
A Geometric Interpretation of Southern Ocean Eddy Form Stress

MADS B. POULSEN AND MARKUS JOCHUM

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

JAMES R. MADDISON

School of Mathematics, and Maxwell Institute for Mathematical Sciences, University of Edinburgh,

Edinburgh, United Kingdom

DAVID P. MARSHALL

Department of Physics, University of Oxford, Oxford, United Kingdom

ROMAN NUTERMAN

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

(Manuscript received 26 October 2018, in final form 20 July 2019)

ABSTRACT

An interpretation of eddy form stress via the geometry described by the Eliassen–Palm flux tensor is ex-

plored. Complimentary to previous works on eddy Reynolds stress geometry, this study shows that eddy form

stress is fully described by a vertical ellipse, whose size, shape, and orientation with respect to the mean flow

shear determine the strength and direction of vertical momentum transfers. Following a recent proposal, this

geometric framework is here used to form aGent–McWilliams eddy transfer coefficient that depends on eddy

energy and a nondimensional geometric parameter a, bounded in magnitude by unity. The parameter

a expresses the efficiency by which eddies exchange energy with baroclinic mean flow via along-gradient eddy

buoyancy flux—a flux equivalent to eddy form stress along mean buoyancy contours. An eddy-resolving

ocean general circulationmodel is used to estimate the spatial structure of a in the SouthernOcean and assess

its potential to form a basis for parameterization. The eddy efficiency a averages to a low but positive value of

0.043 within the Antarctic Circumpolar Current, consistent with an inefficient eddy field extracting energy

from themean flow. It is found that the low eddy efficiency is mainly the result of that eddy buoyancy fluxes

are weakly anisotropic on average. The eddy efficiency is subject to pronounced vertical structure and is

maximum at ;3-km depth, where eddy buoyancy fluxes tend to be directed most downgradient. Since

a partly sets the eddy form stress in the Southern Ocean, a parameterization for a must reproduce its

vertical structure to provide a faithful representation of vertical stress divergence and eddy forcing.

1. Introduction

The Antarctic Circumpolar Current is embedded in

a rich mesoscale eddy field, as readily seen from both

satellite altimetry and realistic eddy-resolving model

simulations (Storch et al. 2012; Roullet et al. 2014;

Frenger et al. 2015; Stewart et al. 2015). The vertical

structure of the eddy field is associated with undulated

interior ocean neutral surfaces which enable a vertical

transfer of horizontal momentum through eddy form

stress (Johnson and Bryden 1989; Wolff et al. 1991;

Ivchenko et al. 1996; Olbers 1998). This process is

fundamental to the dynamics of the Southern Ocean as

it causes a net downward momentum transfer which

permits a governing momentum balance between sur-

face wind stress and topographic form drag acrossDenotes content that is immediately available upon publica-

tion as open access.
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shallow ridges and continents (Munk and Palmén 1951;

Masich et al. 2015). For adiabatic and geostrophic eddies

the zonal eddy form stress additionally induces a me-

ridional circulation that compensates Southern Ocean

wind-driven overturning (Danabasoglu et al. 1994;

Marshall 1997; Marshall and Radko 2003; Viebahn and

Eden 2010), with implication for the strength and

structure of the residual circulation.

Recent studies have highlighted that eddy form stress

is predominantly localized in several standing mean-

ders within the circumpolar current (Thompson and

Garabato 2014; Masich et al. 2018). This zonal het-

erogeneity has also been reported in the upwelling as-

sociated with the residual overturning circulation

(Tamsitt et al. 2017). The meanders form when large-

scale flow navigates submarine topographic obstacles

and are associated with elevated deep-reaching eddy

kinetic energy (Hallberg and Gnanadesikan 2001;

Bischoff and Thompson 2014; Barthel et al. 2017).

In addition both eddy-resolving models and observa-

tions show that the transport of the Antarctic Cir-

cumpolar Current is insensitive to a strengthening of

the zonal wind stress (Hallberg and Gnanadesikan

2006; Meredith and Hogg 2006; Böning et al. 2008;

Munday et al. 2013; Morrison and Hogg 2013; Marshall

et al. 2017; Poulsen et al. 2018). This is thought to be

the consequence of a concurrent increase of eddy form

stress which is able to balance the additional surface

momentum flux, a phenomenon known as eddy satu-

ration (Straub 1993).

The horizontal grid resolution of ocean general circula-

tion models typically employed to study processes on

centennial or millennial time scales does not permit ex-

plicit eddy form stress to develop. Instead the effects

caused by the stress need to be introduced through pa-

rameterization, and the ability to represent Southern

Ocean eddy form stress constitutes a keymeasure to assess

the quality of any proposed eddy closure. Presently the

most common approach is to use a skew-diffusive flux

scheme with the diffusivity taken proportional to the

isopycnal slope (Gent and McWilliams 1990; Griffies

1998). This choice ensures a removal of available po-

tential energy from the large-scale flow, a fundamental

property of baroclinic instability. The implementation

of this scheme, however, requires a specification of an

eddy transfer coefficient k. Previous attempts to esti-

mate k based on inferred divergent eddy buoyancy

fluxes find that it is a function of both time and space,

and locally may be of negative sign (e.g., Roberts and

Marshall 2000; Eden et al. 2007b). Different closures for

the transfer coefficient as function of ocean stratification

(Visbeck et al. 1997; Ferreira et al. 2005) or local eddy

kinetic energy (Eden and Greatbatch 2008) have been

proposed, yet none of these has emerged as superior or

able to support an eddy saturation regime (Eden et al.

2009; Farneti et al. 2015; Jochum and Eden 2015).

Marshall et al. (2012), in a quasigeostrophic context,

introduces a framework in which eddy flux parameteriza-

tion is based on the inherent geometric properties of the

Eliassen–Palm flux tensor. This framework revolves

around a decomposition of Reynolds and form stresses in

terms of the total eddy energy and five bounded di-

mensionless parameters, related to the geometry of eddy

fluxes of momentum and buoyancy. Provided with a

prognostic equation for the eddy energy, the main hy-

pothesis is that the bounds on the involved parameters

render the eddy parameterization problemmore tractable.

A corollary that follows from their conceptual frame-

work is a new expression for k in terms of eddy energyE,

oceanic stratification, and a dimensionless parameter a,

k5aE
N

0

M2
, (1)

where N 0 and M refer to the local vertical and hori-

zontal stratification, respectively. Parameter a, hence-

forth referred to as an eddy efficiency, carries information

on the geometry of horizontal eddy buoyancy fluxes and

is bounded by unity in magnitude. Results from im-

plementation and analysis of Eq. (1) in idealized

model setups, using a constant value for a, have shown

promising representations of inferred tracer fluxes

(Bachman et al. 2017) and eddy saturation (Mak et al.

2017, 2018).

Formally, the eddy geometry described in Marshall

et al. (2012) is associated with two distinct ellipses; one

in the horizontal plane related to eddy Reynolds stress,

and one oriented in the vertical plane related to eddy

form stress. The strength and anisotropy of the eddy

stresses are expressed through the size and eccentricity

of the ellipses, respectively, and the ellipse orientation

with respect to the background velocity shear deter-

mines whether the eddies extract or surrender energy

to themean flow. In the case of eddyReynolds stress, the

energy transfer associated with the ellipse tilt is consis-

tent with expectations from classical stability theory

(Tamarin et al. 2016), and the geometric stress repre-

sentation has previously been used to diagnose eddy–

mean flow interactions in, for example, the atmospheric

midlatitude westerlies (Hoskins et al. 1983), the South-

ernOcean (Morrow et al. 1994), and in an idealizedmodel

of a western boundary current extension (Waterman and

Hoskins 2013; Waterman and Lilly 2015). These stud-

ies, together with the attractive properties of the geo-

metrically informed eddy transfer coefficient outlined

in the preceding paragraph, suggest that a geometric
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perspective is useful to understand and parameterize

eddy–mean flow interactions.

While the application of the geometric framework to

Reynolds stress is well documented in the literature,

little attention has been dedicated to the eddy form

stress geometry which is encapsulated in a. Marshall

et al. (2012) examined the spatial structure of a in a

quasigeostrophic model of a wind-driven gyre, demon-

strating that its features relate to the large-scale circu-

lation, but the structure of a in more complex settings is

unknown. The most recent estimate for a is a spatially

uniform value of 0.2, extracted from a highly idealized

model of a baroclinically unstable current (Bachman

et al. 2017).

The aim of the present study is twofold: first, to

clarify the connection between the Eliassen–Palm flux

tensor and its geometric interpretation in terms of two

ellipses, and second, to diagnose the eddy form stress

geometry in a global eddy-resolving general circula-

tion. The latter objective is motivated by the desire to

construct a parameterization for a for use in complex

ocean models that employ Eq. (1). The analysis pre-

sented in this study is focused on the Southern Ocean

where the vertical structure of eddy form stress is

of primary importance to the momentum balance.

The present work can be seen as complimentary to

the study by Stewart et al. (2015) who examined the

Reynolds stress anisotropy from both satellite altime-

try and model output. Taken together these works are

intended to provide guidance toward the long-term

goal of a unified parameterization of eddy stresses via

the Eliassen–Palm flux tensor.

The plan of the paper is the following. Section 2 re-

views the stress decomposition by Marshall et al. (2012)

and clarifies its geometric interpretation in terms of two

distinct ellipses. Based on the eddy form stress de-

composition, the eddy efficiency a is defined. Section 3

describes the setup of the numerical model and the

simulation from which the eddy form stress geometry is

computed. Section 4 presents and discusses the spatial

structure of eddy buoyancy flux anisotropy, vertical

eddy tilt, and horizontal orientation of eddy form

stress, which all enter the expression for the eddy effi-

ciency a. Discussion and a summary then follow in

sections 5 and 6, respectively.

2. Geometric framework

a. Eddy stress tensor

The eddy forcing of the time-mean quasigeostrophic

potential vorticity equation Fq is expressed through the

divergence of the horizontal eddy potential vorticity

flux. This forcing is in turn related to the eddy stress

tensor E,

F
q
5=

h
� [k3 (= � E)] , (2)

where 2= � E is the eddy forcing of the associated hor-

izontal momentum equation. Here = and =h are the

three-dimensional and horizontal divergence opera-

tor, respectively, and k is the vertical unit vector.

Equation (2) involves two applications of the divergence

operator, hence certain gauge freedom is permitted

in the specification of E. As shown in Maddison and

Marshall (2013) several natural choices for E exist. The

eddy stress tensor of interest in the present study is

E5

2
42M1 2K N 0

N M1 2K 0

2S R 0

3
5 , (3)

for reasons that are discussed below. Here M and N are

the eddy Reynolds stresses,

M5
y0gy0g 2 u0

gu
0
g

2
, N5 u0

gy
0
g , (4)

R and S are the eddy form stresses,

R5
f
0

N 2
0

b0u0
g, S5

f
0

N 2
0

b0y0g , (5)

and K is the eddy kinetic energy,

K5
u0
gu

0
g 1 y0gy0g
2

. (6)

The variables u0
g and y0g are the horizontal geostrophic

eddy velocities, f0 is the reference Coriolis parameter,

and the overline denotes an appropriate time mean. In

accord with the quasigeostrophic approximation, the

full buoyancy field is decomposed as b0(z) 1 b and

the reference buoyancy frequency N 0 is formulated

with respect to the background buoyancy profile b0.

The temporal buoyancy deviation b0 is defined as

b0 5 b2 b.

Marshall et al. (2012) derive energetic bounds for the

magnitude of eddy Reynolds stress M2 1 N2 and eddy

form stress R2 1 S2, which in combination bounds the

norm ofE. The energetic bounds allow for an expression

of the eddy stresses in terms of the eddy energy and five

bounded dimensionless parameters related to the ge-

ometry of horizontal eddy fluxes of momentum and

buoyancy. Following the discussion in Maddison and

Marshall (2013), the decomposition of the constituents

of E is
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M5 (M,N)5g
m
L cos2(l*)r

m
, (7a)

R5 (R,S)5 g
b
L sin(2l*)r

b
, (7b)

where

r
m
5 [2cos(2f

m
), sin(2f

m
)], (8a)

r
b
5 [cos(f

b
), sin(f

b
)]. (8b)

The quantity L is the sum of eddy kinetic energy and

scaled eddy potential energy,

L5K1
f 20
N 2

0

P5K1P*, (9)

where P is the quasigeostrophic eddy potential energy,

P5
b0b0

2N 2
0

. (10)

The angle l* expresses the partitioning of L between

potential and kinetic energy,

P*

L
5 sin2(l*),

K

L
5 cos2(l*), (11)

and is bounded between 0 and p/2.

The goal of the following subsections is to clarify the

physical interpretation of the geometric parameters fm,

gm, fb and gb. The main tool to achieve this goal is qua-

dratic forms, xTBx 5 1, where B is any rank-two tensor, x

is a displacement vector, and the superscript T denotes the

transpose. A quadratic form describes a geometric object;

the eigenvectors of B lie along the principal axes of the

geometric object, and the eigenvalues are equal to the

squared radii along the principal axes and hence determine

the object shape (Riley et al. 2006). Prior to analysis of the

geometric object described by E, it is useful to consider a

division of E into two contributions,

E5E
m
1E

b
. (12)

In the present study, this division consists of

E
m
5

2
42M1K N 0

N M1K 0

0 0 2P*

3
5 , (13)

which is termed the eddy Reynolds stress tensor, and

E
b
5

2
4 K 0 0

0 K 0

2S R P*

3
5 , (14)

which is termed the eddy form stress tensor. Since

xTAx 5 0 for any antisymmetric tensor A, the matrix

representation of quadratic forms is nonunique and

the geometry described by any B is associated with

its symmetric part, (B 1 BT)/2, only. For the eddy form

stress tensor Eb, the symmetric contribution is

1

2
(E

b
1ET

b )5

2
4 K 0 2S/2

0 K R/2

2S/2 R/2 P*

3
5 . (15)

The particular formofE, Eq. (3), and its division intoEm

and Eb, is not unique, but is motivated by the following:

d The tensor division permits an examination ofReynolds

and form stress geometry individually.
d In the absence of buoyancy fluctuations, Em is identi-

cal to the eddy stress tensor discussed in Waterman

and Lilly (2015) for barotropic systems and the eddy

forcing is completely described by Em.
d Both Em and Eb resemble covariance tensors, with

variances on the diagonal and covariances on the off-

diagonal. This tensor form implies that it is possible

to relate E to the geometry of variance ellipses, or its

higher dimensional form, which are commonly used to

visualize multivariate statistics.

The last point is of particular interest as the connection

between eddy forcing and variance ellipse geometry has

been established in Waterman and Lilly (2015). The

geometric objects described by Em and Eb, and their

relation to variance ellipses, are the foci of the following

subsections.

b. Eddy Reynolds stress ellipse

The eddy Reynolds stress tensor Em has eigen-

values 2P* and

L
6
5K(16 g

m
) , (16)

where

g
m
5
L

1
2L

2

L
1
1L

2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 1N2

K2

r
(17)

is the eddymomentum flux anisotropy, which inMarshall

et al. (2012) is shown to be bounded between zero

and unity, 0 # gm # 1. According to the sign of the ei-

genvalues, Em describes a hyperboloid. The momentum

covariances N are the only nonzero off-diagonal terms

in Em and suggest that a horizontal section of the hy-

perboloid results in a more concise representation of the

relevant eddy Reynolds stress geometry. Specifically, if
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Th is the transformation matrix that consists of the two

basis vectors in R3 that span the horizontal plane, a

transformation of Em using Th results in

Ey
m 5T

h
E
m
TT
h 5

�
2M1K N

N M1K

�
. (18)

Ey
m, which is identical to the tensor examined in

Waterman and Lilly (2015), has eigenvalues given by

Eq. (16) and is thus positive semidefinite and describes an

ellipse. This ellipse, formally the intersection between

a horizontal plane and the hyperboloid described by Em,

has semimajor and semiminor axis lengths given by the

square root of the largest and smallest eigenvalue, re-

spectively. The eddy anisotropy gm describes the ec-

centricity of the ellipse and
ffiffiffiffi
K

p
determines its size. The

eigenvector associated with the largest eigenvalue is

directed along the semimajor axis, and its angle fm with

respect to the zonal,

tan(2f
m
)52

N

M
, (19)

defines direction. The Reynolds stress decomposition,

Eq. (7a), readily follows by combining Eqs. (11), (17),

and (19).

The horizontal ellipse, Eq. (18), and its associated ei-

genvectors and angle fm, is shown in Fig. 1a. The orien-

tation of the ellipse with respect to the mean flow shear

determines the sign of the horizontal cross stream mo-

mentum flux divergence and the direction of energy ex-

changes between the mean flow and the eddies. In the

idealized case of a sheared zonalmean flow as depicted in

Fig. 1b, themean flow gains energy when the ellipse leans

FIG. 1. (a) Horizontal ellipse (blue) and principal axes (green eigenvectors) described by the eddy Reynolds stress tensor, Eq. (18). The

angle fm provides the orientation of the major axis with respect to the zonal direction. The Reynolds stress ellipse is formally the cross

section between a horizontal plane and the hyperboloid (black mesh) described by Eq. (13). (b) Eddy–mean flow interaction in hori-

zontally sheared mean flow (black solid arrows) as diagnosed with the use of the Reynolds stress ellipse. The shear sharpens when the

ellipse leans with the shear (›N/›y, 0) and weakens when the ellipse leans into the shear (›N/›y. 0). The dashed black arrows show the

direction of the zonal momentum transfer. (c) Vertical ellipse (blue) and principal axes (thick green eigenvectors) described by the eddy

form stress tensor, Eq. (26). The red arrow is the horizontal (R, S) vector, which is perpendicular to the ellipse major axis, fe 5 fb 1 p/2.

The ellipse is formally the cross section between a vertical plane and the ellipsoid (blackmesh) described by Eq. (14). (d) Eddy–mean flow

interaction in vertically sheared zonal mean flow (black solid arrows) as diagnosed with the use of the form stress ellipse. When

h0›p0/›x, 0, S. 0, the ellipse leans into the shear and the momentum transfer (black dashed arrows) is downward, which acts to weaken

the shear. The opposite is the case when the ellipse leans with the shear.
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with the shear (›N/›y , 0) and losses energy when the

ellipse leans into the shear (›N/›y . 0), resembling the

eddy–mean flow interaction implied by the ‘‘banana-

shaped’’ eddy presented in Wardle and Marshall (2000).

c. Eddy form stress ellipse

Complimentary to Em, which clarifies the geometric

parameters involved in decomposition (7a), the eddy form

stress tensor Eb provides insight into the geometric pa-

rameters in decomposition (7b). The symmetric eddy

form stress tensor given byEq. (15) has eigenvaluesK and

L
6
5

L

2
(16 g

t
) , (20)

where

g
t
5

L
1
2L

2

L
1
1L

2

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2(2l*)1 sin2(2l*)g2

b

q
, (21)

and

g
b
5

N
0

2jf
0
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

KP

r
. (22)

The parameter gb constitutes an energetic bound on

eddy form stress magnitude and is equivalent to a char-

acteristic measure of the anisotropy of the eddy buoyancy

flux. Marshall et al. (2012) show that gb is bounded be-

tween zero and unity, which implies that 0 # gt # 1 as

well.HenceEq. (15) is positive semidefinite anddescribes

an ellipsoid, the three-dimensional generalization of the

ellipse. As the case for Em, the lengths of the principal

axes of the ellipsoid are given by the square root of the

eigenvalues. The horizontal orientation of the ellipsoid

major axis, equivalent to the orientation of the eigen-

vector associated with the largest eigenvalue L1 is given

by the angle fe,

cos(f
e
)5 7

Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

p , sin(f
e
)56

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

p , (23)

which is defined with respect to the zonal direction.

Since the horizontal orientation of the eddy buoyancy

flux vector is defined by

cos(f
b
)5

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

p , sin(f
b
)5

Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

p , (24)

it is seen that

f
e
5f

b
6p/2 , (25)

that is, the major axis of the ellipsoid leads/lags the eddy

buoyancy flux vector with p/2 in the horizontal.

It is covariances between b0 and u0
g in Eb that occupy

the off-diagonal and hence suggest that a vertical section

of the ellipsoid may allow for a more compact repre-

sentation of the relevant eddy form stress geometry.

Therefore, let Ty denote the transformation matrix

which consists of the two basis vectors inR3 that span the

vertical plane along the major axis of the ellipsoid.

Transforming Eb using Ty results in

Ey
b 5T

y
E
b
TT
y 5

2
664

K
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

p

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

p
P*

3
775 , (26)

which describes the vertical ellipse at the intersection be-

tween the ellipsoid and the vertical plane aligned with

its major axis. The tensor Ey
b has eigenvalues given by

Eq. (20), which implies that the ellipse has eccentricity gt
and size proportional to

ffiffiffiffi
L

p
, and its horizontal orientation,

described by Eq. (23), is perpendicular to the horizontal

eddy buoyancy flux. The vertical orientation of the ellipse

is defined by the angle between its major axis eigenvector

and the horizontal plane ft, with 0 # ft # p/2 when the

eigenvector is defined with a positive vertical component.

Through the use of trigonometric identities, one finds that

tan(2f
t
)56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

p

K2P*
56g

b
tan(2l*), (27)

where it is understood that the sign varies in accord with

the sign in the expression for the horizontal orientation,

Eq. (23). In combination with Eq. (21), the relation for

the vertical tilt provides an alternative expression for the

ellipse eccentricity,

g
t
5

cos(2l*)

cos(2f
t
)
. (28)

A visualization of the vertical ellipse described by Ey
b is

provided in Fig. 1c, as well as the eigenvectors and the

three angles fb, fe, and ft.

By combining Eqs. (11), (22), and (24), it is possible to

arrive at the decomposition forR and S given by Eq. (7b).

Alternatively, one may write this decomposition in terms

of the vertical ellipse geometry via Eqs. (27) and (28),

R5 g
t
L sin(2f

t
)r

b
, (29)

where rb 5 [6sin(fe), 7cos(fe)] 5 [cos(fb), sin(fb)].

Hence the vertical ellipse described by Ey
b, together with

the horizontal orientation of the eddy buoyancy flux,

Eq. (24), provides an interpretation of the geometry

involved in decomposition (7b).
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Equation (26) is the main result of the present section

and shows that eddy form stress is subject to a similar

geometric interpretation as eddy Reynolds stress via an

ellipse. A key property of the vertical ellipse is that its

horizontal orientation fe is governed by the orientation

of R via Eq. (25), which implies that the ellipse may be

used to diagnose the direction of vertical transfer of

horizontal momentum in baroclinic mean flow. This

follows from the dynamical equivalence between hori-

zontal eddy buoyancy flux and eddy form stress ti via

R5
f
0

N 2
0

b0u0
g 52

1

r
0

k3h0=
h
p0 5

k3 t
i

r
0

, (30)

wherer0 is the referencedensity,p
0 is thepressure deviation,

and h0 52b0/N 2
0 is the interface height displacement. As

inMarshall et al. (2012), this use of the ellipse is depicted for

an idealized vertically sheared zonal mean flow in Fig. 1d in

the case where R 5 (0,6S), similar to the case considered

in Johnson and Bryden (1989). Consistent with linear sta-

bility analysis (Eady 1949), the vertical shear weakens when

the ellipse leans into the shear (S. 0), corresponding to

the case where the energy conversion is from the mean

flow to the eddies. According to decomposition (7b),

the most efficient form stress at a given value for L is

provided by anisotropic eddies subject to an equi-

partitioning of L between K and P*, corresponding to

l*5p/4. This is equivalent to a vertical ellipse with

ft 5 p/4 and gt 5 gb / 1 via Eq. (29).

d. Marshall et al. (2012) decomposition

In Marshall et al. (2012), an eddy form stress de-

composition related to Eq. (7b) is derived in terms of the

eddy energy, E 5 K 1 P, instead of L. Defining l to be

the energy partitioning angle with respect to E,

P

E
5 sin2(l),

K

E
5 cos2(l) , (31)

this decomposition follows by reformulating Eq. (7b)

in terms of E and l instead of L and l*,

R5 g
b

jf
0
j

N
0

E sin(2l)r
b
. (32)

To phrase Eq. (32) in the context of the preceding sub-

section, consider the eddy form stress tensor

E
w
5

2
66664

K 0 0

0 K 0

2
N

0

jf
0
j S

N
0

jf
0
jR P

3
77775 , (33)

which is identical to Eq. (14), but with a weighted

buoyancy variable b0 /N 0b
0/jf0j. By following the

steps in section 2c using the symmetric part ofEw instead

of Eb, one retrieves Eqs. (20)–(28) but now expressed in

terms of E and l instead of L and l*. In particular, the

vertical section of Ew is the vertical ellipse described by

Ey
w 5T

y
E

w
TT
y 5

2
66664
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j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2jf
0
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1S2

p
P

3
77775 ,

(34)

whose geometry leads to decomposition (32). Hence the

difference between Eqs. (7b) and (32) is simply a re-

scaling of the buoyancy variable, and the vertical ellipses

described byEy
b andE

y
w orient themselves with respect to

the mean flow shear in the same way via Eq. (25). Thus,

section 2c also provides a clarification of the geometric

parameters involved in decomposition presented in

Marshall et al. (2012).

e. Eddy efficiency a

As a practical application of the geometric decom-

position, the present study now follows Marshall et al.

(2012) and constructs an expression for the transfer co-

efficient k appropriate to the Gent and McWilliams

(1990) eddy closure. The downgradient closure for the

horizontal eddy buoyancy flux results in

k52
=
h
b � b0u0

g

M4
52

n � b0u0
g

M2
, (35)

where M2 5 j=hbj and n5M22=hb is the buoyancy

gradient unit vector. To remain consistent with Marshall

et al. (2012), Eq. (32) is used to close for b0u0
g and results in

k5aE
N

0

M2
, (36)

which is the transfer coefficient explored in Mak et al.

(2017), Bachman et al. (2017), and Mak et al. (2018). The

parametera is a combination of the geometric parameters,

a52g
b
sin(2l)sgn(f

0
)n � r

b
, (37)

and is bounded by unity in magnitude, jaj # 1. The

boundedness of a means that it can be interpreted as a

measure of how efficient baroclinic mean flow and

eddies exchange energy, thus a is henceforth referred to

as an eddy efficiency. For vertically sheared mean flow

along b contours, a is greater than zero when the ellipse

leans into the shear, which can be seen by invoking the
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thermal wind relation. This is consistent with down-

gradient eddy buoyancy flux, sgn(f0)n � rb 5 21, in

which case eddies extract energy from the mean flow.

Themagnitude of a is greatest when the eddy buoyancy

flux is fully anisotropic, gb 5 1, and the eddy energy E

is equally partitioned between K and P, corresponding

to l 5 p/4.

The central focus of the remaining part of the paper is

to explore the structure and magnitude of a in an eddy-

resolving general circulation model.

3. Model setup and output postprocessing

This study uses the z-coordinate Parallel Ocean Pro-

gram version 2, configured at an eddying horizontal

resolution of 1/108 on a global domain, to diagnose the

eddy geometry in the Southern Ocean. A detailed ac-

count of the model setup and its comparison to the same

model at 18 nominal resolution can be found in Small

et al. (2014) and Poulsen et al. (2018) and references

therein. This section discusses aspects of the model and

its output relevant to this study only.

The model is formulated on a horizontal B grid and

the vertical is discretized into 62 levels in which sepa-

ration increases monotonically with depth (Smith et al.

2010). The setup includes an active sea ice model and

the meteorological boundary conditions are prescribed

by the CORE.v2 normal year forcing fields (Large and

Yeager 2009). The forcing fields, compiled from re-

analysis and observations, are updated every sixth

model hour and repeat themselves after onemodel year.

The ocean model is initiated from the World Ocean

Circulation Experiment Hydrographic Climatology

(Gouretski and Koltermann 2004). The model was run

for 42 model years, the first 16 years at the National

Center for Atmospheric Research, which are docu-

mented in Bryan and Bachman (2015). The model so-

lution drifts due to the relatively short spinup, as for

example seen in the horizontally averaged temperature

field which is subject to a 0.28C decade21 warming

trend at 600-m depth in the Southern Ocean. Never-

theless, both the annual meanDrake Passage transport

and strength of the residual overturning circulation

in the Southern Ocean are stable with time (Poulsen

et al. 2018).

The eddy statistics involved in the geometric frame-

work are computed offline based on the 9 years from 34

to 42 where 3-day time-mean fields, evaluated on con-

stant depth levels, are available. This timespan is divided

into the four seasons to account for the seasonal cycle

present in the meteorological forcing fields. Eddy sta-

tistics are computed within each of the four seasons and

the statistics used in this study is provided by the annual

mean. All fields are horizontally coarse grained, with

one grid cell on the coarse grid consisting of 10 3
10 grid boxes on the original fine grid. This effectively

reduces the horizontal grid resolution to about 18 3 18
and results in smoother horizontal structures.

4. Results

The present section is divided into three parts. The

first part examines the structure of Southern Ocean

eddy form stress and its geometric representation via

the vertical ellipse outlined in sections 2c and 2d, the

second part looks into the individual components of the

form stress geometry in greater detail, and the third and

last part draws together the key findings from the first

two parts by presenting estimates of the eddy efficiency

a. Since a is based on the form stress decomposition

involving eddy energy E, the focus of the results section

is on the geometric parameters related to the vertical

ellipse described by Ey
w, derived in section 2d.

a. Eddy form stress in the Southern Ocean

Figure 2 provides an overview of the spatial structure

of eddy form stress R in the Southern Ocean. The

present analysis considers the component ofR projected

onto =hb, which is the part of the form stress relevant to

mean flow along mean buoyancy contours. The verti-

cally and meridionally averaged form stress (Figs. 2a

and 2b, respectively) show that it is predominantly

positive, consistent with downgradient eddy buoyancy

flux and downward transfer of momentum, and is ele-

vated and vertically sustained in several locations along

the path of the Antarctic Circumpolar Current (black

streamlines, Fig. 2a). These regions of elevated form

stress appear downstream of larger topographic obsta-

cles, such as the Kerguelen Plateau and Drake Passage,

and are in alignment with the finding presented in

Thompson andGarabato (2014) andMasich et al. (2018)

that eddy form stress is particularly strong in standing

meanders that form in the lee of topography. Overall,

the horizontal average of eddy form stress within the

circumpolar current (Fig. 2c) shows that vertical stress

divergence retards the mean flow above ;2-km depth,

whereas stress convergence accelerates it at greater depth.

The geometric representation of eddy form stress via

the vertical ellipse, Eq. (34), is also shown in Fig. 2b,

and a number of features are readily identified. First, the

ellipse size, which scales with eddy energy, is larger in

regions of strong form stress and is intensified toward

the surface. Second, the ellipse eccentricity gt is gener-

ally weak and the ellipse tilt ft deviates from p/4, sug-

gesting an overall low buoyancy flux anisotropy gb and

a suboptimal eddy energy partitioning. Third, the ellipse
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tilt ft tends to shift from p/2 to zero with depth, in-

dicating that the amount of eddy potential energy ex-

ceeds eddy kinetic energy at shallow depth, and vice

versa at greater depth. And last, the majority of ellipses

lean into the shear (black ellipses), which is consis-

tent with a downward momentum transfer within the

baroclinically unstable circumpolar current. These el-

lipse characteristics are concisely summarized for the

horizontally averaged circumpolar current, shown in

Fig. 2c.

Provided with form stress decomposition (32), the

general message from the geometric representation is

that eddy energy plays a key role in setting the eddy

form stress magnitude but also that Southern Ocean

eddies appear to drive an inefficient form stress given

the availability of eddy energy. The low eddy effi-

ciency is the focus of the following, which examines

the eddy buoyancy flux anisotropy gb and eddy energy

partitioning angle l in greater detail, as these physical

quantities determine the ellipse tilt ft and eccentricity

gt via relation (21) and (27).

b. Geometric decomposition

The eddy buoyancy flux anisotropy gb is shown in

Fig. 3a at 0.5-km depth, below the austral winter mixed

layer in which N 0 is ill defined. The momentum flux

FIG. 2. (a) Vertically averaged eddy form stress below 0.5-km depth. Black lines are the 5- and 125-Sv

(1 Sv [ 106m3 s21) contours of the barotropic streamfunction. (b) Meridionally averaged eddy form stress within

the Antarctic Circumpolar Current [defined by the black streamlines in (a)] and its geometric representation

through the vertical ellipse, Eq. (34). The ellipses are based on volume averaged eddy buoyancy flux and energy

calculated within 20 segments of equal longitudinal extent along the circumpolar current, with each such segment

divided into nine vertical bins of approximately equal height. For visual aid, black ellipses lean into the shear and

blue ellipses lean out of the shear. (c) Horizontally averaged eddy form stress and vertical ellipse within the cir-

cumpolar current. All panels are based on the vector projection of R 5 (R, S) onto =hb, with a positive value

indicating downgradient eddy buoyancy flux.
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anisotropy gm is shown in Fig. 3b for comparison. The

horizontal structure of the flux anisotropies have at least

three properties in common: 1) both are subject to

considerable structure on the mesoscale in the interior

ocean away from topographic obstacles, 2) both fields

show elevated anisotropies in western boundary current

regions and in proximity to larger bathymetric objects,

such as the Kerguelen Plateau, and 3) neither of the

fields display a clear signature of the circumpolar cur-

rent system. A pronounced difference, on the other

hand, is that gm approaches unity on the periphery of

topography where gb does not. This property of gm
follows from the no-normal flow boundary condition

(see Marshall et al. 2012). It is also noted that the es-

timate of gm is in qualitative agreement with gm pre-

sented by Stewart et al. (2015), who use both satellite

altimetry and high-resolution model output, indicating

that the highlighted features are not model specific.

Vertical sections along the path of the Antarctic

Circumpolar Current expose the same properties of the

anisotropies as was shown in Fig. 3 but additionally

reveals a coherent vertical structure (Figs. 4a,b). In

contrast to the persistent mesoscale variations in the

horizontal, gm shows a consistent vertical amplification

with depth above rough topography and gb a nearly

uniform vertical structure. The former property was

shown in Stewart et al. (2015) to be a result of steep

gradients in f/H, H being the depth of the water col-

umn, which constrains the directionality of the eddy

motion. Similar reasoning does not appear to apply in

the case of gb, which suggests approximate isotropic

eddy buoyancy fluxes in the immediate grid cells above

bottom topography.

As seen from the probability distributions in Fig. 5,

the momentum flux anisotropy is more widely distrib-

uted than the buoyancy flux anisotropy due to the pro-

nounced vertical variations. The mean value of gm
within the circumpolar current is 0.29, which is greater

than the corresponding mean value of 0.15 for gb but

lower than the global mean value of 0.42 for gm esti-

mated in Stewart et al. (2015). Hence Reynolds stresses

are on average more anisotropic than form stresses in the

Antarctic Circumpolar Current, at least in this particular

model, and the weakly anisotropic eddy buoyancy fluxes

are consistent with the low ellipse eccentricity shown

in Fig. 2.

The eddy energy partitioning angle l is shown in

Fig. 3c and exhibits smoother spatial variations com-

pared to gb. Eddy potential energy exceeds eddy kinetic

energy at this particular depth, especially in the polar

FIG. 3. Horizontal eddy flux geometry at 0.5-km depth. (a) Eddy buoyancy flux anisotropy gb. (b) Eddy mo-

mentum flux anisotropy gm. (c) Eddy energy partitioning angle l. (d) Combination of gb and l via the function

gbsin(2l) that appears in the expression for a, Eq. (37). The two black lines in (c) are the 5- and 125-Sv contours of

the barotropic streamfunction.
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marginal seas and along the coast of Antarctica. Geo-

strophic scaling of the governing equations suggests

K/P;L2
d/L

2, where Ld is the baroclinic deformation

radius and L is the characteristic length scale of the

motion. In terms of the Eady model the most unstable

wave evolves on a length scale of 3.9Ld (Eady 1949;

Vallis 2006), corresponding to a partitioning angle

l ’ 7p/16, which is consistent with K/P , 1 as seen in

the realistic eddy-resolving model. Within the current

envelope the eddy energy is closer to equipartitioning

(l 5 p/4), the optimal configuration for large eddy

stresses, but the associated vertical section (Fig. 4c)

shows that this structure is subject to considerable var-

iation in the vertical. This is especially visible in flat-

bottomed regions where K . P at greater depth, an

indication that large fluctuations in buoyancy relate to

large variation in bottom topography.

c. Eddy efficiency a

Finally the focus is turned toward the eddy efficiency,

Eq. (37), which takes the orientation of the eddy buoy-

ancy flux rb with respect to the mean buoyancy gradi-

ent n into account. First discussing the idealized case

where the eddy buoyancy flux is directed downgradient,

sgn(f0)n � rb 5 21, the expression for a reduces to

a5ak 5 g
b
sin(2l) , (38)

which provides an upper bound on the magnitude of

the eddy efficiency, jaj # jakj # 1. The horizontal

FIG. 4. Meridionally averaged sections of the horizontal eddy flux geometry within the circumpolar current

envelope, shown by the two black streamlines in Fig. 2a. (a) Eddy buoyancy flux anisotropy gb. (b) Eddy mo-

mentum flux anisotropy gm. (c) Eddy energy partitioning angle l. (d) Combination of gb and l via the function

gbsin(2l) that appears in the expression for a, Eq. (37).
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distribution of ak is shown in Fig. 3d and reveals that it

inherits its structure mostly from gb, despite the spatial

variations in l. Moreover, the vertical section of ak,
shown in Fig. 4d, possesses the weak vertical structure

visible in gb. This is promising in the context of a geo-

metrically informed eddy closure, as it suggests that one

can effectively reduce a parameterization for ak to the

problem of representing the horizontal structure in gb.

Now addressing the general expression for a, Figs. 6a

and 6b display the horizontal distribution of a at 0.5- and

3-km depth, respectively. At the shallow depth level the

eddy efficiency is relatively weak and of mixed sign

within the current envelope where it averages to 0.011.

In the deep Southern Ocean, on the other hand, a is

mainly positive and with a greater average of 0.077. As

seen from the horizontal average within the current

envelope (Fig. 7a), the efficiency monotonically in-

creases with depth throughout the upper kilometers of

the water column and peaks at about 3km, after which

it decreases again toward the ocean bottom.

Since ak varies weakly in the vertical, it is primarily

the orientation of b0u0
g with respect to =hb that governs

the vertical structure in a. Figure 7b shows that the most

probable orientation of the eddy buoyancy flux is per-

pendicular to =hb in the upper part of the Southern

Ocean (solid black line), implying n � rb ’ 0, whereas

the most likely orientation is downgradient at greater

depth (dashed black line), sgn( f0)n � rb ’ 21. Thus,

while eddies in the SouthernOcean become increasingly

energetic toward the ocean surface they also become

increasingly inefficient in interacting with themean flow.

This property, in combination with the stratification,

results in the vertical structure of eddy form stress seen

in Fig. 2c.

Rotational contributions to the horizontal eddy

buoyancy flux, which do not influence the dynamics, may

however obscure the relevant structure in a (Marshall

and Shutts 1981). Based on wavenumber spectra,

Griesel et al. (2009) show that the magnitude of eddy

heat flux curl overwhelms the flux divergence at all rel-

evant length scales in the Southern Ocean, and Eden

(2006) finds that horizontal eddy buoyancy fluxes in the

Southern Ocean tend to be more downgradient when a

rotational flux contribution is removed. To quantify to

what degree rotational fluxes contribute to the structure

in a, a horizontal Helmholtz decomposition for the eddy

buoyancy flux is considered,

b0u0
g 5=

h
x
div

1 k3=
h
x
rot

, (39)

where the vector field is expressed through two scalar

potentials, xdiv and xrot. These potentials are related to

purely divergent and rotational contributions to b0u0
g,

respectively. To estimate the divergent flux =hxdiv,

a definition for xrot is adopted from Eden et al. (2007a),

x
rot

5 j=
h
bj22u

g
F � (k3=

h
b) , (40)

where ugF is the flux of eddy variance, F5 b0b0/2.
A detailed discussion of the assumptions which underlie

Eq. (40) is found in Eden et al. (2007b). The eddy effi-

ciency based on the estimated divergent eddy buoyancy

flux is defined as

a
div

52g
b
sin(2l)sgn(f

0
)n � r

div
, (41)

where rdiv 5 [cos(fb,div), sin(fb,div)] and fb,div is the

horizontal angle of the divergent eddy buoyancy flux.

The effect of removing rotational eddy buoyancy

fluxes mainly plays a role in the upper part of the water

column. Returning to Fig. 7b, the probability distribu-

tion for the angle between the divergent flux and =hb at

shallow depth is more symmetric about zero (blue solid

line) and with an increased probability in the down-

gradient angle interval, but the maxima at 6p/2 persist.

A minor shift in the probability density distribution is

visible at greater depth (blue dashed line), but the most

likely orientation of the eddy flux remains down the

mean buoyancy gradient.

The implication for the eddy efficiency of removing

the rotational flux contribution is therefore modest

(Figs. 6c,d). Some regions of negative a are subject to a

sign change at 0.5-km depth, and here adiv averages to

0.019. At 3-km depth, adiv is weaker compared to a, but

FIG. 5. Normalized probability density functions for the mo-

mentum and buoyancy flux anisotropies, gm and gb, within the

current envelope defined by the streamlines in Fig. 2a and below

0.5-km depth.
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the horizontal structure of the eddy efficiency does not

change. The horizontally averaged profile of adiv (Fig. 7a)

shows that it varies relatively less in the vertical, but is still

subject to a pronounced maximum in the deep Southern

Ocean, which appears to be a robust feature of the eddy

efficiency.

To conclude the results section, probability density

functions for a and adiv are presented in Fig. 7c. The

distributions are similar and centered about positive

mean values of 0.046 and 0.043 for a and adiv, re-

spectively, implying that eddies extract energy from the

mean flow on average, as expected, but inefficiently

given that jaj # 1. In summary, the low efficiency is

mainly the result that horizontal eddy buoyancy fluxes

are weakly anisotropic and tend to align with b contours

in the upper part of the water column where eddies are

most energetic.

5. Discussion

Despite the complex horizontal structure seen in the

eddy anisotropy gb, the probability density function in

Fig. 5 shows that horizontal eddy buoyancy fluxes in the

Antarctic Circumpolar Current mainly occupy a weakly

anisotropic regime, with a volume-averaged gb of 0.15.

A similar value for the anisotropy was also estimated in

Marshall et al. (2012), but for a three-layer quasigeo-

strophic model of a wind-driven gyre. According to

Fig. 3, the anisotropy of eddy buoyancy fluxes is typically

increased in those regions where topography constrains

the mean flow, such as along continental boundaries and

in proximity to larger submerged obstacles. Further

evidence for this behavior is provided by the idealized

channel model experiments presented in Youngs et al.

(2017), who show that both gm and gb are higher in re-

gions where mean flow navigates submerged topogra-

phy. Of particular interest, the analysis presented here

suggests that gb varies weakly in the vertical (Fig. 4a),

which suggests that parameterization of its horizon-

tal structure may prove adequate for use in general

circulation models.

The deformation-based eddy parameterization by

Anstey and Zanna (2017) suggests that eddymomentum

flux anisotropy gm is a function of the normal and shear

FIG. 6. (a),(b) Eddy efficiency a, Eq. (37), at 0.5- and 3.0-km depth using raw eddy buoyancy fluxes. (c),(d) Eddy

efficiency adiv, Eq. (41), at 0.5- and 3.0-km depth using the estimated divergent eddy buoyancy flux. Black lines are

the 5- and 125-Sv streamlines from the barotropic streamfunction.
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strains in the large-scale flow. A related result is estab-

lished by Lilly (2018), who derives a prognostic equation

for the aspect ratio of a fluid ellipse in terms of the strain

magnitude by the background flow. Youngs et al. (2017)

finds that the greatest horizontal shear takes place

when flow is topographically constrained, and hence a

deformation-based view is a possible way to rationalize

the regions of elevated gm in proximity to topography

shown in Fig. 3b. Given the identified commonalities

between gm and gb, it is here anticipated that a similar

relationship exists for eddy buoyancy fluxes, which one

may exploit to form a parameterization for gb.

In contrast to gb, the eddy efficiency a is subject to a

pronounced vertical structure within the Antarctic Cir-

cumpolar Current. Here, a’ 0.01 at 500-m depth but is

almost an order of magnitude larger at ;3-km depth

(Figs. 6 and 7). The higher eddy efficiency at depth is a

consequence of a change in horizontal eddy buoyancy

flux orientation with respect to the large-scale buoyancy

gradient. Specifically, eddy buoyancy fluxes mainly align

with b contours in the upper part of the circumpolar

current whereas the fluxes are predominantly down the

mean buoyancy gradient in the deep Southern Ocean.

Removing dynamically inert rotational fluxes reduces

the variation of a with depth yet substantial vertical

structure remains. The vertical variation in eddy effi-

ciency is similar to that of eddy form stress (Fig. 2c), both

displaying a pronounced peak at middepth, in contrast

to eddy energy which is most abundant at the surface.

This suggests that the vertical structure in a plays an

important role in shaping the vertical stress divergence

and hence the eddy forcing of the mean flow.

Thus, in the context of a future parameterization for

a, an outstanding challenge is to understand what sets

the horizontal orientation of the eddy buoyancy flux fb.

The common assumption is that the horizontal divergent

eddy buoyancy flux is directed down the large-scale

gradient and is related to baroclinic instability (Marshall

and Shutts 1981). This relationship has been intensively

studied in the past (e.g., Roberts and Marshall 2000;

Eden 2006; Eden et al. 2007a,b; Griesel et al. 2009).

Taken together, these works show that the down-

gradient assumption may provide accurate divergent

eddy flux estimates regionally but cannot be expected to

hold globally. Notably, Eden et al. (2007b) demon-

strate that a substantial component of the divergent

eddy buoyancy flux is perpendicular to =hb in a model

of the North Atlantic Current region, similar to the

finding in the present study. In the quasigeostrophic

mean buoyancy budget, the along-contour part of the

eddy buoyancy flux can be interpreted as a horizon-

tal eddy-induced advection of mean buoyancy, which

may be as large as the mean flow advection in certain

regions (Eden et al. 2007b). Hence, divergence of the

along-contour eddy flux component affects the mean

buoyancy budget, with implications for the stratification

FIG. 7. (a) Horizontally averaged profiles of a and adiv. (b) Normalized probability density functions for the angle between =hb and the

horizontal eddy buoyancy flux vector in the depth intervals 0.5–1.0 km (solid lines) and 2.5–3.5 km (dashed lines) using the raw (black) and

divergent (blue) eddy buoyancy flux. A positive angle means that b0u0 leads =hb. (c) Normalized probability density functions for a and

adiv. All panels consider the part of the SouthernOceanwithin the circumpolar current envelope shown by the black streamlines in Fig. 2a.
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and large-scale circulation, but is commonly not ac-

counted for in ocean models without explicit eddy fluxes.

Recent implementations of the geometrically in-

formed eddy transfer coefficient, Eq. (1), in idealized

channelmodels have treateda as a constant. The zonally

averagedmodel study byMak et al. (2017) demonstrates

that eddy saturation is a robust feature independent of

the numerical value of a, whereas the zonal transport is

inversely proportional to the eddy efficiency. In Mak

et al. (2018), using a primitive equation numerical

model together with a parameterization of the verti-

cally integrated eddy energy, a 5 0.04 is deemed ap-

propriate as it results in a channel transport for present

day wind stress magnitude which matches that of an

identical simulation at eddy-permitting grid resolution.

This value is in agreement with the estimated average

of adiv 5 0.043, appropriate to the Antarctic Circum-

polar Current, estimated in the present study (Fig. 7).

Bachman et al. (2017), on the other hand, suggests

a 5 0.2 for fully developed turbulence in a channel

model of the nonlinear Eady problem, and Marshall

et al. (2012) show that a 5 0.62 for the most unstable

mode in the linear Eady model. The eddy efficiency thus

appears to decrease with increasing model complexity,

such as the presence of b effects, but a complete account

of this behavior remains an open question.

A natural extension to the analysis of the present

study is to determine whether the eddy efficiency is a

function solely of the fluid properties and imposed

boundary conditions, or whether external forcing plays a

role as well. This is relevant as it may have implications

for modeling eddy saturation in complex numerical

models, provided the inverse relationship between cir-

cumpolar transport and a (Mak et al. 2017;Marshall et al.

2017). Future work aims to quantify the sensitivity of

eddy form stress, eddy energy, and eddy efficiency to

changes in zonal wind stress in the high-resolutionmodel.

Finally it is worthwhile to consider the robustness of

the presented results to the numerical model’s grid

resolution. The model used in the present study is con-

sidered eddy resolving in the sense that the 1/108 hori-
zontal grid marginally resolves the first baroclinic

Rossby radius of deformation; at 608S, the deformation

radius is approximately 10 km (Chelton et al. 1998)

whereas the effective grid resolution is ;5 km. How-

ever, one may call into question whether the reported

vertical structure in gb and a is sensitive to the model’s

ability to resolve the baroclinic modal structure associ-

ated with the resolved horizontal motions. Stewart et al.

(2017) show that this ability depends on the number of

vertical levels and their positioning, and estimate that it

requires at least 50 vertical levels to resolve the first

baroclinic modal structure and additionally 25 levels for

each subsequent mode. With 62 vertical levels, the

model used in the present study presumably resolves the

first baroclinic modal structure well, but cannot be ex-

pected to adequately resolve higher-order modes in

those regions where the horizontal grid resolution permits

such dynamics, for example, on shallow plateaus. The

Antarctic Circumpolar Current is commonly assumed to

be dominated by the first baroclinic mode, and hence it is

not expected that resolving higher-order modes will

change the vertical structure in gb and a significantly. A

sensitivity test of eddy geometry to vertical model reso-

lution is considered additional future work.

6. Summary

This study has exploited the geometric properties of

the Eliassen–Palm flux tensor to reformulate eddy form

stress in terms of eddy energy and a set of bounded

geometric parameters related to the anisotropy, energy

partitioning, and orientation of horizontal eddy buoy-

ancy fluxes. A primary goal of the present study has been

to show that the eddy form stress geometry describes an

ellipse in the vertical plane which is able to serve as a

diagnostic tool to determine vertical momentum trans-

fer and exchanges of energy between mean flow and

eddies. A particular focus has been the eddy efficiency

a, a combination of the geometric ellipse parameters,

bounded by unity in magnitude. The eddy efficiency ap-

pears in the eddy transfer coefficient appropriate to the

Gent–McWilliams closure for mesoscale eddies when the

geometric decomposition is used to close for the eddy

buoyancy flux. Provided that it is possible to parameterize

a and the eddy energy, this geometrically informed transfer

coefficient can be used to close for eddy fluxes in coarse

resolution ocean models in an energetically consistent

way. The present study has taken initial steps toward

the parameterization of a.

The geometry of SouthernOcean eddy form stress has

been diagnosed in a 1/108 eddy-resolving general circu-

lation model and the following aspects of the eddy effi-

ciency has been identified:

d The eddy efficiency a averages to a low but positive

value of 0.043 within the Antarctic Circumpolar

Current. Provided the theoretical bound on a, jaj # 1,

this implies that eddies extract energy from the mean

flow inefficiently.
d The overall low eddy efficiency is mainly the result of

weakly anisotropic eddy buoyancy fluxes. The eddy

efficiency is also subject to a vertical structure with a

pronounced maximum at ;3-km depth, which is the

result that eddy fluxes are directed most down the

mean buoyancy gradient in the deep ocean.
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d The vertical structure in a compensates the surface-

intensified eddy energy and results in eddy form stress

that is greatest at middepth. This has implication for

the vertical stress divergence and hence eddy forcing

of the Antarctic Circumpolar Current.
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