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Abstract. Near-normal-incidence reflections have been used to image the Moho
and the W reflector structure in the lithosphere, offshore northern Scotland. To
determine the impedance variations at these reflectors, we use a Monte Carlo
technique which allows incorporation of geologically realistic a priori information as
well as an extensive exploration of the model space, after testing it on a synthetic
data set. The method is based on Bayesian inversion theory. The modeled Moho
consists of a series of layers with a total thickness of ~ 2.4 +0.3 km with an overall
positive impedance contrast. Inversion of the W reflector results in a model of
five-seven layers with a total thickness of about 3.7 £0.6 km and mostly nonpositive
impedance contrasts. The implied fine-scale impedance structure of the Moho is
consistent with the broader velocity structure determined from previous wide-angle
reflection/refraction profiles. However, the overall nonpositive impedance contrast
at the W reflector requires a structure which is overlain or underlain by a broad
increase in velocity in order to match amplitudes of reflected phases observed at
large offsets interpreted previously to originate at a similar depth.

Introduction

In the last few decades, deep seismic reflection pro-
filing has provided spectacular images of the continen-
tal lithosphere worldwide, of which subhorizontal reflec-
tions from the lower crust, reflections from the Moho,
and reflections from the upper mantle have been par-
ticularly notable. Some reflections have been associ-
ated with known structures; for example, bright re-
flections near the Moho depth have been associated
with the crust-mantle transition zone, and dipping re-
flections in the crust have been associated with near
surface faults and known subduction zones [Klemperer
and Hobbs, 1991; Clowes et al., 1992; BABEL Work-
ing Group, 1993; Zhao et al., 1993; Clowes and Green,
1994]. Many features, mainly subhorizontal ones, re-
main incompletely understood. Although various mod-
els have been proposed for these features, one ultimately
requires outcrops, drill holes, or the physical proper-
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ties (density and seismic velocity) of these reflectors to
choose from among these models. Deep seismic reflec-
tions, as such, are incapable of providing direct informa-
tion on physical properties. Instead, one derives some
estimates of the physical properties from the seismic
record using a modeling strategy.

Conventional seismic data processing allows a com-
paratively fast but rough analysis of large volumes of
seismic data. It is essentially based on a linear model of
the seismic trace, the so-called convolutional model, in
which the seismic trace s(t) is approximated by a con-
volution of the subsurface reflectivity r(t) and a source
wavelet w(t):

s(t) = w(t) * r(t)

According to the convolution theorem, one consequence
of this approximate model is that only those frequencies
that are present in the source wavelet can be retrieved
from the reflectivity series of a recorded seismic trace.
Seismic sources used in conventional deep seismic ma-
rine experiments typically have 5 to 80-Hz bandwidths
[Hobbs and Snyder, 1993]. Due to attenuation, a seismic
wavelet at a given two-way time will have little energy
above 60 Hz, and the convolutional model alone cannot
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Figure 1. The DRUM seismic section showing the Moho (M) and W (W) reflectors and the
location of the data used in the Monte Carlo inversion. The section was migrated using a two-
dimensional velocity field derived from nearby refraction results [Snyder and Flack, 1990] and
then depth converted using the same velocities. The Flannan reflector can also be observed,

dipping from 30-km depths at the western edge of the profile to 80-km depths in the east.

provide any information about the reflectivity at spatial
frequencies equivalent to > 60 Hz at that two-way time.
At frequencies less than 5 Hz, reflected seismic energy
is normally absent or obscured by ship noise. Conse-
quently, the convolutional model is unable to predict
any low-degree trend or nonzero average value of the
reflectivity.

If one is interested in extracting information outside
the limited passband of the source wavelet, it is neces-
sary to incorporate a priori information about the sub-
surface, abandon the convolutional model and replace it
with the correct relationship between seismic data and
Earth model. In this paper, we propose a framework
under which variations in impedance inside and outside
the frequency passband of the seismic wavelet can be es-
timated by nonlinear inversion using prior information
on the model in terms of probabilities. A Monte Carlo
inversion technique [Mosegaard and Tarantola, 1995]
provides models which fit the observed data and esti-
mates errors and resolution of these models. We apply
this framework to shot records from the DRUM (Deep
Reflections from the Upper Mantle) reflection profile
from the north of Scotland to estimate impedance varia-
tions at the Moho and at the W reflector (Figures 1 and
2) and to provide estimates of the resolution of these

impedances. The DRUM line was designed to investi-
gate the reflectivity of the lower continental lithosphere
and was recorded for 30 s two-way travel time (TWT),
corresponding to about 110-km depth [McGeary and
Warner, 1985]. Various dipping reflections are observed
in the upper crust (0 to 5 s) and a series of subhorizon-
tal reflections in the lower crust (6 to 9 s), the base of
which, at ~ 9 s TWT, coincides with the Moho defined
by nearby refraction observations [Barton, 1992]. Three
strong reflectors occur in the mantle: a subhorizontal
reflector around 13-15s TWT (the W reflector), an east-
erly dipping reflector (the Flannan reflector) recorded
from 9 s down to at least 27 s and possibly 30 s, and a
15-km-long banded zone at 23 s (Figure 1) [McGeary
and Warner, 1985]. Derivation of the physical proper-
ties of these deep reflectors from the seismic records is
critical to understanding the formation and evolution
of the continental lithosphere around the British Isles.

A Probabilistic Formulation of the
Problem

Analysis of the resolution of subsurface structures
from seismic data requires a probabilistic formulation
of the inverse problem. Due to the often strongly non-
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Figure 2. The data used for inversion. (a) The shot gather from 13 to 15 s at shot point 3564
of the DRUM profile, a TWT zone for the W reflector. These 60 traces have increasing offset
from left (209 m) to right (3210 m). These traces were summed in groups of six to produce 10
traces with enhanced signal-to-noise ratios for the inversion. (b) The summed traces over the

time range of 8-10 s that contains the Moho reflection at about 8.9 s.

(c) The summed traces

over the the time range of 13-15 s that contains the W reflection at about 13.8 s. (d) Amplitude
spectrum of data with Moho reflection. (e) Amplitude spectrum of data with W reflection. (f)
Estimated marginal noise distribution for a single data sample (Moho data). The solid curve is
a Gaussian distribution. (g) Estimated noise autocorrelation (Moho data).

linear relationship between the subsurface impedance
model and seismic data, the distribution of errors in the
observed data is mapped into the model space as a com-
plex error distribution. Among the important patholo-
gies of this relationship is an inherent nonuniqueness of
models that fit the data. Further complexity is added to
the model distribution when we, on geological grounds,
must introduce complex, data-independent a priori in-
formation to further weigh models based on their geo-
logical feasibility.

We use a Bayesian formulation of the inverse prob-
lem. In this formulation, the state of information about
the subsurface after incorporation of both a priori infor-
mation and data information is completely described by
the a posteriori probability density ¢(m) over the model
space |Tarantola and Valette, 1982]. From o(m) it is
* possible to calculate the probability that the true model
belongs to a given class 4 of models:

P(m belongs to A)= / o(m)dm,
A
The a posteriori probability density is the complete so-

lution to the inverse problem [Tarantola and Valette,
1982]. It contains all the available prior information

such as the approximate sizes of reflection coefficients
and layer thicknesses, and all the data information, as
“seen through the glasses” of the theoretical relation-
ship between model and data in the form of the wave
equation. In the Bayesian analysis, all the input infor-
mation is preserved and no uncontrolled subjective bias
is introduced.

The a posteriori probability distribution for the in-
verse problem is given by

p(m) L(m)
Jyr dmtdm?. .. p(m) L(m)

o(m) =

)

[ Tarantola and Valette, 1982]. The a posteriori proba-
bility density o(m) equals (except for a normalization
constant) the a priori probability density p(m) times
a likelihood function L(m) measuring the fit between
observed data and synthetic data calculated from the
model m.

The likelihood function is typically of the form
L(m) = Cexp [—S(m)]
where C' is a constant and S(i) is a misfit function.
S(m) measures the difference between the observed
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data and synthetic data calculated from the model m.
If, for instance, the observational noise consists of inde-
pendent Gaussian errors, S(m) is proportional to the
sum of squared differences between observed and cal-
culated data values (the Ly misfit), and the likelihood
function is Gaussian. If, instead, the noise consists of
independent Laplace distributed errors, S(m) is the
L; misfit (where squares are replaced by absolute val-
ues), and the likelihood is Laplacian.

Monte Carlo Sampling of the A
Posteriori Distribution

Real, quantitative geological a priori knowledge can-
not be described by means of simple mathematical ex-
pressions for p(m). Such knowledge is often available
as statistical information: histograms giving the oc-
currence frequency of, for instance, certain lithologies
or physical rock parameters, observed in outcrops or
nearby wells.

Mosegaard and Tarantola [1995] provide a method
for Bayesian Monte Carlo inversion that overcomes this
problem. This method has two major advantages, as
compared to previously published methods [e.g., Stoffa
and Sen, 1991]. First of all, the method is exact in the
sense that it will provably sample the posterior proba-
bility density. Second, it allows incorporation of arbi-
trarily complex statistical a priori information into the
inversion.

The algorithm consists essentially of two interacting
parts. The first part is an a priori model generator that
is able to produce random subsurface models, consistent
with the available a priori knowledge. Consistency here
means that the generated models have exactly the same
statistical properties as those we have obtained from
observations in the real Earth. The models produced
by the a priori model generator are fed into the second
part, an algorithm that decides if the a priori model can
pass a data fitting test.

One iteration of the algorithm runs as follows: First,
given the current model, a new model is chosen by
the a priori model generator (by perturbing the current
model), and the probability for a given new model to be
chosen is proportional to its a priori probability. The
new model m.,, is now accepted or rejected according
to the following rule:

1. If the value of the likelihood L(myey) of the new
model is larger than or equal to the likelihood L(1mey,)
of the current model, the model my,., is accepted with
probability 1.

2. If the value of the likelihood L(myey) is smaller
than the likelihood L(mgy,;), the model m,,, is ac-
cepted (as the next “current model”) only with proba-
bility

P, accept —

If the new model is rejected, the current model also
becomes the next current model.
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The series of “current models” produced by this two-
part algorithm are, asymptotically, samples from the a
posteriori distribution ¢(m) [Mosegaard and Tarantola,
1995]. After a large number of iterations, the number of
times a given model m occurs in the collection of “cur-
rent models” is approximately proportional to o(m).
A large collection of such samples from ¢(m) provides
the raw material from which various characteristics of
the models can be obtained [Mosegaard and Taran-
tola, 1995]. A set of statistically independent samples
of the accepted models allows structures in the sub-
surface that are well-resolved to be distinguished from
those that are ill-resolved. A well-resolved structure
will appear in most of the accepted models, whereas
an ill-resolved structure will appear in only a few mod-
els. The probability that a certain structure exists is
roughly proportional to its frequency of occurrence in
the set of a posteriori samples. Therefore approximate
a posteriori probability distributions for model parame-
ters can be represented by normalized histograms of the
parameters values. The peak of the histogram will be at
the most probable model parameter, and the deviation
from this peak will provide a measure of uncertainty.

Monte Carlo Sampling of Lithosphere
Reflectivity

We use the Bayesian Monte Carlo algorithm described
above to generate reflectivity models for selected parts
of the DRUM reflection profile. We have concentrated
our efforts only at a location (Figure 1) where the Moho
and W reflectors are brightest and subhorizontal as the
algorithm requires large computation time. We have
analyzed a total of 60 unprocessed traces in the interval
8.0s-10.0 s TWT bracketing the Moho and the interval
13.0 - 15.0 s covering the “W reflector.” We chose the 60
traces from one shot gather (3564) with the best signal
to noise ratio among 10 neighboring shot records. The
receiver group spacing was 50 m along a 3000-m-long
streamer. The raw shot gather shows coherent energy
between 13.7 s and 14.2s TWT for the W reflector (Fig-
ure 2a). To increase the signal to noise ratio, we applied
a correction for dip move out and stacked six adjacent
traces, yielding 10 traces for the inversion (Figures 2b
and 2¢). The normalized frequency spectra show dom-
inant energy between 6 and 30 Hz (Figure 2d and 2e).
Since the Moho and W reflectors are subhorizontal and
are at large depths, the incident seismic waves are es-
sentially vertically traveling plane waves. It is therefore
possible to perform a rather careful calculation of syn-
thetic seismograms using a fast one-dimensional propa-
gator matrix method [Haskell, 1953].

Wavelet Estimation

The DRUM profile was shot by GECO (Geophysical
Company of Norway) using an 8536-cubic-inch air gun
array at 7.5 m below the sea surface [McGeary and
Warner, 1985]. A simulated far-field source signature
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Figure 3. (a) The source wavelet used in the inver-
sion. This trace represents a simulated far-field source
signature for the entire air gun array provided by the
contractor (GECO), convolved with the receiver ghost,
recording filter, and reverberations within the 55-m-
thick water layer. The wavelet was then propagated
to the appropriate two-way travel time using a quality
factor of 500 to approximate effects of attenuation. (b)
The associated frequency spectrum.

for the air gun configuration used in the experiment,
provided by GECO, was used in this study. Since the
streamer was at 17-m depth, the source wavelet was
convolved with the appropriate receiver ghost and was
then filtered using a minimum phase band-pass filter,
5.3 Hz at 18 dB/octave to 45 Hz at 72 dB/octave, the
filter used in recording the data. The effect of reverber-
ations in the water layer at both the source and receiver
ends of the ray path was included in the source wavelet.
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This estimate used a water depth of 55 m measured
by an echo sounder during the survey, and a water-
seabed reflection coefficient of 0.5 and a water velocity
of 1.5 km/s determined using refracted arrivals from the
seabed that were observed in shot gathers. The result-
ing source wavelet was propagated down to 8 s for the
Moho and to 13 s for the W reflector, and the effect of
attenuation was incorporated using a quality factor of
500 [Hobbs and Snyder, 1993] (Figure 3).

The size of the inverse problem was in this way re-
duced by focusing only on two zones, each of 2s (TWT),
containing the Moho or W reflections. In the calcula-
tion of synthetic seismograms it was assumed that the
response from each interval considered depended on the
overlaying layers (the overburden) only via the propaga-
tion effects built into the source wavelet. We neglected
in this approximation all multiples in the earth that in-
volve reflectors in the overburden. These multiples are
considered negligible due to the rather small reflection
coefficients (no more than 0.1) generally assumed to be
present in the lithosphere [Holbrook et al., 1992] and
the presence of attenuation in the Earth.

A Priori Information

Reflections from deep in the lithosphere require large
impedance contrasts. The simplest approach is to treat
each reflection as originating at the boundary of a layer
overlying a half space and then estimate reflectivity,
which could be due to either a positive or negative
impedance contrast. Such an approach is appropriate
when a reflection is sharp and distinct and the data have
no noise. In practice, reflections consist of a series of
events, which cannot be distinguished, and often con-
tain considerable noise. In such cases, this simple model
is inappropriate and additional information is required.

To obtain appropriate a priori information on the
structure of deep reflections, we considered the pos-
sible geological processes which might be responsible
for these reflectors. These are widely considered to in-
clude layered mafic intrusions, shear zones with pos-
sible metasomatic residuals enhancing reflectivities, or
alternating types of metamorphic rocks [Mooney and
Meissner, 1992; Clowes and Green, 1994]. We have
chosen one of these possibilities as a basis for gener-
ation of a priori models: layered igneous intrusions in a
large magma chamber formed by fractional crystaliza-
tion of magma derived from the mantle [Weibe, 1993].
Physical properties of rocks found in the igneous intru-
sive complexes of Rum, an island west of Scotland, and
Great Dyke in Zimbabwe form the basis of our quantita-
tive a priori information [Singh and McKenzie, 1993].
We have only used that part of the information from
the igneous complexes that is expected to be fairly in-
dependent of the depth of burial, that is, reflection co-
efficients and layer thicknesses. In other words, there
are no constraints on the absolute acoustic impedance
values in our calculations. Any other plausible geolog-
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Figure 4. A priori information used by the a priori
model generator in the first stage of the Bayesian in-
version scheme. (a) Reflection coefficients distribution
obtained from studies of the igneous intrusions of Rum,
Scotland, and the Great Dyke, Zimbabwe [Singh and
McKenzie, 1993], that are consistent with other studies
such as those of the Pleasant Bay layered gabbro-diorite
[ Weibe, 1993]. The solid curve has a Gaussian distri-
bution with standard deviation ¢ = 0.047. (b) Layer
thickness distribution as a function of one-way travel
time derived from observations of the Rum and Great
Dyke intrusions. The solid curve has an exponential
distribution with A =225.0 s~

ical model could have been used as prior information,
but the igneous intrusions have been more thoroughly
mapped on the surface and relevant statistics are avail-
able with greater detail than for either shear zones or
metamorphic layering.

Histograms (Figure 4) illustrate the distributions of
reflection coefficients and the layer thicknesses for these
intrusive complexes that guided our a priori model gen-
erator. The thicknesses of the layers have been con-
verted from meters into seconds using the velocity in
each layer derived from the modal composition [Singh
and McKenzie, 1993]. In order to retain only the
general features of the reflectivity and thickness his-
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tograms, they were approximated with a Gaussian and
an exponential distribution, respectively. In this way we
avoided detailed histogram structure that is only char-
acteristic of the specific igneous intrusion complexes
considered in this study. All a priori models generated
by our algorithm are consistent with the approximate
distributions; that is, histograms of reflection coeffi-
cients and layer thicknesses produced from these models
are statistically equivalent to corresponding histograms
from the igneous complexes. The combined a priori dis-
tribution used here allows models with reflection coeffi-
cients ranging from about -0.1 to +0.1 and thicknesses
from about 10 m to 2000 m.
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Figure 5. (a) A selection of typical a priori models
generated assuming the distributions shown in Figure
4. These models are all statistically equivalent and have
equal likelihoods of existence. (b) Marginal a priori
impedance contrast distributions for all one-way times
in a 1-s interval.
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Figure 5 shows a selection of a priori impedance mod-
els generated using the statistics derived from Figure
4 for the igneous intrusions. All the a priori mod-
els are different, but they all have identical statistics.
These impedance models have been calculated from
their corresponding reflectivity models, and for compar-
ison, all models have the same impedance value, 19,000
m/s(g/cm3), at the top. Under this assumption, the
weakness of the constraints on the absolute acoustic im-
pedance values can be observed directly, since unrealis-
tically high and low values of impedance occur (Figure
5). Consequently, our a priori information will provide
no strong impedance constraints on the results of our
calculations.

Model Parameterization and Calculation of
Synthetic Seismograms

The complexity of the a priori information means
that p(m) and hence o(m) deviate strongly from a
Gaussian distribution. Consequently, the inverse prob-
lem is not easily analyzed by conventional, linearized
methods. In particular, a correct, nonlinear error and
resolution (nonuniqueness) analysis may only be possi-
ble through a Monte Carlo approach.

We employed a Monte Carlo technique for inversion,
and therefore a fast computation of synthetic seismo-
grams was required in order to be efficient. Synthetic
seismograms were computed using a propagator matrix
method [Ganley, 1981]. All multiple reflections, ab-
sorption, and dispersion within the target zones were
incorporated. Dispersion was derived from @, using a
dispersion model given by Futterman [1962].

To further speed up the Monte Carlo inversion, model
parameterization consisted of reflection coeflicients spec-
ified as a function of one-way travel time. As the
relation between reflectivity and data is only moder-
ately nonlinear, this parameterization (and the fact that
the noise is Gaussian) makes L(m) become close to a
Gaussian. Consequently, the inverse problem is easier
to solve. Each model consists of 128 reflection coefhi-
cients with a sampling interval of 0.008 s.

Data Noise and the Likelihood Function L(m)

Each of the data sets considered consists of 10 neigh-
boring traces of 2.048-s length (Figure 2b and 2¢). Be-
cause coherent events in the data sets are approximately
horizontal and laterally invariant, we estimated the in-
coherent noise in the data by first finding one of the
best fitting horizontally stratified models for the data
set. The (10 identical) vertical incidence traces com-
puted from this model were then subtracted from the
10 data traces to form corresponding error traces, the 10
noise traces. These noise traces were all fairly similar,
stationary signals, and the distribution of noise values
was very close to a Gaussian. Since the data noise has a
Gaussian distribution, we define the likelihood function
as
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Figure 6. Noise contaminated, synthetic data used to
test the algorithm. The noise (and signal to noise ratio)
is equal to the noise extracted from the Moho data.

Em) = exp { 3 [6(m) ~ de]” € [gom) - |
)

where C, is the covariance matrix for the noise. For
the Moho data and W reflector data we found signal
to noise (amplitude) ratios of 1.9 and 1.4, respectively.
The estimated marginal distribution of a single noise
value is shown in Figure 2f, and the estimated noise
autocorrelation (normalized to one at zero lag) is shown
in Figure 2g.

Synthetic Example

Our algorithm was calibrated and tested on synthetic
data from a known subsurface model. The synthetic
test was designed to mimic a situation similar to the
analysis of the Moho reflector. The DRUM source
wavelet was used, and the noise extracted from the
Moho reflector data was added to the synthetic traces
to form an artificial, noisy data set (Figure 6).

We ran 100,000 iterations of the Monte Carlo inver-
sion on the synthetic data set. The models were gener-
ated according to the a priori information derived from
the igneous complexes of Rum and Great Dyke (Fig-
ure 4). The second part of the Monte Carlo algorithm,
accepting or rejecting models proposed by the a priori
model generator, used a likelihood function defined by
(2) with a noise variance corresponding to a signal to
noise ratio of 1.9, the signal to noise ratio of the Moho
reflector data.
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In each iteration, all 128 reflection coefficients are
considered by the algorithm. Each of the reflection co-
efficients are perturbed by the a prior model genera-
tor, and the perturbed model is accepted or rejected
according to the rule given above. The series of “cur-
rent models” produced by this algorithm are samples
from the a posteriori distribution o(m). The strategy of
perturbing only one reflection coefficient at a time pre-
serves most characteristics of the current model, which
may have fitted the data well. This strategy is efficient,
since we want to visit many models with a good data fit,
but it provides models that are successively correlated.
This is a problem since error and resolution analysis
requires a collection of statistically independent mod-
els from the a posteriori distribution. A smaller set of
models chosen from among the accepted models in such
a way that they are sufficiently separated in time (it-
erations) constitutes such a set of independent models.
Here, as in the analyses of the field data below, we chose
to save only every hundredth model. This waiting time
of 100 iterations between accepted models was found
by analyzing the fluctuations of L(m) as the iterations
proceeded. Inspection of the autocorrelation function
for these fluctuations showed that accepted models sep-
arated by a hundred iterations were unlikely to be cor-
related. Thus we have 1000 independent samples of the
a posteriori distribution from 100,000 sampled models.

The results are shown in two ways. Figure 7a shows
the original model used to generate the synthetic data
in the upper left corner together with a selection of a
posteriori models, randomly selected from the 1000 a
posteriori models selected by the algorithm. Since these
models are randomly chosen from the 1000 independent
samples of the posteriori models, they roughly approx-
imate the a posteriori distribution. In Figure 7c, the
distribution of synthetic data is shown. All the syn-
thetic traces are statistically indistinguishable from the
reference trace calculated from the original impedance
model, in that their deviations from this noise trace are
within the noise level.

The variations in the model that are obtained by the
Monte Carlo inverion, and hence permitted by the a
priori information and the data, are evident. To in-
terpret this output correctly, it should be remembered
that the method is designed to produce particular model
features with a frequency proportional to their a poste-

Figure 7. The results of the inversion on the syn-
thetic data. (a) The true model (the curve at the upper
leftmost corner) and a selection of a posteriori models.
(b) Marginal a posteriori impedance contrast distribu-
tions for all one-way times between 6.5 and 7.5 s. (c)
Marginal a posteriori data distributions for all two-way
times between 13.0 and 15.0 s. Since all impedance
models are fixed at 19,000 g/cm3(m/s) near 13.0 s, these
distributions approach a delta function at the top of the

figure.
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riori probability. This means that the probability of a
feature that exists in the impedance model is roughly
proportional to the number of times the feature occurs
on Figure 7a. If it appears on almost all the a poste-
riori models, it is well resolved. It is clear from Figure
7a that, for instance, the high impedance zone between
6.950 and 7.150 s is well resolved. The actual impedance
contrast value between the interior of the zone and its
surroundings (above and below) shows some variation
between the a posteriori models and is therefore poorly
resolved.

Of particular interest to this study is the overall im-
pedance contrast, that is, the increase in impedance
from the top to the bottom of the zone. In Figure 7b,
the marginal a posteriori distributions for impedance
contrasts at all the considered depths are shown. It is
clear from this figure that the magnitude of the overall
change in impedance is poorly resolved. However, the
polarity (sign) of the overall impedance contrast is well
resolved. As seen from the impedance contrast distribu-
tion at 7.5 s one-way time, it has a very high probability
of being positive, in agreement with the original model
(shown in black in the figure).

Moho

A similar analysis of the actual Moho data from the
DRUM profile results in the a posteriori models shown
in Figure 8a and 8b, respectively. Due to the fact that
the estimated wavelet may be in error by an unknown,
constant scaling factor k, the only information we can
extract from the data is the ratio between impedance
contrast AI(T) and k. The impedance contrast is the
impedance at one-way time 7" minus impedance at the
top of the target zone. See the Appendix for further
details on this problem. Figure 8a shows this ratio as
a function of one-way travel time in the target zone.
Figure 8b shows estimated marginal a posteriori dis-
tributions for impedance contrasts at all depths in the
considered interval.

An inspection of the a posteriori Moho models (Fig-
ure 8a) shows a well-resolved layered sequence having
a thickness of about 0.3 £ 0.04 s one-way time, equiva-
lent to approximately 2.4 £+ 0.6 km. Impedances alter-
nately increase and decrease within the series, but over-
all the series has a cumulative increase. The observed,
well-resolved, positive polarity of the overall impedance
contrast for this interval (Figure 8b) is consistent with
previous refraction results that used diving rays and
wide-angle reflections to model observed phases [Bar-
ton, 1992].

W Reflector

The calculated a posteriori models for the W reflec-
tor zone are shown in Figure 9a. Some well-resolved,
consistent features are observed in the interval between
6.8 s and 7.3 s one-way time. Over this short inter-
val, with an approximate thickness of 3.7 + 0.6 km, the

MOSEGAARD ET AL.: MONTE CARLO ANALYSIS OF DEEP REFLECTIONS

(a)

SR Y

N 7 o
VAIE AT

42

B

One Way Time [s]
[4,]

H

(4]

£

[4,]

One Way Time [s] One Way Time [s]

(®)

44

4.6

One-way time [s]

4.8

-10000 0 10000 20000 30000

Impedance contrast [(g/cm3)(m/s)]

Figure 8. The results of the inversion on the Moho
data set. (a) A selection of a posteriori models. (b)
Marginal a posteriori impedance contrast distributions
for all one-way times between 4.0 and 5.0 s.

overall change in acoustic impedance is poorly resolved
(Figure 9b). The consistency of the models between 6.8
and 6.9 s indicates a high probability of negative im-
pedance contrasts over this zone about 1.25 km thick.
The greater variability of a posteriori models below 6.9
s indicates some probability for both positive and neg-
ative contrasts deeper in the interval. The polarity of
the overall impedance contrast is not as well resolved as
over the Moho interval described above. The marginal
impedance contrast histogram at 7.5 s one-way time
(Figure 9b) reveals that the a posteriori probability of
a nonpositive polarity, approximated by the portion of
this histogram around and to the left of the origin, is
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Figure 9. The results of the inversion on the W reflec-
tor data set. (a) A selection of a posteriori models. (b)
Marginal a posteriori impedance contrast distributions
for all one-way times between 6.5 and 7.5 s.

significantly larger than the corresponding probability
of a positive polarity.

This model with an upper layer of negative impedance
contrasts overlying a layer of more ambiguous but gen-
erally nonpositive impedance contrasts cannot be sim-
ply reconciled with previous estimates of velocities at
a similar depth that were obtained from previous seis-
mic surveys in the vicinity of this area [Barton, 1992;
Faber and Bamford, 1979]. The LISP-B (Lithospheric
Seismic Profile in Britain) seismic records showed high-
amplitude P wave phases that arrived closely after first
arrivals from rays diving into the uppermost mantle.
These observed high-amplitude phases can be generated
from post critical reflections off a layer with an increase
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in P wave impedance [Barton, 1992]. Alternatively, a
zone of increased velocity several kilometers thick with
no strong velocity gradients above but a steep negative
gradient below can simultaneously explain the observed
large amplitude P waves as well as low apparent veloc-
ity of these high-amplitude phases and the absence of
any head waves [Faber and Bamford, 1979]. In either
interpretation, the overall change in velocity over the
depth range containing the W reflector will be a positive
one. As previously noted, our analysis cannot resolve
the overall change, but the high probability of a non-
positive contrast toward the top of the zone is closer to
the original interpretation of the LISP-B data by Faber
and Bamford [1979)].

Discussion

Small-scale impedance contrasts modeled by our Mon-
te Carlo analysis need not necessarily be consistent with
broader velocity gradients sensed by previous refraction
surveys. The two do seem to coincide at the Moho at
~ 30-km depth, but not around the W reflector at ~
50-km depth. The model first proposed in the original
interpretation of the LISP-B data [Faber and Bam-
ford, 1979] might be appropriate: a gentle positive gra-
dient underlain by a local, steep negative gradient in
impedance above another gentle positive gradient. This
in effect produces a layer of low impedance, about 1 km
thick within a thick layer with overall high-impedance
region which cannot be fully resolved by our method at
present.

Other recent studies of velocity and impedance struc-
ture of the lithospheric layer associated regionally with
the Flannan and W reflectors, although also non-defini-
tive, do suggest that a positive gradient occurs at these
depths [Barton, 1992; Morgan et al., 1994]. Local nega-
tive steps in impedance or velocity cannot be excluded
by any study and may help explain some features of
the record sections. In some locations the analysis may
have been made on a different mantle feature from that
analyzed in this study. Distinctions have been made be-
tween the largely subhorizontal W reflector interpreted
to have a Caledonian (400 Ma) or older origin [Sny-
der and Flack, 1990] and the dipping Flannan reflector
associated with Permo-Triassic extension and basin for-
mation [Reston, 1990].

A limited number of common mineral assemblages
are available to produce the appropriate impedance con-
trasts at 50 km depths that are required by the observa-
tion (see Snyder and Flack, [1990]) for one recent com-
pilation and references). Eclogite facies metamorphic
rocks of gabbroic composition and peridotite are the
most probable high-velocity, high-density rocks. Meta-
somatic deposits provide the most likely source of low-
impedance material at these depths. Such deposits typ-
ically contain phlogopite mica and other exotic high-
pressure minerals deposited by volatile-rich melts, as
exemplified by the numerous mineral assemblages ob-
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served in Kimberlite pipes in South Africa [Schulze,
1989]. Normal faults associated with extension and
basin formation typically enhance impedance contrasts
by juxtaposing high-impedance rocks below rocks of
lower impedance. This provides one possible explana-
tion for the Flannan reflector impedance models [Mor-
gan et al., 1994].

Thermotectonic processes associated with orogenies
and stable cratons are more variable but can provide
environments suitable for the introduction of negative
impedance contrasts with increasing depth by trapping
migrating melts or fluids [Snyder and Flack, 1990).
Here we give just two examples. In one possible model,
the Moho velocity increase results from a phase tran-
sition from granulite to eclogite facies that has been
steepened by subsequent horizontal shearing localized
by this phase transition. The W reflector might then
result from a diffuse transition from eclogitic rocks to
peridotite, a compositional boundary. Another possi-
ble model produces the Moho reflections from a com-
positional change from a gabbroic granulite to peri-
dotite. Very local negative impedance contrasts as-
sociated with the W reflector would then require an
anomalous layer imbeded within the peridotite: per-
haps a thin, phlogopite-rich metasomatic layer in con-
tact with a mafic intrusive now in eclogite metamorphic
facies. The most probable impedance distributions from
our Monte Carlo analysis can be interpreted by making
reasonable geological assumptions about metasomatic
processes and metamorphic grade. That does not nec-
essarily make them correct.

Conclusions

We have provided a strategy for determining polar-
ity of complex reflectors from normal-incidence data.
The strategy is based on the Bayesian inversion theory.
It consists of two steps: (1) a priori model generator
where any type and any number of a priori probabil-
ity distributions can be used and (2) selection of the
model based on fit between synthetic and observe data.
We applied this analysis to intriguing features in the
mantle beneath northern Scotland that will undoubt-
edly never be directly sampled to confirm our models
and interpretations. Given the uncertainties of the in-
version method and the small amount of suitable data
that is available with sufficient signal-to-noise ratios to
be useful, we feel that the results must first be assessed
independently and demonstrated to be reliable and self-
consistent. Similar analysis of wide-angle (postcritical)
reflections could provide additional new constraints for
example but would then only strengthen our present
conclusions if the results compared favorably.

As the depth increases, the Moho contains largely
positive impedance contrasts, and the W reflector is
likely to display a negative or zero overall impedance
contrast, at least in its upper levels. This latter con-
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clusion is new and significant information about man-
tle reflectors. Candidate materials exist which produce
both positive and negative impedance contrasts, but to
confidently distinguish between the two is an important
first step.

Appendix: The Influence of Wavelet
Scaling Error on Computed Impedance
Functions

For small reflection coefficients (which we have in our
case, where r; < 0.1), the acoustic impedance I(T) is
related to the reflectivity »(T') through [Peterson et al.,

1955
T
I(T) =~ Iy exp [AT/ r(u)du]

where AT is the sampling interval for I(7") and r(T)
and Ip is the impedance at the top (T = 0) of the
considered interval. Let us now look at the acoustic
impedance function I(T) we obtain if the wavelet is in
error with a scale factor k. In that case the computed
reflectivity #(T") is related to the real reflectivity r(T")
through 7#(T") = r(T') /k. We get

T
I(T) = Iyexp l:A2T/ %r(u)du] .

The relationship between I(T) and I(T) is now
1
(1)1 *

AT/ —r( duJN[ Io]

oF x4 = (z~1)

I(T)
I

exp

Since

for = close to 1, we get the followmg simple, approxi-
mate relation between scaled and unscaled impedance:

LN A P (VI
I, 7T k| I
or .
kAT =~ AT

where AI = I(T) — Iy is the impedance contrast over
the considered interval.
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