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Abstract A machine learning based methodology is developed to determine the strength of the Atlantic
Meridional Overturning Circulation (AMOC) in the Community Earth System Model (CESM). Neural
networks capture relationships between various climate variables and AMOC. We then identify which of the
various are the most important to control the AMOC, and then perform symbolic regression to transform
complex interactions into a simple closed‐form approximation. A sensitivity analysis for this equation reveals
that surface freshwater flux and potential density at 200 m depth are the main controls of the AMOC.

Plain Language Summary We create a method to predict AMOC strength by learning from data sets
generated by the CESM using data‐driven approaches. By training neural networks, we identified important
variables that affect AMOC, particularly surface freshwater flux and potential density at 200 m depth. Using
symbolic regression, we simplified complex relationships into a readable formula that matches traditional
theories of the AMOC. This approach allows for a more transparent understanding of AMOC's dynamics and
opens up a lot of possibilities of using machine learning in climate studies.

1. Introduction
The Atlantic Meridional Overturning Circulation (AMOC, the zonally integrated mean flow in the Atlantic
ocean) brings heat from the tropics to the high‐latitudes and ensures a relatively mild European climate (Kuhl-
brodt et al., 2007). Atlantic Meridional Overturning Circulation instability is associated with dramatic changes in
climate, as evidenced by the Dansgaard‐Oeschger (D‐O) events during the last glacial period, which were marked
by sudden shifts in Greenland temperatures between warm interstadial and cold stadial conditions (Dansgaard
et al., 1993; Henry et al., 2016).

There are various hypotheses about the mechanisms that drive AMOC changes, which can be split into changes to
stratification and changes to surface fluxes. In the latter camp fall Kleppin et al. (2015) and Vettoretti and
Peltier (2018), who show that transitions can be initiated by North Atlantic Oscillation (NAO) extrema or Arctic
sea‐ice export and melt, respectively. The importance of stratification for AMOC strength is highlighted by Brix
and Gerdes (2003) and vanWesten et al. (2024), who show that the cross‐equatorial transport of Antarctic Bottom
Water (AABW) or freshwater, respectively, can weaken the AMOC. In particular, Vettoretti and Peltier (2018)
show that during stadials heat builds up underneath the sea‐ice of the North Atlantic and is discharged in sudden
large‐scale polynyas. All these studies are based on numerical simulations; the transitions happen in less than a
decade and proxy data from ice or sediment cores has still too much uncertainty to allow unambiguous identi-
fication of cause and effect (Capron et al., 2021; Erhardt et al., 2019). Unfortunately, ambiguity is still present in
the analysis of numerical simulations. This is because standard determination of cause and effect is based on leads
and lags, and the transition point in a noisy system is difficult to determine with absolute confidence (A. Slattery
et al., 2024). The studies of Kleppin et al. (2015) and Vettoretti and Peltier (2018) are an exception because they
rely on the painstaking analysis of numerous 4‐dimensional fields to arrive at the anatomy of a single transition in
one particular model. This is something for which one is unlikely to ever have enough observations.

To make progress, we use the concept of Granger Causality and determine whether one time series is useful in
forecasting another: if the prediction of Y(t) does not get worse by removing X(t) in the prediction process, then X
(t) does not cause Y(t) (Granger, 1969). The challenge then in the present context is to develop a model to predict
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the AMOC. If one can build a successful prediction model, then causality can be simply established by its
repeated application.

Recent years have witnessed the success of Neural Networks (NN) to predict Earth system dynamics by capturing
non‐linear relationships among numerous climate variables. Input variables (e.g., wind (x,y,t) or temperature (x,y,
z,t) at a particular location) are connected to a future output variable (e.g., AMOC(y,t+ τ)) through one or several
hidden layers, and the way the nodes in the layers are connected are learned from available observations or model
results. This can be surprisingly effective, although the ”black‐box” nature rarely enables scientific understanding
(Irrgang et al., 2021). Thus, we employ yet another machine learning tool: Symbolic Regression (SR). After using
NNs to determine possible causes of changes to AMOC, we will use SR to derive human‐readable equations from
the complex patterns learned by Neural Networks, making these predictions more interpretable (Murari
et al., 2023). Thus, we will follow the path recently described by Häfner et al. (2023).

1. Develop a causal graph based on published hypotheses (Figure 1)
2. Reject hypotheses with the help of NNs and Granger Causality
3. Use parsimony to determine a minimum set of parameters to avoid overfitting
4. Use SR to determine AMOC strength as a function of climate states

Figure 1. Causal graph illustrating the hypothesized mechanisms influencing the AMOC and its impact on Greenland
temperatures during the last glaciation. Key variables include the North Atlantic Oscillation (NAO), salt transport at 10°N
(SALT_N), Antarctic BottomWater (AABW), sea ice fraction (ICEFRAC), windstress in grid‐x direction (TAUX), surface
freshwater flux (FW) inversely mirrored by the virtual salt flux in FW Flux formulation (SFWF), and potential density at
0 and 200 m depths (PD_0 m, PD_200 m) in the North Atlantic. Arrows indicate the dominant direction of influence, with
citations referencing the studies supporting each relationship. Abbreviations for variable names are the original CESM
variable names (Kay et al., 2015).
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The present study is based on long integrations of Community Earth System Model (CESM) with glacial
boundary conditions that reproduce the observed structure of D‐O events (Jochum et al., 2022; Vettoretti
et al., 2022a). Future work will try to attempt to extend this methodology to the ice and sediment core record, but
for the sake of brevity we will for the remainder of this study use “data” when we refer to the output of the
numerical simulations.

This paper is organized as follows: In Section 2, we describe the data sets used in this study and outline the
methodology, including the neural network architectures and symbolic regression techniques employed to
analyze AMOC dynamics. In Section 3, we present the results, detailing the performance of the NN models and
equations derived from the analysis. In Section 4, the main results are summarized, and the potential directions for
future research are suggested.

2. Data and Methodology
2.1. Data

This study is based on annual means of four 8,000 years long integrations with the CESM. The data contain 13 D‐
O events and are described in detail in Vettoretti et al. (2022a). From the output we extract time series of 9
variables that are discussed in the literature as affecting AMOC strength or even cause AMOC collapse (Figure 1).
They were combined into a unified data set, which was then split into training and testing sets for model
development, with the training set covering 70% of the data and the testing set covering the remaining 30%
(Figure 2).

Figure 2. The top left panel shows the combined AMOC strength data set split into training and testing sets. The training set covers 70% of the data, and the testing set
covers the remaining 30%. The top right panel compares the NN's predictive performance. The bottom panels display the permutation importance of the BiLSTM
model's features, with the left panel including the feature ICEFRAC and the right panel excluding them.
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Our prediction target is the maximum AMOC strength at 40°N. The minimum MOC strength at 30°S latitude is
chosen to monitor AABW's influence on global ocean circulation (Brix & Gerdes, 2003). For salt transport (van
Westen et al., 2024), the 10°N latitude is selected due to its position south of the subtropical gyre, without being
influenced by the zonal currents and intertropical convergence zone dynamics that dominate at the equator
(Treguier et al., 2014). The NAO index is calculated by determining the difference in sea level pressure between
Icelandic Low and the Azores High (Kleppin et al., 2015). Previous study suggested that modifying wind stress in
the Southern Ocean could impact the AMOC, potentially linking stronger Southern Hemisphere winds to
increased deep water formation in the North Atlantic (Toggweiler & Samuels, 1995), and lastly, Vettoretti and
Peltier (2018) find that AMOC transitions are triggered by surface freshwater anomalies or subsurface density
anomalies.

2.2. Applying Neural Networks

For the NN prediction model, several choices need to be made (Rainio et al., 2024; Zeng et al., 2021;
Zhang, 2012).

1. The type of NN
2. The number of hidden layers
3. The forecast horizon
4. The amount of data used for the forecast
5. Smoothing window of the data
6. Metric to judge the model performance

Precise predictions are not the main goal, instead one wants to know which variables change the prediction. Still,
we find that our methods are robust to changes in details, and a quantitative analysis for changes to (1)–(4) is
provided in Supporting Information S1.

We tested several neural network (NN) models: Convolutional Neural Networks (CNNs) efficiently capture local
temporal patterns and can be processed in parallel, making them fast; Recurrent Neural Networks (RNNs) are
designed for sequential data, capturing dependencies but may struggle with long sequences; Long Short‐Term
Memory networks (LSTMs) overcome RNN limitations by using gates to manage information over extended
sequences; and Bidirectional Long Short‐Term Memory networks (BiLSTMs) extend LSTMs by processing data
in both forward and backward directions, thus providing a richer context (Gers et al., 2000; Ismail Fawaz
et al., 2019; Lin et al., 2017; Schuster & Paliwal, 1997; Siami‐Namini et al., 2019; Sutskever et al., 2014). It
should be noted that the BiLSTMmodel only uses the past time steps as input to predict one future value and does
not access values beyond the input window. The input features were scaled using the MinMaxScaler to enhance
numerical stability during training (Pedregosa et al., 2011). The models were trained on the training data set using
a combination of early stopping and learning rate reduction strategies to prevent overfitting and to optimize
performance (Pedregosa et al., 2011).

A custom loss function to synchronize the abrupt transitions is applied, combining Root Mean Squared Error
(RMSE) with penalties on mismatches in gradients, emphasizing abrupt changes using 5‐sigma and 2‐sigma
thresholds and aligning large gradient variations in the predictions with the true values (Text S2 in Supporting
Information S1). In addition to RMSE, it is natural to design a similar performance metric that incorporates these
penalties in the loss function for abrupt changes. Moreover, as the custom loss function focuses heavily on
gradient matching to emphasize abrupt changes, this may lead to overlooking small deviations in regions with
higher variability by averaging them out when used as a performance metric, we also use Edit Distance on Real
Sequence (EDR) to evaluate how well the model aligns with both overall prediction accuracy and abrupt tran-
sitions in the data (Chen et al., 2005). The following three performance metrics are used to assess the general
performance of models.

• Root Mean Squared Error (RMSE): Measures the overall prediction accuracy, emphasizing large errors by
calculating the square root of the mean squared differences between predicted and actual values.

• Custom Performance Metric with Gradient‐Based Penalty: Applies penalties for mismatches in gradients
between predicted and actual values, focusing on abrupt transitions. This includes both a 5‐sigma penalty for
large, abrupt changes and a 2‐sigma penalty for moderate transitions, enhancing the model's sensitivity to
abrupt changes.
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• Edit Distance on Real Sequence (EDR): Focuses on aligning predicted and actual data patterns, handling small
distortions and phase drift in time series data, providing a flexible error measure for comparing sequences and
capturing alignment beyond simple magnitude differences (Chen et al., 2005; Sadiq et al., 2020).

Permutation importance is a model‐agnostic global explanation method that provides insights into a machine
learning model's behavior. It ranks feature importance based on the increase in prediction error when each fea-
ture's values are randomly shuffled, breaking its relationship between the feature and the true outcome (Brei-
man, 2001; Fisher et al., 2019). To assess the permutation importance of different features, the input time series
were shuffled randomly, one at a time. The bottom of Figure 2 shows how the performance of the NN declines in
turn. For example, reshuffling the ICEFRAC time series has a big impact on the performnace, but NAO has not.
Also, the literature suggests that the sea‐ice fraction is only a mediator (i.e., Figure 1), and one can test this with
the NNs by removing it from the set of predictors, and indeed, we do not find reduced predictive skills, but instead
SFWF, which causes freshening and freezing, is assigned even more importance (Figure 2, bottom). All four
models performed similarily well, but we ended up choosing BiLSTM (RMSE: 1.17, Custom Performance
Metric: 11.88, EDR: 7,946) for its slightly superior performance compared to CNN (RMSE: 1.38, Custom
Performance Metric: 12.29, EDR: 8,032), RNN (RMSE: 1.31, Custom Performance Metric: 12.79, EDR: 8,400),
and LSTM (RMSE: 1.32, Custom Performance Metric: 12.09, EDR: 8,234). In this case, the BiLSTM model
better captures the general trends and transitions in the AMOC data, particularly where there are shifts or patterns
(Figure 2). Since the models could all predict the onset of stadials and interstadials with just one hidden layer, no
efforts were made to add additional layers or to experiment with data smoothing. Increasing the forecast horizon
and reducing the data used for it both reduce the performance, without an obvious cut‐off point (Figures S1 and S2
in Supporting Information S1). Thus, we chose a window size of 50 years and a forecast horizon of 20 years as a
compromise between quality of forecast and length of computation. The model uses the past 50 time steps as input
to predict a single value 20 steps into the future. A similar choice has also been made to address bias and un-
certainty in abrupt climate event timing according to J. Slattery et al. (2023), as time lags of less than 20 years are
challenging to distinguish reliably. While very similar in performance, close inspection reveals that the BiLSTM
model better captures the general trends and transitions in the AMOC data, particularly where there are shifts or
patterns, indicating its effectiveness at detecting time lags and preserving the overall structure of the time series,
whereas the other models may minimize the average magnitude of errors but do not capture the dynamics of the
rapid transitions as effectively as the BiLSTM model (Figure 2).

2.3. Symbolic Regression

The permutation analysis allows us to remove irrelevant variables from the initial list of possible AMOC con-
trollers. They do not, however, allow us to understand the physics behind the AMOC variability. Thus, symbolic
regression (SR) is applied to derive human‐readable symbolic expressions from the best‐performing model's
output. Symbolic Regression is yet another machine learning tool, from a given set of operators and functions it
determines which combination best captures the time series under investigation. We used a symbolic regression
package PySR to achieve this (Cranmer, 2023). The equations derived from SR were evaluated for their ability to
approximate the underlying AMOC dynamics. The non‐linear least squares optimization is applied to search for a
non‐linear combination of the SR model with optimized coefficients to unify its output expressions (Dennis
et al., 1996; Moré et al., 1980).

Finally, we employed yet another set of tools to help us interpret the results.

‐ Gradient‐based sensitivity analysis is applied to quantify how infinitesimal changes in input features impact
predictions of the combined model (Text S3 in Supporting Information S1). It evaluates the effect of each input
individually, focusing on local sensitivity around specific points in the input space (Wang et al., 2024).

‐ Sobol Indices are applied for identifying causal relationships by quantifying the contribution of each input
variable and their interactions to the output variance (Text S3 in Supporting Information S1). A high first‐order
Sobol index Si indicates direct causality, and a high total index STi, with a lower first‐order index, suggests
complex or confounded interactions (Fel et al., 2021; Prieur & Tarantola, 2017; Rabitz, 2010; Saltelli
et al., 2007; Sobol, 2001). Despite Sobol indices being a variance and correlation‐based method, they are still
effective in this context because sensitive features are typically considered as roots in the underlying causal
graph, meaning they are assumed to have a direct or indirect influence on the outcome (Bénesse et al., 2021).

Geophysical Research Letters 10.1029/2024GL113454
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‐ Volterra expansions are used to compare the behavior of different equations (Text S3 in Supporting Infor-
mation S1), helping to quantify to what extent an equation found through symbolic regression matches a known
physical law (Barrett, 1976; Blom&Brunner, 1987; Boyd&Chua, 1985; Flake, 1963; Volterra, 1959). Another
method with a similar goal is Polynomial Chaos Expansion (PCE), which transforms our results into orthogonal
polynomial representations and calculates the cosine similarity between their PCE coefficients, and this
approach is realized by the Chaospy package (Feinberg & Langtangen, 2015). It quantifies the similarity of their
responses to input variations (Branicki & Majda, 2013; Mara & Becker, 2021).

This bewildering set of tools is needed to tie our final result, a formula that connects AMOC strength to envi-
ronmental parameters, to existing theories. The NNs make clear that density and freshwater variations are key to
understand AMOC variability in the present simulations. Unfortunately there is still little theoretical work done to
connect density and AMOC strength, simply because of the nonlinear nature of the Navier‐Stokes equations.
There is, however, a simple scaling law that suggests that AMOC is proportional to Δρ1/3, with Δρ being the
density difference between the tropics and the polar North Atlantic (Bryan, 1987). This connection appears
intuitive enough, but its derivation ignores the effect of rotation (Straub, 1996). Thus, it has been one motivation
behind the present study to quantify the relation between AMOC strength and density in a complex climate model,
and check if not other important variables should be included in a model of the AMOC.

3. Results
3.1. Predictive Performance

The model employs a sliding window of 50 years of past data to predict the AMOC strength 20 years later. This
configuration was identified as optimal through testing of various window sizes and forecasting horizons (Table
S1 in Supporting Information S1). The best model is identified as the BiLSTM (Figure 2), and shown in
Equation 1. In this equation, yt represents the predicted AMOC strength at a future time, xt − 50 to xt − 1 are the past
input data points used for the prediction, RNN is the model that processes these inputs along with previous in-
ternal states ht (the hidden state) andCt (the cell state),W is a weight matrix applied to the BiLSTM output, b is a
bias added to this result, and ReLU is the activation function that ensures non‐linearity in the model's predictions.

AMOCt+20 = ReLU

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W ⋅ BiLSTM

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

AABWt− 50 … AABWt− 1

NAOt− 50 … NAOt− 1

SFWFt− 50 … SFWFt− 1
N_SALTt− 50 … N_SALTt− 1

TAUXt− 50 … TAUXt− 1

PD_0mt− 50 … PD_0mt− 1

PD_200mt− 50 … PD_200mt− 1

,ht,Ct

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1)

The performance of other NN permutation feature importances is shown in Figure S4 in Supporting Informa-
tion S1. For all NN models shuffling the timeseries of AABW, TAUX, NAO and N_SALT lead to a minimal
decrease in RMSE, indicating that the model does not need these features to make predictions. To identify the
most effective subset of important features for predicting AMOC strength, different combinations of these fea-
tures were evaluated using a BiLSTM model, and it is found that SFWF on its own already does perform quite
well (Figure 3).

3.2. Symbolic Expressions

Symbolic Regression was applied to top‐performing feature combinations to identify representative and parsi-
monious models for predicting the AMOC based on the selected features. Symbolic expressions of these feature
combinations are obtained from the regression, the corresponding predictions are visualized (Figure 3 and Figure
S4 in Supporting Information S1). While the SR model captures the overall trends well, it does not fully capture
the extremes of the AMOC behavior, as shown in Figure 3.
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We apply non‐linear least squares optimization to search for a non‐linear combination of the SR models with
optimized coefficients, and the comparison of original with the calculated AMOC values is plotted in Figure 3.
We compute the gradient of both actual and predicted AMOC time series, and identify the lag where the dif-
ference between their gradients is minimized, to ensure the prediction of SR aligned with the timing of key
changes. This results in the following equation:

AMOCt ≃ C1 ⋅ PD_200mt− 20

+C2 ⋅ (SFWFt− 20)1/3

+C3 ⋅ SFWFt− 20

+C4 ⋅
SFWFt− 20

PD_200mt− 20

+C5

(2)

Figure 3. The top left panel compares original AMOC values with calculated AMOC values using the SR. The green line represents the original AMOC data, the orange
line shows the calculated AMOC values before the simplification using Equation 2, and the blue line shows the calculated AMOC values after the simplification using
Equation 3, a 30‐year smoothing is applied for better visualization. The top right panel shows the normalized calculated AMOC values using the resulting equation of SR
with the orange line, the normalized values calculated using the scaling in Bryan (1987) with the blue line, and the actual AMOC values with the green line, a 30‐year
box‐car smoothing is applied for better visualization purpose. The bottom left panel shows the performance of different feature combinations in terms of EDR. The stars
indicate the top‐performing feature combinations at different numbers of features in each subset. The x‐axis represents the feature combination index, and the y‐axis
represents the EDR value, with lower EDR indicating better performance. The figure suggests that freshwater forcing on its own is already quite important, and density
anomalies add only little to performance. The bottom right panel shows Equation 3 with calculated AMOC data points.
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Tomake Equation 2 dimensionless and physically interpretable, coefficients determined by the least‐square curve
fitting method C1 = 8.407 Sv ⋅m3/ kg, C2 = 45 Sv ⋅ ( s ⋅ m2/kg)1/3, C3 = 38,383,842 Sv ⋅ s ⋅ m2/kg,
C4 = − 39,368.043 Sv ⋅m/s, C5 = − 8635.398 Sv are introduced to appropriately scale terms in the symbolic
regression results, ensuring that all terms have consistent units. This adjustment aligns the CESMmodel's units in
the data set, where the AMOC is measured in Sverdrups (Sv), SFWF is measured in kilograms per square meter
per second (kg/m2/ s) , and PD is measured in grams per cubic centimeter (g/ cm3) .

Sobol sensitivity analysis and gradient‐based sensitivity analysis are used for assessing the importance of vari-
ables in SR expressions. Results show that PD_200mt − 20 and SFWFt − 20 has an immediate, local impact on the
model output according to gradient sensitivity. Sobol sensitivity analysis suggests that PD_0mt − 20 has higher‐
order effects and weak interaction with SFWFt − 20, while both PD_200mt − 20 and SFWFt − 20 exhibit strong direct
causality on AMOC, with SFWFt − 20 having the highest first‐order and total Sobol sensitivity as summarized
below.

Variable Si STi Causality and confounding
Gradient
sensitivity

PD_0mt − 20 0.0528 0.0538 Weak interactions with AMOC. Possible confounding with:
PD_200mt − 20, SFWFt − 20

0.0638

PD_200mt − 20 0.1366 0.1370 Strong direct causality on AMOC 0.6341

SFWFt − 20 0.8095 0.8101 Strong direct causality on AMOC 0.4221

However, after further analysis, it was found that the terms involving C1, C2, and C5 contribute relatively small to
the overall equation. Therefore, we focus on the terms involving C3, C4 and C5, which make the main contri-
bution, and perform a least squares curve fit again. Equation 2 was simplified, the coefficients
C6 = − 24,277,902.33 Sv ⋅ s ⋅m2/kg, C7 = 25,223.123 Sv ⋅m/s, and C8 = 10.87 Sv were determined using a
least‐square curve fitting method. The curve‐fitting process confirmed that C6, C7 and C8 sufficiently capture the
relationship between SFWFt − 20, PD_200mt − 20, and AMOC:

AMOCt ≃C6 ⋅ SFWFt− 20 + C7 ⋅
SFWFt− 20

PD_200mt− 20
+ C8 (3)

Note that CESM computes freshwater fluxes as virtual inverse salt fluxes, hence the positive signs.

The Overall PCE Similarity Score of 0.996, which quantifies similarity by representing functions as series of
orthogonal polynomials based on input distributions, suggests that Equation 3 and the scaling in Bryan (1987) are
strongly correlated, as shown in Figure 3. Also, similarity of 0.916 between the Volterra series of Equation 3 and
Bryan (1987) indicates a good match, showing that these equations are structurally similar (Text S3 in Supporting
Information S1).

4. Summary and Discussion
We used neural networks to predict AMOC strength based on a set of eight predictors. At least to the authors it
came as a surprise how accurate these predictions are. Figure 4 of Vettoretti and Peltier (2018) show centennial‐
scale trends leading up to an AMOC transition, but being able to predict the exact timing is quite unexpected.

Shuffling and recombining the time series of these predictors showed that at least in the analyzed simulations the
AMOC is mainly controlled by surface freshwater forcing and to a smaller extent through the advection of density
anomalies. This not a new result, it corroborates the detailed analysis of two transitions in different CESM version
by Vettoretti and Peltier (2018). The main contribution of the present study is that we arrived there using only
standard ML tools, and that we analyzed 26 transitions rather than two. After identifying the two key predictors
we used symbolic regression to establish a functional relationship between AMOC strength, freshwater forcing
and subsurface density anomalies. The resulting function has structural similarities to the scaling law of
Bryan (1987) and captures the AMOC strength quite well.
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The methodology employed here requires, of course, that a system is at least to some extend predictable. The D‐O
events in the present models clearly are, but perturbation experiments in different model setup suggest they may
not always be, stochastic forcing may be too strong (Kleppin et al., 2015). The discrepancies in precisely pin-
pointing abrupt transitions set a limitation on the model's ability to capture AMOC behavior accurately (Figure S6
in Supporting Information S1), as discrepancies may inevitably arise from stochastic factors, underscoring the
potential influence of unpredictable atmospheric events. Furthermore, observational records and their associated
data processing steps, including uneven temporal sampling and linear interpolation for regridding, may introduce
artifacts that complicate accurate modeling and interpretation. However, a statistical analysis of ice core proxies
suggests that the D‐O events in the real world may indeed by predictable (Boers, 2018). Thus, a natural next step
following the present study is the use of NNs on ice core data, where we use the CESM simulations as testbed to
understand the effect of noise, dating uncertainties, and processing artifacts on the outcome.

Another promising avenue is the construction of reduced dimension emulators. Starting with Stommel (1961),
they have a long history in climate research, because the reduced dimensionality allows the study of a wide
parameter range and the relative ease of interpretation. So far, however, they have been built based on intuition as
in Vettoretti et al. (2022a), whereas now we discover them via SR. This does not mean it is fully objective. As we
have documented here, the use of SR and the path there is full of subjective choices, but their impact can be
quantified and their robustness tested.

Data Availability Statement
Source data, extended data, and statements of data availability are available at Vettoretti et al. (2022b). The code
and the converted data set can be found online at https://sid.erda.dk/sharelink/g0wQhlMT1b.
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