symbols: r, Crest–trough correlation; �, Spectral bandwidth (narrowness); �f , Spectral bandwidth (peakedness); �� , Directional
spread; ", Peak steepness Hskp ; R, Directionality index �2

� /(2�2); BFI, Benjamin–Feir index; D̃, Relative peak water depth Dkp/(2�); Eh , Relative high-frequency energy; Ur, Ursell number;
T , Mean period; �, Kurtosis; �, Skewness; Hs , Significant wave height.

This leads to the peak wavenumber through the dispersion relation for linear
waves in intermediate water of depth D:

f(k)2 =
gk

(2�)2
tanh(kD). [19]

An approximate inverse is given in Fenton (55).
• Relative depth, based on the wavelength �:

D̃ =
D
�

=
1

2�
kpD, [20]

• Peak steepness:
" = Hskp, [21]

• Benjamin–Feir index:

BFI =
"�
�f

√
max{�/�, 0}, [22]

where �, �, � are coefficients depending only on D̃ full expression given in
ref. 56.

• Directionality index:

R =
�2
�

2�2
f

, [23]

• Crest–trough correlation:

r =
1
m0

√
�2 + �2, [24]

� =

∫
∞

0
S(!) cos

(
!
T
2

)
d!, [25]

� =

∫
∞

0
S(!) sin

(
!
T
2

)
d!, [26]

where! is the angular frequency and T = m0/m1 the spectral mean period
(12).

Model Implementation and Hyperparameters. All performance critical
model code is implemented in JAX (57), using neural network modules from
flax (58) and optimizers from optax (59). We run each experiment on a single
Tesla P100 GPU in about 40 min, including SWAG sampling and retraining on
every validation subset. The whole training process can also be executed on CPU
in about 2 h. The hyperparameters for all experiments are shown in Table 2.

Full List of Experiments. See Table 3.

ReferenceWaveHeightDistributions. We use the following theoretical wave
height exceedance distributions for comparison (with rogue wave threshold �,
here � = 2):

• Rayleigh (38):
PR(�) = exp

(
−2�2), [27]

• Tayfun (12, 22):

PT(�) = exp
(
−4

1 + r
�2
)
, [28]
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• Mori & Janssen (50, 60):

PMJ(�) =

(
1 +

2�
3
√

3

BFI2

1 + 7.1R
�2(�2

− 1)
)

exp
(
−2�2), [29]

• Hybrid:

PH(�) =

(
1 +

2�
3
√

3

BFI2

1 + 7.1R
�2(�2

− 1)
)

exp
(
−4

1 + r
�2
)

. [30]

Data, Materials, and Software Availability. The preprocessed and aggre-
gated version of the Free Ocean Wave Dataset, Coastal Data Information
Program data used in this study is available for download at https://erda.ku.dk/
archives/ee6b452c1907fbd48271b071c3cee10e/published-archive.html (61).

All model code is openly available at https://github.com/dionhaefner/rogue-
wave-discovery (62). This publication was made possible by the following
opensource software stack: JAX (57), flax (58), optax (59), PySR (9), scikit-learn
(63), PyALE (64), NumPy (65), SciPy (66), matplotlib (67), Seaborn (68), pandas
(69), and Jupyter (70).
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