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Abstract. A general circulation ocean model is translated
from Fortran to Python. Its code structure is optimized to
exploit available Python utilities, remove simulation bottle-
necks, and comply with modern best practices. Furthermore,
support for Bohrium is added, a framework that provides a
just-in-time compiler for array operations and that supports
parallel execution on both CPU and GPU targets.

For applications containing more than a million grid ele-
ments, such as a typical 1° x 1° horizontal resolution global
ocean model, Veros is approximately half as fast as the MPI-
parallelized Fortran base code on 24 CPUs and as fast as
the Fortran reference when running on a high-end GPU.
By replacing the original conjugate gradient stream function
solver with a solver from the pyAMG Python package, this
particular subroutine outperforms the corresponding Fortran
version by up to 1 order of magnitude.

The study is concluded with a simple application in which
the North Atlantic wave response to a Southern Ocean wind
perturbation is investigated. It is found that even in a realis-
tic setting the phase speeds of boundary waves matched the
expectations based on theory and idealized models.

1 Introduction

Numerical simulations have been used to advance our un-
derstanding of the ocean circulation for more than 50 years
now (e.g., Bryan, 2006), and in particular for regimes that
are difficult to treat analytically, they have become irreplace-
able. However, numerical representations of the ocean have
their own pitfalls, and it is paramount to build trust in the
numerical representation of each and every process that is
thought to be relevant for the ocean circulation (e.g., Hsieh

et al., 1983). The last 20 years have seen a massive increase
in computing resources available to oceanographers, in con-
trast to human resources, which appear to be fixed. Arguably,
this leads to a shift from process studies to analysis of cli-
mate model output (or from “Little Science” to “Big Sci-
ence”’; Price de Solla, 1963). This is not necessarily a bad
development; it may simply be an indication that the field has
matured. However, there are still basic questions about ocean
dynamics that remain unanswered (e.g., Marshall and John-
son, 2013), and to tackle these questions, the scientific com-
munity requires flexible tools that are approachable, power-
ful, and easy to adapt. We therefore decided to build Veros
(the versatile ocean simulator).

The ocean interior is mostly adiabatic and has a long mem-
ory, easily exceeding 1000 years (e.g., Gebbie and Huybers,
2006). This requires long integration times for numerical
models; experiments can take several months in real time to
complete. Thus, ocean models are typically written to opti-
mize the use of computing rather than human resources us-
ing low-level programming languages such as Fortran or C.
These languages’ core design, lack of abstraction, and es-
tablished coding patterns often make it a daunting challenge
to, for example, keep track of indices or global variables.
Even for experienced scientists this is more than just a nui-
sance. As the model code becomes increasingly complex, it
jeopardizes a core principle of science: reproducibility. Espe-
cially inexperienced programmers cannot ascertain beyond
all doubt if the impact of a recently implemented physical
component is caused by new physics or simply a bug.

High-level programming languages like Python, MAT-
LAB, Scala, or Julia, on the other hand, are usually designed
with the explicit goal of improving code structure and thus
readability. While this in itself cannot eliminate coding mis-
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takes, a more concise, better structured code makes it easier
to spot and avoid bugs altogether. In the case of Python, ad-
ditional abstraction, a powerful standard library, and its im-
mense popularity in the scientific community!, which has in
turn created a wide range of learning resources and a large
third-party package ecosystem, lower the bar of entry for in-
experienced programmers.

In fact, this is one of our main motivations behind develop-
ing Veros: in our experience, a substantial amount of the du-
ration of MSc and PhD projects is devoted to understanding,
writing, and debugging legacy Fortran code. This leads to
frustration and anxieties, even for lecturers. With Veros, we
anticipate that students can translate their physical insights
rapidly into numerical experiments, thereby maintaining the
high level of enthusiasm with which they entered the field. At
the same time, it allows more seasoned researchers to quickly
spin up experiments that dramatically change the ocean dy-
namics, which would be impractical or infeasible using tra-
ditional ocean models (for one such application, see Sect. 4).

The price to pay for these advantages is often a sig-
nificantly reduced integration speed due to less aggressive
compiler optimizations, additional overhead, and lack of di-
rect memory access. Thus, while there are some modeling
projects that implement a Python front end (CliMT, Monteiro
and Caballero, 2016; OOFg¢, Marta-Almeida et al., 2011;
PyOM, Eden, 2016), all of those projects rely on a Fortran
back end for performance reasons. However, in Veros, the
performance impact of using Python turns out to be much
less severe than expected, as all expensive computations are
deferred to a well-performing numerical back end (NumPy or
Bohrium; see Sect. 3.2 for performance comparisons), mak-
ing Veros the (to our knowledge) first global-scale ocean sim-
ulator in pure Python.

The next section describes the challenges overcome during
the translation and resulting changes in the code structure.
Section 3 presents model validation and benchmarks, and
Sect. 4 evaluates the properties of coastally trapped waves
in Veros.

2 Implementation

At its numerical core, the present version of Veros (v0.1)
is a direct translation of pyOM2 (v2.1.0), a primitive equa-
tion finite-difference ocean model with a special emphasis on
energetic consistency (Eden and Olbers, 2014; Eden, 2016).
PyOM?2 consists of a back end written in Fortran 90 and front
ends for both Fortran and Python (via f2py, Peterson, 2009).
Most of the core features of pyOM2 are available in Veros,
too; they include the following:

IThere are many attempts to rank programming languages by
popularity, and Python is usually placed in the top 10 of such
rankings; see, e.g., [IEEE Spectrum (2017), Stack Overflow (2017),
TIOBE Group (2017), or PYPL (2017).
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— a staggered, three-dimensional numerical grid
(Arakawa C grid, after Arakawa and Lamb, 1977)
discretizing the primitive equations in either Cartesian
or pseudo-spherical coordinates (e.g., Olbers et al.,
2012) (the grid is staggered in all dimensions, placing
quantities on so-called T, U, V, W, and ¢ cells);

— free-slip boundary conditions for momentum and no-
normal-flow boundary conditions for tracers;

— several different friction, advection, and diffusion
schemes to choose from, such as harmonic or bihar-
monic lateral friction, linear or quadratic bottom fric-
tion, explicit or implicit vertical mixing, and central dif-
ference or Superbee flux-limiting advection schemes;

either the full 48-term TEOS equation of state (Mc-
Dougall and Barker, 2011) or various linear and non-
linear model equations from Vallis (2006);

isoneutral mixing of tracers following Griffies (1998);

closures for mesoscale eddies (after Gent et al., 1995;
Eden and Greatbatch, 2008), turbulence (Gaspar et al.,
1990), and internal wave breaking (IDEMIX; Olbers
and Eden, 2013); and

support for writing output in the widely used NetCDF4
binary format (Rew and Davis, 1990) and writing restart
data to pick up from a previous integration.

Veros, like pyOM?2, aims to support a wide range of prob-
lem sizes and architectures. It is meant to be usable on any-
thing between a personal laptop and a computing cluster,
which calls for a flexible design and which makes a dynam-
ical programming language like Python a great fit for this
task. Unlike pyOM2, which explicitly decomposes and dis-
tributes the model domain across multiple processes via MPI
(message passing interface; e.g., Gropp et al., 1999), Veros
is not parallelized directly. Instead, all hardware-level opti-
mizations are deferred to a numerical back end, currently ei-
ther NumPy (Walt et al., 2011) or Bohrium (Kristensen et al.,
2013). While NumPy is commonly used, easy to install, and
highly compatible, Bohrium provides a powerful runtime en-
vironment that handles high-performance array operations
on parallel architectures.

The following section describes which procedures we used
when translating the pyOM2 Fortran code to a first, naive
Python implementation. Section 2.2 then outlines the nec-
essary steps to obtain a vectorized NumPy implementation
that is well-performing and idiomatic. Section 2.3 gives an
overview of some additional features that we implemented
in Veros, and Sect. 2.4 finally gives an introduction to the
internal workings of Bohrium.
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2.1 From Fortran to naive Python

When using NumPy, array operations in Fortran can be trans-
lated to Python with relative ease, as long as a couple of pit-
falls are avoided (such as 0-based indexing in Python vs. ar-
bitrary index ranges in Fortran). As an example, consider the
following Fortran code from pyOM2.

do j=js_pe, je_pe
do i=is_pe-1,ie_pe
flux_east (i, j,:) = &
0.25%x(u(i, j, :,tau)+u(i+l, j, :,tau)) &
*(utr(i+1l,j, :)+utr(i, j, :))
enddo
enddo

Here, is_pe, js_pe, ie_pe, je_pe denote the
start and end indices of the current process. Translating this
snippet verbatim to Python, the resulting code looks very
similar.

for j in range(js_pe, je_pe):
for i in range(is_pe-1,ie_pe):
flux_east[i, j,:] = (
0.25« (uli, j,:,tau]
+uli+l, J, :,taul)
*(utr[i+1l,j, :]1+utrli, J, :1)
)

In fact, we transformed large parts of the Fortran code base
into valid Python by replacing all built-in Fortran constructs
(such as 1 f statements and do loops) with the corresponding
Python syntax. We automated much of the initial translation
process through simple tools like regular expressions to pre-
parse the Fortran code base, e.g., the regular expression

do (\w)=((\wl [\+\=1)+, O\w]| [\+\=1)+)
would find all Fortran do loops, while the expression
for \1 in range (\2):

replaces them with the equivalent for loops in Python?.
This semiautomatic preprocessing allowed for a first working
Python implementation of the pyOM2 code base after only a
few weeks of coding that could be used as a basis to iterate
towards a more performant (and idiomatic) implementation.

2.2 Vectorization

After obtaining a first working translation of the pyOM?2
code, we refactored and optimized all routines for perfor-
mance and readability, while ensuring consistency by con-
tinuously monitoring results. This mostly involves using vec-
tor operations instead of explicit Fortran-style loops over in-
dices (that typically carry a substantial overhead in high-level
programming languages). Since most of the operations in a
finite-difference discretization consist of basic array arith-
metic, a large fraction of the core routines were trivial to
vectorize, such as the above example, which becomes

2For example, through the GNU command line tool sed, which
is readily available on most Linux distributions.
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flux_east[1:-2,2:-2,:]1 = (
0.25%(ul[l:-2,2:-2, :,tau]
+ul2:-1,2:-2,:,taul)
*(utr[2:-1,2:-2, :]+utr(1l:-2,2:-2,:1)

Note that we replaced all explicit indices (i, j) with basic
slices (index ranges). The first and last two elements of the
horizontal dimensions are ghost cells, which makes it possi-
ble to shift arrays by up to two cells in each dimension with-
out introducing additional padding. Since all parallelism is
handled in the back end, there is no need to retain the spe-
cial indices is_pe, Jjs_pe, ie_pe, Jje_pe, and we
replaced them with hard-coded values (2, 2, —2, and —2, re-
spectively).

Apart from those trivially vectorizable loops, there were
several cases that required special treatment.

— Boolean masks are either cast to floating point arrays
and multiplied to the to-be-masked array or applied us-
ing NumPy’s where function. We decided to avoid
“fancy indexing” due to poor parallel performance.

— Operations in which, e.g., a three-dimensional array is
to be multiplied with a two-dimensional array slice-by-
slice can be written concisely thanks to NumPy’s pow-
erful array broadcasting functionalities (e.g., by using
newaxis as an index).

— We vectorized loops representing (cumulative) sums or
products using NumPy’s sum (cumsum) and prod
(cumprod) functions, respectively.

— Oftentimes, recursive loops can be reformulated analyt-
ically into a form that can be vectorized. A simple ex-
ample is
X =2x — X, (1)
which arises when calculating the positions x’ of the T
grid cells and is equivalent to

X = (=1 (x5+2(—1)"2x,.”), )
i=0

which can easily be expressed through a cumulative sum
operation (cumsum).

On top of this, there were two loops in the entire
pyOM2 code base that were only partially vectorizable us-
ing NumPy’s current tool set® (such that an explicit loop

30ne that arises when calculating mixing lengths as in Gaspar
et al. (1990) that involves updating values dynamically based on
the value of the previous cell, and one inside the overturning diag-
nostic for which a vectorization would require temporarily storing
2Nx Ny sz elements in memory (where Ny, Ny, and N, denote the
number of grid elements in the x, y, and z direction, respectively).
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over one axis remains). Since they did not have a measurable
impact on overall performance, they were left in this semi-
vectorized form; however, it is certainly possible that those
loops (or similar future code) could become a performance
bottleneck on certain architectures. In this case, an exten-
sion system could be added to Veros in which such instruc-
tions are implemented using a low-level API and compiled
upon installing Veros. Conveniently, Bohrium offers zero-
copy interoperability for this use case via Cython (Behnel
et al., 2011) on CPUs and PyOpenCL and PyCUDA (Klock-
ner et al., 2012) on GPUs.

2.3 Further modifications

Since there is an active community of researchers develop-
ing Python packages, many sophisticated tools are just one
import statement away, and the dynamic nature of Python
allows for some elegant implementations that would be infea-
sible or outright impossible in Fortran 90. Moving the entire
code base to Python thus allowed us to implement a num-
ber of modifications that comply with modern best practices
without too much effort, some of which are described in the
upcoming sections.

2.3.1 Dynamic back-end handling

Through a simple function decorator, a pointer to the back
end currently used for computations is automatically injected
as a variable np into each numerical routine. This allows
for using the same code for every back end, provided their
interface is compatible to NumPy’s. Currently, the only in-
cluded back ends are NumPy and Bohrium, but in principle,
one could build their own NumPy-compatible back end, e.g.,
by replacing some critical functions with a better-performing
implementation.

Since Veros is largely agnostic of the back end that is be-
ing used for vector operations, Veros code is especially easy
to write. Everything concerning, e.g., the parallelization of
array operations is handled by the back end, so developers
can focus on writing clear, readable code.

2.3.2 Generic stream function solvers

The two-dimensional barotropic stream function W of the
vertically integrated flow is calculated in every iteration of
the solver to account for effects of the surface pressure. It can
be obtained by solving a two-dimensional Poisson equation
of the form

h(x,y)

AV = ¢(x,y,2)dz, 3
0

with coordinates x,y,z, total water depth h, vorticity ¢,

and Laplacian A. The discrete version of this Laplacian in
pseudo-spherical coordinates as solved by pyOM?2 and Veros
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reads (Eden, 2014a)

Wit1,j — Vi)

cos? (y}?)Afo Ax}

i+1,j
Wij—Wi-1,

 hY jcos(y) Ax! Ax!

t
COS()’/H) ‘I"i,j+l — \I’i,j
cos(y) hi{j+lAy;+lAy’;
cos(Y) W — Wy i

cos(yy) hy; Ay;. AyY ’

“4)

with

— the discrete stream function W; ; at the ¢ cell with in-
dices (i, j),

— latitude x and longitude y, each defined at T cells (x!

i,j?
yl.’ﬁj) and U/V cells (x;fj, y;fj), and
— grid spacings of T (Ax; ;, Ay] ;) and U/V cells (Ax/',
A yff j) in each horizontal direction.

By reordering all discrete quantities x; ; to a one-
dimensional object x;4y; (with i € [1, N], j € [1, M], and
N, M € N) and writing them as column vectors x, Eq. (3)
results in the equation

AV =Z, ®)

where Z represents the right-hand side of Eq. (3), and A is
a banded matrix with nonzero values on five or seven diag-
onals* that reduces to the classical discrete Poisson problem
for equidistant Cartesian coordinates, but is generally non-
symmetric.

In pyOM2, the system Eq. (5) is solved through a conju-
gate gradient solver with a Jacobi preconditioner in a matrix-
free formulation taken from the Modular Ocean Model
(MOM; Pacanowski et al., 1991). Since both the matrix-free
formulation and the fixed preconditioner lead to a quite spe-
cific solver routine, our first step was to transform this into
a generic problem by incorporating all boundary conditions
into the actual Poisson matrix and to use scipy.sparse
from the SciPy library (Jones et al., 2001) to store the result-
ing banded matrix. At this stage, any sufficiently powerful
sparse linear algebra library can be used to solve the sys-
tem. This is especially important for Veros as it is targeting a
wide range of architectures: a small, idealized model running
with NumPy does not require a sophisticated algorithm (and
can stick with, e.g., the readily available solvers provided
by scipy.sparse.linalg),intermediate problem sizes
might require a strong, sequential algorithm, and for large se-
tups, highly parallel solvers from a high-performance library

4Two additional diagonals are introduced when using cyclic
boundary conditions to enforce Wy =Y, j Vjel0,M].
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are usually most adequate (e.g., PETSc, Balay et al., 1997,
on CPUs; e.g., CUSP, Dalton et al., 2014, on GPUs).

In fact, substantial speedups could be achieved by us-
ing an AMG (algebraic multigrid; Vanék et al., 1996) pre-
conditioner provided by the Python package pyAMG (Bell
et al., 2013). As shown in the performance comparisons in
Sect. 3.2.2, our AMG-based stream function solver is up
to 20 times faster than pyOM2’s Fortran equivalent. Even
though the AMG algorithms are mathematically highly so-
phisticated, pyAMG is simple to install (e.g., via the PyPI
package manager pip), and implementing the precondi-
tioner into Veros required merely a few lines of code, mak-
ing this process a prime example for the huge benefits one
can expect from developing in a programming language as
popular in the scientific community as Python. And thanks
to the modular structure of the new Poisson solver routines,
it will be easy to switch (possibly dynamically) to even more
powerful libraries as it becomes necessary.

2.3.3 Multi-threaded I-O with compression

In geophysical models, writing model output or restart data
to disk often comes with its own challenges. When output
is written frequently, significant amounts of CPU time may
be wasted waiting for disk operations to finish. Additionally,
data sets tend to grow massive in terms of file size, usually
ranging from gigabytes to petabytes. To address this, we took
the following measures in Veros.

— Since I-O operations usually block the current thread
from continuing while barely consuming any CPU re-
sources, all disk output is written in a separate thread
(using Python’s threading module). This enables
computations to continue without waiting for flushes to
disk to finish. To prevent race conditions, all output data
are copied in-memory to the output thread before con-
tinuing.

— By default, Veros makes use of the lossless compres-
sion abilities built into NetCDF4 and HDFS5. Simply by
passing the desired compression level as a flag to the
respective library, the resulting file sizes were reduced
by about two-thirds, with little computational overhead.
Since the zlib (NetCDF4) and gzip (HDF5) compres-
sion is built into the respective format specification,
most standard post-processing tools are able to read and
decompress data on the fly, without any explicit user in-
teraction.

2.3.4 Back-end-specific tridiagonal matrix solvers
Many dissipation schemes contain implicit contribution
terms, which usually requires the solution of some linear sys-

tem Ax = b with a tridiagonal matrix A for every horizontal
grid point (e.g., Gaspar et al., 1990; Olbers and Eden, 2013).
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In pyOM2, those systems are solved using a naive Thomas
algorithm (simplified Gaussian elimination for tridiagonal
systems). This algorithm cannot be fully vectorized with
NumPy’s tool kit, and explicit iteration turned out to be a
major bottleneck for simulations. One possible solution was
to rewrite all tridiagonal systems for each horizontal grid
cell into one large, padded tridiagonal system that could be
solved in a single pass. This proved to be feasible for NumPy,
since it exposes bindings to LAPACK’s dgt sv solver (An-
derson et al., 1999), but performance was not sufficient when
using Bohrium. We therefore made use of Bohrium’s interop-
erability functionalities, which allowed us to implement the
Thomas algorithm directly in the OpenCL language for high-
performance computing on GPUs via PyOpenCL (Klockner
et al., 2012); on CPUs, Bohrium provides a parallelized C
implementation of the Thomas algorithm as an “extension
method”.

When encountering such a tridiagonal system, Veros auto-
matically chooses the best available algorithm for the current
runtime system (back end and hardware target) without man-
ual user interaction. This way, overall performance increased
substantially to the levels reported in Sect. 3.2.

2.3.5 Modular diagnostic interface

All model diagnostics, such as snapshot output, vertical
(overturning) stream functions, energy flux tracking, and
temporal mean output, are implemented as subclasses of a
diagnostics base class, and instances of these subclasses are
added to a Veros instance dynamically. This makes it possi-
ble to add, remove, and modify diagnostics on the fly.

def set_diagnostics(self):
diag = veros.diagnostics.Average ()
diag.name = "annual-mean"
diag.output_frequency = 360 x 86400
self.diagnostics|["annual-mean"] = diag

This code creates a new averaging diagnostic that out-
puts annual means and can be repeated, e.g., for also writing
monthly means.

Besides enforcing a common interface, creating all diag-
nostics as subclass of a “virtual” base class also has the ben-
efit that common operations like data output are defined as
methods of said base class, providing a complete and easy-
to-use tool kit to implement additional diagnostics.

2.3.6 Metadata handling

About 2000 of the approximately 11 000 SLOC (source lines
of code) in pyOM2 were dedicated to specifying variable
metadata (often multiple times) for each output variable,
leaving little flexibility to add additional variables and risk-
ing inconsistencies. In Veros, all variable metadata are con-
tained in a single, central dictionary; subroutines may then
look up metadata from this dictionary on demand (e.g., when
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allocating arrays or preparing output for a diagnostic). Addi-
tionally, a “cheat sheet” containing a description of all model
variables is compiled automatically and added to the online
user manual.

This approach maximizes maintainability by eliminating
inconsistencies and allows users to add custom variables that
are treated no differently from the ones already built in.

2.3.7 Quality assurance

To ensure consistency with pyOM2, we developed a testing
suite that runs automatically for each commit to the master
branch of the Veros repository. The testing suite is comprised
of both unit tests and system tests.

Unit tests are implemented for each numerical core routine;
they call a single routine with random data and make
sure that all output arrays match between Veros and
pyOM?2 within a certain absolute tolerance chosen by
the author of the test (usually 1078 or 10_7).

System tests integrate entire model setups for a small num-
ber of time steps and compare the results to pyOM2.

These automated tests allow developers to detect break-
ing changes early and ensure consistency for all numerical
routines and core features apart from deliberately breaking
changes. To achieve strict compliance with pyOM2 during
testing, we introduced a compatibility mode to Veros that
forces all subroutines to comply with their pyOM2 counter-
part, even if the original implementation contains errors that
we corrected when porting them to Veros.

Using this compatibility mode, the results of most of the
Veros core routines match those of pyOM2 within a global,
absolute tolerance of 10’8, while in a few cases an accuracy
of just 1077 is achieved (presumably due to a higher sen-
sitivity to round-off errors of certain products). The longer-
running system tests achieve global accuracies between 1076
and 10~ for all model variables. All arrays are normalized to
unit scale by dividing by their global maximum before com-
paring.

2.4 About Bohrium

Since Veros relies heavily on the capabilities of Bohrium for
large problems on parallel architectures, this section gives a
short introduction to the underlying concepts and implemen-
tation of Bohrium.

Bohrium is a software framework for efficiently mapping
array operations from a range of front-end languages (cur-
rently C, C++, and Python) to various hardware architec-
tures, including multi-core CPUs and GPGPUs (Kristensen
et al., 2013). The components of Bohrium are outlined in
Larsen et al. (2016). All array operations called by the front-
end programming languages are passed to the respective
bridge, which translates all instructions into Bohrium byte-
code. After applying several bytecode optimizations, it is

Geosci. Model Dev., 11, 3299-3312, 2018

D. Hiifner et al.: Veros v0.1

compiled into numerical kernels that are then executed at the
back end. Parallelization is handled by so-called vector en-
gines, currently using OpenMP (Dagum and Menon, 1998)
on CPUs and either OpenCL (Stone et al., 2010) or CUDA
(Nickolls et al., 2008) on GPUs.

Since Bohrium uses lazy evaluation, successive operations
on the same array views can be optimized substantially. On
the one hand, operations can be reordered or simplified ana-
Iytically to reduce total operation counts. On the other hand,
a sophisticated fusion algorithm is applied, which “is a pro-
gram transformation that combines (fuses) multiple array op-
erations into a kernel of operations. When it is applicable, the
technique can drastically improve cache utilization through
temporal data locality and enables other program transfor-
mations, such as streaming and array contraction (Gao et al.,
1993)” (Larsen et al., 2016). In fact, this fusion algorithm
alone may increase performance significantly in many appli-
cations (Kristensen et al., 2016).

Bohrium’s Python bridge is designed to be a drop-
in replacement for NumPy, supplying a multi-array
class bohrium.ndarray that derives from NumPy’s
numpy .ndarray. All array metadata are handled by the
original NumPy, and only actual computations are passed to
Bohrium, e.g., when calling one of NumPy’s “ufuncs” (uni-
versal functions). This way, most of NumPy’s functionality
is readily available in Bohrium®, which allows developers
to use Bohrium as a high-performance numerical back end
while writing hardware-agnostic code (and leaving all opti-
mizations to Bohrium). These properties make Bohrium an
ideal fit for Veros.

3 Verification and performance
3.1 Consistency check

Since all Veros core routines are direct translations of their
pyOM2 counterparts, an obvious consistency check is to
compare the output of both models. On a small scale, this is
already done in the Veros testing suite, which ensures consis-
tency for most numerical routines in isolation and for a few
time steps of the model as a whole (see Sect. 2.3.7). However,
real-world simulations often run for anything between thou-
sands and millions of iterations, possibly allowing numerical
roundoff or minor coding errors to accumulate to significant
deviations.

In order to check whether this is a concern in our case,
we integrated a global model setup with coarse resolution
(approx. 4° x 4°, 90 x 40 x 15 grid elements) for a total of
50 model years (18 000 iterations) using Veros with NumPy,
Veros with Bohrium, and pyOM?2. Neither the long-term av-
erage, zonally averaged temperature nor long-term average
barotropic stream function show a physically significant de-

5 Except NumPy functions implemented in C, which have to be
re-implemented inside Bohrium to be available.
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viation between either of the simulations. Maximum rela-
tive errors amount to about 10~* (Veros, between NumPy
and Bohrium) and 1076 (between Veros with NumPy and
pyOM2 when using the compatibility mode).

3.2 Benchmarks

As high-performance computing resources are still expensive
and slow model execution is detrimental to a researcher’s
workflow, performance is of course a critical measure for any
geophysical model (and usually the biggest counterargument
against using high-level programming languages in model-
ing). It is thus essential to try and measure the performance
of Veros through benchmarking, and since we are in the lucky
position to have a well-performing reference implementation
available, an obvious test is to compare the Veros throughput
to that of pyOM2.

To this end, we developed a benchmarking suite that is
part of the Veros code repository so that benchmarks can eas-
ily be executed and verified on various architectures. These
benchmarks consist of either complete model runs or single
subroutines that are executed with varying problem sizes for
each of the available numerical back ends (NumPy, Bohrium,
and pyOM2’s Fortran library with and without MPI sup-
port).°

Since we do not (yet) reach scales on which memory con-
sumption, rather than compute power, becomes a limiting
factor, we did not study the memory demands in Veros com-
pared to those of pyOM2 in detail. However, especially when
using Bohrium, the memory demands of Veros seem to be
similar (within 10 % of each other), as Bohrium’s JIT com-
piler is often able to eliminate temporary array allocations.
All tested model configurations could thus comfortably run
within the same memory bounds for all back ends.

The benchmarks were executed on two different architec-
tures: a typical desktop PC and a cluster node, marked as
architecture I and II, respectively (Table 1). Note that since
Bohrium does not yet support distributed memory architec-
tures, comparisons have to stay confined to a single computa-
tional node. Bohrium v0.8.9 was compiled from source with
GCC and BUILD_TYPE=Release flags, and pyOM2 with
GPFortran using —03 optimization flags and OpenMPI sup-
port.

3.2.1 Overall performance

In order to benchmark the overall performance of Veros
against that of pyOM2, an idealized model setup consisting
of an enclosed basin representing the North Atlantic with a
zonal channel in the south is integrated for a fixed number
of 100 iterations, but with varying problem sizes, for each
numerical back end.

6Since pyOM?2 offers Python bindings through f2py for all of its
core routines, it can actually be used as a Veros back end. This way,
we can ensure that all components solve the exact same problem.
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The results (Fig. 1) show the following.

— For large problems with a number of total elements ex-
ceeding 107 (which is about the number of elements in
a global setup with 1° x 1° horizontal resolution), the
Bohrium back end is at its peak efficiency and about
2.3 times slower than parallel pyOM2 regardless of
the number of CPU cores. Running on architecture II’s
high-end GPU, the Veros throughput is comparable to
that of pyOM2 running on 24 CPUs.

— The Veros NumPy back end is about 3 times slower
than pyOM2 running serially, largely independent of the
problem size.

— For small problems containing less than 2 x 10* ele-
ments, parallelism is inefficient, so NumPy performs
relatively well.

— Using Bohrium carries a high overhead, and it only sur-
passes NumPy in terms of speed for problems larger
than about 10° elements.

— Veros is least efficient for intermediate problem sizes of
about 107 elements (up to 50 times slower than parallel
pyOM2 on 24 CPUs).

We believe that these performance metrics show that Veros
is indeed usable as the versatile ocean simulator it is trying
to be. Even students without much HPC experience can use
Veros to run small- to intermediate-sized, idealized models
through NumPy and seamlessly switch to Bohrium later on
to run realistic, full-size setups while experiencing perfor-
mance comparable to traditional ocean models. And given
that Bohrium is still undergoing heavy development, we ex-
pect that many of the current limitations will be alleviated
in future versions, causing Veros to perform even better than
today.

3.2.2 Stream function solver

To illustrate the speedups that could be achieved for the
stream function solver alone (Sect. 2.3), we conducted sim-
ilar benchmarks calling only the corresponding solvers in
pyOM2 and Veros using pseudo-spherical coordinates, uni-
form grid spacings, cyclic boundary conditions, and a solver
tolerance of 10~ 12 for a total of 100 times with different, ran-
dom right-hand-side vectors.

The results show that the Veros stream function solver
easily beats pyOM2’s for most relevant problem sizes
(Fig. 2), even though the underlying BiCGstab solver
scipy.sparse.linalg.bicgstab is not parallelized
(apart from internal calls to the multi-threaded OpenBLAS li-
brary for matrix—vector products). The credit for this speedup
belongs entirely to pyAMG, as the AMG preconditioner
causes much faster convergence of the iterative solver.

When running on an even higher number (possibly hun-
dreds) of CPU cores, pyOM2’s parallel conjugate gradient

Geosci. Model Dev., 11, 3299-3312, 2018
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Table 1. Specifications of the two benchmark architectures.
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Desktop PC (I)

Cluster node (II)

CPU Intel® Core™ i7 6700 @ 3.40 GHz (four physical and eight

logical cores)

RAM 16 GB DDR4
Storage  M.2 SSD @ 500 MBs ™! read—write performance
GPU -

Software GNU compiler toolchain 7.2.0, Python 2.7, NumPy 1.13.3,

stack Bohrium 8.9.0

2 x Intel® Xeon® E5-2650 v4 @ 2.20 GHz (24 physical and
48 logical cores)

512GB DDR4
LUSTRE filesystem @ 128 MBs~! read-write performance
Nvidia Tesla P100 (16 GB HBM2 memory)

GNU compiler toolchain 5.4.0, CUDA 9.0, Python 2.7,
NumPy 1.13.3, Bohrium 8.9.0

Full model benchmark
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Figure 1. In terms of overall performance, Veros using Bohrium
(Bh) is slower than pyOM by a factor of about 1.3 to 2.3 for large
problems, depending on the hardware architecture (I and II; see Ta-
ble 1). Solid lines are line fits, suggesting a linear scaling with con-
stant overheads for all components.

solver can be expected to eventually outperform the Veros
serial AMG solver. However, thanks to the new, generalized
structure of the stream function routines (Sect. 2.3), the SciPy
BiCGstab solver could easily be switched with a different
parallel library implementation.
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Figure 2. Thanks to pyAMG’s AMG preconditioner, the Veros
stream function solver is between 2 (24 CPUs, II) and 11 (4 CPUs,
I) times faster than pyOM?2’s parallel conjugate gradient solver for
large problem sizes.

4 Application: Kelvin wave propagation

In the current literature we see a gap between theory and very
idealized models on the one hand, and primitive equation
models with realistic forcing and topography on the other
hand. Here, we will apply Veros to an aspect of the Southern
Ocean (SO) hypothesis by Toggweiler and Samuels (1995).
They propose that a strengthening of SO winds leads to a
strengthening of the Atlantic Meridional Overturning Circu-
lation (AMOC). Their main argument is based on geostrophy
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and mass conservation, and it states that mass pushed north
by the Atlantic Ocean Ekman layer has to be replaced by up-
welled water from depths below the Drake Passage sill. This
basic idea is largely accepted, and much of the discussion in
the literature is now quantitative, i.e., how much of the wind-
driven Eulerian transport in the SO is compensated for by
mesoscale eddy-driven transport of opposite sign (Munday
et al., 2013). However, Jochum and Eden (2015) show that
in at least one general circulation model (GCM) the AMOC
does not respond to changes in SO winds. Thus, testing the
Southern Ocean hypothesis requires us not only to test if
ocean models represent mesoscale eddies appropriately, but
also if the propagation of SO anomalies into the Northern
Hemisphere is simulated realistically.

The main propagation mechanism is planetary waves;
changes to SO Ekman divergence and convergence set up
buoyancy anomalies that are radiated as Kelvin and Rossby
waves and set up changes to the global abyssal circulation
(McDermott, 1996). Because they are so important there is a
large literature devoted to the fidelity of planetary waves in
ocean models. For example, Hsieh et al. (1983) and Huang
et al. (2000) show that even coarse-resolution ocean mod-
els can support meridionally propagating waves similar to
Kelvin waves, and Marshall and Johnson (2013) quantify ex-
actly how numerical details will affect wave propagation. We
wish to bridge the gap between these idealized studies and
GCMs by investigating the dependence of Kelvin wave phase
speed on resolution in Veros. While this is in principle a mi-
nor exercise suitable for undergraduate students, the presence
of internal variability and irregular coastlines makes this a
major challenge (Getzlaff et al., 2005).

To remove many of these effects, we decided to replace the
eastern boundary of the Atlantic with a straight meridional
line. This enables a direct comparison with theory since one
does not have to worry about the flow’s effective path length
or artificial viscosity introduced by the staggered grid repre-
sentation of curved coastlines. Veros allows even nonexpert
users to make profound modifications to the default model
setups and simplifies this problem in several ways (the exact
process of modifying the coastline is outlined in the upcom-
ing section).

— All post-processing tools from the scientific Python
ecosystem that many users are already familiar with are
readily available in Veros setups. It is thus possible to
use scipy.interpolate’s routines, for example,
to interpolate the initial condition to the model grid sim-
ply by importing them instead of having to reinvent the
wheel.

— Veros setups (as inherited from pyOM2) allow the user
to modify all internal arrays, giving users the freedom
to make invasive changes if necessary.

— Veros users do not have to care about an explicit domain
decomposition or communication across processors, as
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Figure 3. Idealized, binary geometry mask for the Kelvin wave
study.

all parallelism is handled by Bohrium. All model vari-
ables look and feel like a single array.

Accordingly, we use this setup for 3-month BSc projects.
4.1 Modified geometry with flexible resolution

Modifying the geometry of a realistic geophysical model is
no trivial task, especially when allowing for a flexible num-
ber of grid elements. Any solution that converts cells from
water to land or vice versa has to infer reasonable values
for initial conditions and external forcing at these cells since,
e.g., atmospheric conditions tend to differ fundamentally be-
tween water and land.

To automate this process, we created a downsampled ver-
sion of the ETOPO1 global relief model (Amante and Eakins,
2009), which we exported as a binary mask indicating ei-
ther water or land. We then manually edited this mask using
common image processing software by removing lakes and
inland seas, thickening Central America, and converting the
eastern boundary of the Atlantic to a straight meridional line
running from the southern tip of Africa to the Arctic (Fig. 3).

This binary mask is read by Veros during model setup and
interpolated to the chosen grid (the number of grid cells in
each dimension is defined by the user; grid steps are chosen
to minimize discretization error according to Vinokur, 1983).
The ocean bathymetry is read from the same downsampled
version of ETOPO1, and cells are converted between water
and land according to the interpolated mask.

Since all cells that were converted from land to water lie
in the North Atlantic, it is sufficient to modify initial con-
ditions and atmospheric forcing in this region only. Initial
conditions are read from a reference file with 1° x 1° hori-
zontal resolution and interpolated bilinearly to the modified
grid. The bathymetry in the Atlantic is replaced by a con-
stant depth of 4000 m. Optionally, a different constant depth
and/or linear slope for some distance from each coast can be
added to model a continental shelf. All atmospheric forcing
is replaced by its zonal mean value in the Atlantic basin.

This leaves us with a modified setup that is smooth enough
to be stably integrated and that allows us to track Kelvin

Geosci. Model Dev., 11, 3299-3312, 2018
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—40 -20 0 20
Barotropic stream function (Sv)

Figure 4. Long-term average barotropic stream function (BSF) of a
1° x 1° horizontal resolution setup as described in Sect. 4.1. 1Sv =
10m3s~!. BSF values exceeding 80 Sv are omitted. Contours are
drawn in steps of 4 Sv.

waves in a more isolated environment. As a first sanity check,
the resulting ocean circulation looks largely as expected
(Fig. 4).

4.2 The experiment

If coarse-resolution ocean models can support Kelvin-
wave-like features, the question of phase speed becomes
paramount: a wave that is too slow will be damped away too
early and inhibit oceanic teleconnections, which may cause
different observed climate sensitivities in different climate
models (Greatbatch and Lu, 2003). Hsieh et al. (1983) dis-
cuss in great detail how choices in the numerical setup mod-
ify the phase speed of Kelvin waves: resolution, friction, dis-
cretization (Arakawa B or C grid; Arakawa and Lamb, 1977),
and boundary conditions all affect the phase speed. However,
Marshall and Johnson (2013) point out that for an adjust-
ment timescale on the order of years or longer (relevant for
the Toggweiler and Samuels SO hypothesis), the correspond-
ing waves have the properties of Rossby waves, albeit with
a phase speed of ¢ = Lq/dm, where ¢ is the Kelvin wave
phase speed, L4 is the Rossby radius of deformation, and
Sm = (v/B)'/3 the Munk boundary layer width. Here we test
their analytical result, particularly whether the phase speed
really depends only on friction but not resolution.

The global setup of Veros is used in two configurations:
2° (2DEG) and 1° zonal resolution. Both have 180 merid-
ional grid cells with a spacing of approximately 0.5° at the
Equator and 1.5° at the poles. The 1° setup is used with
two different viscosities: 5 x 10* m2s~! (same as 2DEG) and
5x 103 m?s~!, called IDEG and 1DEGL, respectively. Each
of these three setups is initialized with data from Levitus
(1994) and integrated for 60 years (these are our three control
integrations). All setups use daily atmospheric forcings from
Uppala et al. (2005) interpolated as described in Sect. 4.1.
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After 50 years, one new integration is branched off from
each, with the maximum winds over the SO increased by
50 % (sine envelope between 27 and 69°S). The velocity
fields are sampled as daily means. By comparing the solu-
tion during the first 150 days to the first 150 days of year 51
of the control integrations at 200 m of depth, we arrive at an
estimate of the speed with which the information on the SO
wind stress anomaly travels north along the eastern boundary
of the Atlantic Ocean.

As a first step we confirm that the anomaly signal is well
resolved along the Equator. Indeed, for all three setups we
find the same phase speed of 2.7 ms~! (Fig. 5a, only IDEG
is shown), slightly less than the 2.8 ms™! that is expected
from theory and observations (Chelton et al., 1998). Along
the African coast we find a similar speed in 1DEGL, but
slower in 1DEG and 2DEG (Fig. 5b—d). Using the approx-
imate slope of the propagating signal’s contours as a metric
for the average phase speed between the Equator and 40° N,
we arrive at about 2.1 ms~! for IDEGL and 1.0ms™! for
2DEG and 1DEG.

The Rossby radius of deformation L4 along the western
coast of North Africa changes from approximately 100 km
at 5° N to 40km at 30° N (Chelton et al., 1998). The Munk
boundary layer width §y for our two different viscosities is
130 and 60 km. The large range of L4 along the coast makes
it difficult to determine the exact theoretically expected phase
speed, but based on Marshall and Johnson (2013) one can ex-
pect that the anomalies generated by an SO wind perturbation
travel slower by a factor of less than 3 in 2DEG and 1DEG
and twice as fast as that in 1DEGL. This is exactly what is
found here.

This minor initial application demonstrates how Veros can
be used to bridge the gap between theory and full ocean
GCMs. Future studies will investigate in more detail the in-
teraction between the anomalies traveling along the coast and
high-latitude stratification and topography.

5 Summary and outlook

By translating pyOM2’s core routines from Fortran 90 to vec-
torized Python code using the NumPy API (Sect. 2.1 and
2.2) and adding integration with the Bohrium framework
(Sect. 2.4), we were able to build a Python ocean model
(Veros) that is both consistent with pyOM?2 to a high degree
(Sect. 3.1) and does not perform significantly worse, even
on highly parallel architectures (Sect. 3.2). Additional mod-
ifications (Sect. 2.3) include a powerful algebraic multigrid
(AMG) Poisson solver, compressed NetCDF4 output, a mod-
ular interface for diagnostics, self-documentation, and auto-
mated testing.

A simple experiment investigating planetary wave propa-
gation in the Atlantic showed that boundary waves in GCMs
travel with phase speeds consistent with theoretical expecta-
tions.
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Figure 5. The Kelvin wave phase speed in Veros approximately only depends on viscosity, not resolution, as predicted by Marshall and
Johnson (2013). (a) Zonal velocity in 1DEG at the Equator and (b—d) meridional velocity in IDEGL, 2DEG, and 1DEG, respectively, along
0° longitude in the Atlantic at 200 m of depth. The slopes of the blue dashed lines are used to estimate phase speeds. Note that the signal
arrives at different times at the African coast due to the location of the maximum wind field perturbation, which is not at the South American
coast. Thus, the buoyancy perturbation that eventually arrives in the North Atlantic has to be advected to the South American coast before it
can travel north as a fast coastal wave.

While creating Veros did require a deep understanding of tran code, which manipulate array objects through ba-
the workings of NumPy and Bohrium to avoid performance sic arithmetic and provide little exposition of the un-
bottlenecks and to write concise, idiomatic, vectorized code, derlying numerical concepts. In order to create a truly
the presented version of Veros took less than a year to de- approachable experience, it is crucial to deviate from
velop by a single full-time researcher. Nevertheless, Veros is this approach and introduce more abstraction by group-
still at an early stage of development. In future releases, we ing common patterns into higher-order operations (like
plan to address the following issues. transpositions between grid cell types or the calculation

of gradients).

More abstraction. Most of the Veros core routines are cur-
rently direct vectorized translations of pyOM?2’s For-
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Parallelized stream function solvers. A parallel Poisson
solver is a missing key ingredient to scale Veros effi-
ciently to even larger architectures. Solvers could either
be provided through Bohrium or by binding to another
third-party library such as PETSc (Balay et al., 1997),
ViennaCL (Rupp et al., 2010), or CUSP (Dalton et al.,
2014).

Distributed memory support. High-resolution representa-
tions of the ocean (such as eddy-permitting or eddy-
resolving models) are infeasible to be simulated on a
single machine, since the required integration times may
well take decades to compute. In order for Veros to be-
come a true all-purpose tool, it is crucial that work can
be distributed across a whole computing cluster (which
could either consist of CPU or GPU nodes). Therefore,
providing distributed memory support either through
Bohrium or another numerical back end is a top priority
for ongoing development.

However, we think that Veros has proven that it is indeed
possible to implement high-performance geophysical models
entirely in high-level programming languages.

Code availability. The entire Veros source code is available un-
der a GPL license on GitHub (https://github.com/dionhaefner/veros,
Hafner and Jacobsen, 2016). All comparisons and benchmarks pre-
sented in this study are based on the Veros v0.1.0 release, which is
available under the DOI 10.5281/zenodo.1133130 (Héfner and Ja-
cobsen, 2017). The model configuration used in Sect. 4 is included
as a default configuration (“wave propagation”).

The Veros user manual is hosted on ReadTheDocs (https://veros.
readthedocs.io, last access: 1 August 2018). An archived version of
the Veros v0.1.0 manual, along with the user manual of pyOM?2
describing the numerics behind Veros, is found under the DOI
10.5281/zenodo.1174390 (Hafner et al., 2017).

Recent versions of pyOM2 are available at https://wiki.cen.
uni-hamburg.de/ifm/TO/pyOM2 (Eden, 2014b). A snapshot of the
pyOM2 version Veros is based on, and that is used in this study, can
be found in the Veros repository.
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