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A SIMULATED ANNEALING APPROACH
TO SEISMIC MODEL OPTIMIZATION
WITH SPARSE PRIOR INFORMATION!

KLAUS MOSEGAARD? and PETER D. VESTERGAARD?

ABSTRACT

MOSEGAARD, K. and VESTERGAARD, P.D. 1991. A simulated annealing approach to seismic
model optimization with sparse prior information. Geophysical Prospecting 39, 599-611.

It is well known that seismic inversion based on local model optimization methods, such
as iterative use of linear optimization, may fail when prior information is sparse. Where the
seismic events corresponding to reflectors of interest remain to be identified, a global opti-
mization technique is required.

We investigate the use of a global, stochastic optimization method, that of simulated
annealing, to solve the seismic trace inversion problem, in which the two-way traveltimes and
reflection coefficients are to be determined. The simulated annealing method is based on an
analogy between the model-algorithm system and a statistical mechanical system. We exploit
this analogy to produce improved annealing schedules. It is shown that even in cases of
virtually no prior information about two-way traveltimes and reflection coefficients, the
method is capable of producing reliable results.

INTRODUCTION

The seismic trace inversion problem can be formulated as a non-linear search for an
acoustic impedance function that is stepwise constant in depth, and whose seismic
response, modelled by means of the convolutional model, is as close as possible to
the measured response in the least-squares sense. Cooke and Schneider (1983) found
that for this problem, a traditional, local optimization method fails if not provided
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with an initial guess for which the two-way traveltimes to the layer interfaces are
closer to the true values than the side lobes of the corresponding seismic events.

In cases of good well control, detailed prior information about the subsurface
model may be available, and a good initial guess may be made. In such cases,
traditional trace inversion methods may prove successful. However, in many explo-
ration problems and in the early phases of oil and gasfield developments, the well
control is sparse and a good initial guess may not be available. In such cases the
trace inversion problem becomes a global model optimization problem, as many
secondary minima for the misfit function exist.

Global optimization problems are much more difficult to solve than local opti-
mization problems, since the local geometry of the misfit function surface in the
model space does not directly contain information about the direction to follow in a
search for the global minimum. We have therefore applied a stochastic optimization
technique, that of simulated annealing, in a global search for the optimal subsurface
model. The usefulness of this method, when applied to global optimization problems
in geophysics, has already been demonstrated by previous authors. The work by
Rothman (1985, 1986) on the residual statics estimation problem was the first
published application to geophysical inverse problems. Later contributions have
been made by Jakobsen, Mosegaard and Pedersen (1988) and Landa, Beydoun and
Tarantola (1989). The experience of these authors and others who have tried to
apply simulated annealing to geophysical inverse problems of a realistic size, is that
the method is very difficult to use. The main problems are: to discover the best
annealing temperature schedule or the ‘critical’ temperatures, and how many times
the annealing should be performed in order to arrive at a useful solution. Conse-
quently, a high degree of experimentation has been an important characteristic of
simulated annealing work. The aim of our work has been to investigate the effi-
ciency and accuracy of a recently developed implementation of simulated annealing
applied to a realistic, seismic trace inversion problem. This method, which is called
‘simulated annealing at constant thermodynamic speed’ (Nulton and Salamon 1988;
Andresen et al. 1988), replaces the random experimental approach with a systematic
approach that takes advantage of statistical information about the model-algorithm
system, acquired during the annealing. As a standard of reference in our investiga-
tion, we have used a more primitive, stochastic model optimization method, the
so-called iterative improvement, when investigating the efficiency and accuracy of
the implementation of simulated annealing.

THEORY AND IMPLEMENTATION

Simulated annealing is a statistical technique for finding near-optimal solutions to
complex optimization problems. In this technique, the state @ of the system being
optimized is identified with the state of a statistical mechanical system, the objective
function E(w) being minimized is identified with the physical energy, and the opti-
mization process is controlled by a parameter T which can be identified with the
physical temperature. The system to be optimized is allowed to ‘equilibrate’ by
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applying a set of moves, i.e. a set of system perturbations, and accepting or rejecting
the moves according to the Metropolis algorithm (Metropolis et al. 1953):

if Eattempted < Ecun‘ent’ accept the move;

if Eyyempted > Ecurrent» accept the move with probability

P accept — CXP <“ (Ea“eMT_ Ecurrem)>. (1)
Under the following rather mild assumptions, it can be shown that the system tends
towards ‘thermal equilibrium’ when iterated at any temperature (Hammersley and
Handscomb 1964). (1) Any state of the system to be optimized can be reached from
any other state of the system, using the prescribed move class. (2) There must be
non-zero probability of staying in the current state in a given ‘move’.

In thermal equilibrium at temperature T, the states w of a hypothetical, large
statistical ensemble of systems, identical to the considered system, are distributed
according to the Boltzmann distribution

Py(w) = G 2

where the partition function

Z(T)=Y exp <— @) (©)

Assuming that only one global minimum exists for E, the equilibrium ratio between
the probability p, that the system is in the configuration w,, representing the global
minimum for the objective function E,, and the probability p,, that the system is in
any other state w, corresponding to a value E,, for the objective function, is

Do E, - E,
_—= _—— 4
b, XP ( T ) (4)
showing that
Pos g 5)
Py
and
Do
— = 0 as T-0. 6)
Do

The limit (6) can be explained as follows: consider the family of Boltzmann distribu-
tions (2), parametrized by the temperature parameter T, and consider the probabil-
ities p, and p, that the equilibrated system is in the global minimum for the
objective function (the ground state) and in the fixed state w # w,, respectively. If
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we consider the probabilities as functions of the temperature T, the limit (6) is valid.
Since

Vo:p, <1, @)
and
Y po=1, ®)

w

for a system with a finite number of states (6) yields
Po—1 as T -0. 9)

Therefore, optimization of our system can be achieved by attaining equilibrium at a
low value of T. .

The limit (9) suggests the following simple algorithm, which is known as ‘simu-
lated annealing’ (Kirkpatrick, Gelatt and Vecchi 1983). (1) Distribute a number of
copies of the model-algorithm system uniformly over the state space. This uniform
distribution corresponds to a Boltzmann distribution at T = co. (2) Decrease T
gradually from infinity to zero over a large number of steps, and let the system
equilibrate approximately at each step. After this process is terminated, we have for
each system, p, =~ 1.

A serious problem with this algorithm is that at low values of T, approximate
equilibrium can only be attained in a large number of steps. It is therefore necessary
to run the algorithm when the system is out of equilibrium, and in this case, (9) does
not apply.

For non-equilibrium systems with ground state probability py(T), we have in
general,

po(T) > 1y < 1 as T -0, (10)

where the probability 7, depends on the way the temperature decreases with time.
We must now find the optimal annealing schedule T'(¢), satisfying the constraints

TO)> 1 (11)
and
T(tmar) = 0, (12)

where ¢ is the time measured in number of Metropolis moves.

The optimal annealing schedule T(t) should maximize n, for a given, finite
number of iterations ¢, (a given run time).

A solution has been proposed by Nulton and Salamon (1988). They suggest that
the optimal annealing schedule keeps a constant difference between the (non-equi-
librium) mean value {E) of the objective function of the system, and the mean value
(E>., which the objective function would have had, if the system were in equi-
librium at the considered temperature. The distance should be measured in units of
the standard deviation o4(T) of the fluctuating objective function, i.e.
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By =B _, )

og(T) ’

where v is a constant named ‘the thermodynamic speed’.
Combining (13) with the differential equation for simple, thermodynamic relax-
ation

KEY _ (E)—<(Eyy
dt «(T)
where &(T) is the relaxation time of the system at temperature T, and the relation-

ship between o(T) and the heat capacity C(T) of the system at temperature T is
given by

(14

oyT)

o(T) = T (15)
the following first-order differential equation in T(¢) is obtained
dT vT

& an/am

Simulated annealing using a schedule satisfying (16) is denoted ‘simulated annealing
at constant thermodynamic speed’. This implementation of simulated annealing is
superior to previously used implementations (Salamon et al. 1988; Jakobsen et al.
1988).

The constant thermodynamic speed v in (16) is adjusted such that the tem-
perature schedule resulting from the integration of (16) satisfies (11) and (12).

Andresen et al. (1988) describe methods by which C(T) and &T) can be estimated
from statistical information about the system, collected during the annealing
process. They suggest that a transition frequency matrix Q, for attempted tran-
sitions, is formed during the annealing process. For each attempted transition, the
values of the objective function, E y;en aNd E,yemprea» fOr the current model and the
trial model respectively, are saved. The ijth element of the current Q can then be
determined since

(16)

n;;
Qij = Z_"Lu’ 17

where n;; is the total number of attempted transitions (since the first iteration)
between models having values of E between E; and E; + dE, and models for which E
lies between E; and E; + OE. Here, JE is the constant difference between two suc-
cessive, preselected levels, E, and E,., of the objective function. A temperature
dependent matrix G(T) can now be formed by multiplying elements of Q corre-
sponding to j > i with Boltzmann factors

exp (— (E%E)) (18)

and adjusting the diagonal elements of G(T) so as to keep the row sums equal to 1.
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G(T) is a stochastic matrix (its row sum is equal to 1), and its largest eigenvalue
is therefore 1. Let p be the corresponding, normalized eigenvector.

The temperature-dependent variance ¢%(T) of the fluctuating objective function
can now be estimated as

oi(T) = CEXT)) — <E(T))?, (19)
where
CE™ =Y (E)'p;. (20)

The heat capacity is now calculated from (15).
If the second largest eigenvalue of G(T) is A,(T), the relaxation time can be
estimated as

«T) = !

Tl (Ay)

@1

COMPUTER SIMULATIONS

We used simulated annealing at constant thermodynamic speed. We ran 50 system
copies in parallel, each one having a unique starting model and a unique random
number sequence.

Running several copies of the model-algorithm system enabled an assessment of
the distribution of the computed model parameters. We used the dispersion of the
final acoustic impedance values of the ten best models found, as a measure of the
quality of the model optimization methods. This dispersion reflects the degree of
non-uniqueness of the inverse problem, the influence of noise on the model estimate,
and possible errors due to lack of convergence of the search algorithm.

In the present implementation of seismic trace inversion, the subsurface model
was parametrized by the two-way traveltimes of the reflectors, and the acoustic
impedances of the homogeneous layers between the reflectors. In the simulated
annealing optimization, each move in the model space consisted of perturbing a
randomly selected two-way traveltime or reflection coefficient, which obeyed the
constraints imposed by the a priori information. Synthetic seismic traces were
modelled by convolving subsurface reflectivities with a known, highly oscillatory
wavelet, and the objective function used in the optimization was the energy of the
difference between the true data and the modelled data. After the model opti-
mization process, the surface acoustic impedance and the reflection coefficient series
were mapped into acoustic impedance as a function of two-way traveltime.

TEST BASED ON REAL WELL DaATA

The simulated annealing inversion method was compared with iterative improve-
ment by solving a trace inversion problem in which the data consisted of a synthetic
trace generated from well data. In the inversion we searched for an acoustic imped-
ance function that was stepwise constant in depth and had a limited number of
discontinuities, i.e. a ‘blocked’ impedance function.

Iterative improvement is one of the well-established traditional optimization
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methods, and is therefore well suited as a standard of reference for the results
obtained by simulated annealing. The iterative improvement method is very simple:
a random move (obeying the move class specifications) in the model space is
accepted only if it results in an improvement (a decrease) in the value of the objec-
tive function. It should be noted that iterative improvement is a local optimization
method, and hence it is likely to converge towards local minima when used on the
considered, global optimization problem.

The subsurface model used in the generation of the test data was derived from
the sonic and the density logs of the onshore well Lagumkloster-1, situated in South
Jutland in Denmark. Based on calibrated velocity and density logs, and a seismic
wavelet extracted from a seismic line close to the well, a synthetic trace was gener-
ated (Fig. 2), using the detailed impedance function from the well (Fig. 1).
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FiG. 1. The computed acoustic impedance (left) and reflection coefficients (right) versus
two-way traveltime in the target zone.
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F1G. 2. The detailed acoustic impedance for the target zone (left), the estimated wavelet
(centre), and the synthetic trace generated from the impedance log (right).

A manually blocked model for the Zechstein sequence is shown in Fig. 3. It is
seen that ten homogeneous layers are sufficient to approximate the actual
impedance log in this case. However, in order to simulate a realistic situation,
we over-parametrized our model, assuming that it consisted of 15 homogeneous
layers. The goal of the inversion was to reproduce approximately the well data from
the seismic data and from the prior geological knowledge, without using the well
log information.

The a priori information in the considered inverse problem is assumed to be
sparse. The reflection coefficients are only known to be between —0.4 and 0.4, and
there are no restrictions on the two-way traveltimes for the layer interfaces, except
that they fall within the considered target zone.
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Fi1G. 3. The computed acoustic impedance (left) and the interpreter’s blocking of the acoustic
impedance (right) for the well Logumkloster-1, resulting in a ten-layer model in the target
zone.

The sparse prior information leads to multiple local minima for the objective
function, typically appearing at parameter values representing cycle skips.

A 200 ms target zone from the synthetic reflection data set is inverted for a
15-layer impedance model. An important exploration problem to be solved in this
area is to discriminate between salt layers and porous carbonate layers, on the basis
of their acoustic impedance. In the data set used, a salt layer is found in the interval
between 1.780 and 1.790 s, whilst the interval between 1.800 and 1.815 s is occupied
by a porous carbonate.

An equal number of iterations were allocated to the two methods. First, 50
iterative improvement runs were performed, starting at different points, randomly
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distributed in the model space. The individual runs were terminated when no signifi-
cant changes in the value of the objective function had taken place within 500 iter-
ations. The purpose of this terminating criterion was to optimize the use of the
iterative improvement technique so that no time should be wasted by iterating after
convergence to a local minimum had occurred. A total of 47800 iterations were
performed in this way.

Secondly, 50 simulated annealing runs were performed, all using the same
number of iterations (namely 956), so that the total number of iterations was 47 800.
Hence, no attempt was made to optimize the number of runs (or, equivalently, the
number of iterations per run) performed by the annealing algorithm with the 47 800
iterations.
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FIG. 4. The best acoustic impedances found by simulated annealing (left), and by iterative
improvement (right). The true model is shown dotted.
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In order to assess the performance of the two considered model optimization
methods, we have chosen to display the ten best models obtained from each method,
together with the true well data.

In this example, the chosen, blocked model parametrization is incapable of
explaining all the data, due to the convolutional noise generated by the fine detail in
the logs. This means that even the optimal solution has a finite, positive error
energy. The best result obtained by simulated annealing is, however, in very good
agreement with the well data (Fig. 4). In contrast to this, the best model obtained by
iterative improvement fails to resemble the well data in the deeper part of the target
zone. In particular, salt and porous carbonate are unlikely to be distinguished by
inspection of the iterative improvement results. The near-optimal simulated annealing
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FIG. 5. The ten best impedance models obtained by simulated annealing (left) and by iterative
improvement (right). The true model is shown dotted.
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solution assigns separate impedance values to the two rock types, and hence enables
an unambiguous rock identification.

To illustrate the uncertainties in the inversion procedures, the ten best computed
models from the two methods are shown in Fig. 5. For the simulated annealing
method, all the models shown are close to the true model, and the estimated imped-
ances in the salt layer and in the porous carbonate layer are clearly separated. The
best models from the iterative improvement method exhibit a gross divergence with
increasing two-way traveltime, indicating that little confidence can be attached to
the result of iterative improvement in this example.

CONCLUSION

We have investigated the use of a global, stochastic inverse method, i.e. simulated
annealing, to solve the seismic trace inversion problem. The inverse problem was
formulated as a search for a weakly constrained, blocked impedance function. The
seismic data used were generated synthetically by convolving a known, highly oscil-
latory wavelet with the true reflectivity function from an onshore well located in
South Jutland, Denmark. Hence, convolutional noise from a large number of thin
layers in the subsurface was present in the data.

The simulated annealing algorithm employed in the present study was based on
recent improvements by Nulton and Salamon (1988) and Andresen et al. (1988), in
which statistical information about the system to be optimized is used to improve
the performance of the algorithm. A traditional, stochastic model optimization
method, iterative improvement, was used as a standard of reference when investigat-
ing the accuracy of the simulated annealing approach. 50 copies of the system, dif-
fering only in the starting models and the random sequences used, were run in
parallel for both types of optimization. The dispersion of the ten best models
obtained, and the similarity between these models and the true model were used as a
measure of the performance of the algorithms.

The result of the investigation was that the best solutions found by the improved
simulated annealing schedule displayed a significantly lower dispersion than the sol-
utions found by iterative improvement, using the same total number of iterations.
Furthermore, the best simulated annealing solutions were closest to the true model.
The significance of these results was emphasized by the fact that only for iterative
improvement was an attempt made to optimize the computations with respect to
the number of iterations performed in each run.

The particular exploration problem of discriminating between salt and low
porosity carbonate on the basis of the acoustic impedances of these rocks was
solved by the simulated annealing approach, but remained unsolved by the iterative
improvement algorithm.
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