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Linear Least Squares Problems

What is a least squares problem?

What is a least squares problem?

Given an equation
f(x) = b (1)

where the vector b and the function f are known, and the vector x
is unknown.

Define the misfit:
E(x) = ‖f(x)− b‖2 (2)

The Least-Squares solution to (1) is then

x̂ = Argmin E(x) (3)
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The linear least squares problem

The linear least squares problem

If the relation between x and b is linear :

Ax = b (4)

the Linear least squares problem is to minimize

E(x) = ‖Ax− b‖2. (5)

This can be done analytically, and a solution vector x̂ satisfies:

∀j :
∂E

∂x̂j
= 0 (6)
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Existence and Uniqueness

The well-determined problem

Existence and Uniqueness
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Existence and Uniqueness

The overdetermined (overconstrained) problem

The overdetermined (overconstrained) problem

Figure: The overdetermined problem is characterized by a unique, but
(usually) inexact solution.
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Existence and Uniqueness

A solution to the overdetermined problem

A solution to the overdetermined problem

If the linear problem
Ax = b (7)

is overdetermined, minimizing the misfit

E(x) = ‖Ax− b‖2. (8)

through

∀j :
∂E

∂x̂j
= 0 (9)

leads to the following formula for the least squares estimate:

x̂ = (AT A)−1AT b (10)
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Existence and Uniqueness

The underdetermined problem

The underdetermined problem

Figure: The underdetermined problem is characterized by infinitely many
exact solutions.
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Existence and Uniqueness

A solution to the underdetermined problem

A solution to the underdetermined problem

If the linear problem
Ax = b (11)

is underdetermined, minimizing the misfit

E(x) = ‖Ax− b‖2. (12)

through

∀j :
∂E

∂x̂j
= 0 (13)

leads to the following formula for the least squares estimate:

x̂ = AT (AAT )−1b (14)
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Existence and Uniqueness

The mixed-determined problem

The mixed-determined problem

Figure: The mixed-determined problem is characterized by infinitely
many (usually) inexact solutions.
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Existence and Uniqueness

An approximate solution to the mixed-determined problem

An approximate solution to the mixed-determined problem

If the linear problem
Ax = b (15)

is mixed-determined, minimizing the modified misfit

E(x) = ‖Ax− b‖2 + ε2‖x‖2. (16)

for suitable small ε leads to the following approximate formula for
the least squares estimate:

x̂ = (AT A + ε2I)−1AT b (17)

This method is called Tikhonov Regularization.
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Example: The inverse geomagnetic problem

Example: The inverse geomagnetic problem

Figure: Magnetization of the ocean floor.
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Example: The inverse geomagnetic problem

Model of the ocean bottom

 
Sea surface 

Sea bed 
 

h 

x 

Figure: Model of the ocean bottom. The magnetization below the sea
bottom is represented by a series of vertical, thin plates of constant
magnetization.
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Example: The inverse geomagnetic problem

Magnetic data

Figure: Observed vertical magnetic field profile perpendicular to the
ocean ridge.
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Example: The inverse geomagnetic problem

Relation between model parameters and data

If we assume that the magnetization of the ocean bottom depends
only on the x-coordinate, the magnetic field di measured in xi can
be expressed as

di =
∫ ∞
−∞

gi(x)m(x)dx, (18)

where m(x) is the magnetization, and

gi(x) = −µ0

2π
(xi − x)2 − h2[
(xi − x)2 + h2

]2 (19)

is the magnetic field at xi generated by an infinitesimally thin
vertical “plate” of magnetized material, located at x.
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Example: The inverse geomagnetic problem

Thin-plate fields

Figure: Magnetic fields from thin, vertical plates of magnetized material
below the sea bottom at x = -15 km and x = 15 km
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Example: The inverse geomagnetic problem

Model discretization 1

Consider a finite set of x-values: x1, x2, . . . , xM . Let us represent
m(x) by the vector:

m = (m(x1),m(x2), . . . ,m(xM )) (20)

This leads to a discretized expression:

gi(xj) = −µ0

2π
(xi − xj)

2 − h2[
(xi − xj)

2 + h2
]2 (21)
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Example: The inverse geomagnetic problem

Model discretization 2

We can now discretize the problem:

di =
∫ ∞
−∞

gi(x)m(x)dx

≈
M∑

k=1

gi(xk)mk∆x
(22)

Putting Gij = gi(xj), we have

d = Gm (23)

which is a matrix equation relating data d to model parameters m.
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Example: The inverse geomagnetic problem

A least-squares solution based on Tikhonov Regularization

Figure: Estimated (symmetric) magnetization m̂ of the ocean bottom.
The regularization parameter ε is chosen such that the N data are barely
fitted within their uncertainty: ‖dobs −Am̂‖2 ≈ Nσ2

.
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Example: The inverse geomagnetic problem

Data residuals

Figure: Re-computed data Am̂ compared to observed data dobs.
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Solving overdetermined problems

Error propagation for overdetermined problems

If the linear problem
Ax = b (24)

is (purely) overdetermined, the pseudoinverse of A is defined as

A+ = (AT A)−1AT , (25)

and the Least Squares solution is x̂ = A+b.

A small perturbation ∆b of b will now give rise to a perturbation
of the solution:

∆x̂ = A+∆b, (26)

that is,
‖∆x̂‖ ≤ ‖A+‖‖∆b‖. (27)
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Solving overdetermined problems

Error propagation for overdetermined problems

Let us compute the relative perturbation (error) of x̂:

‖∆x̂‖
‖x̂‖

≤ ‖A+‖‖∆b‖
‖x̂‖

= cond(A)
‖b‖ · ‖∆b‖
‖A‖ · ‖x̂‖ · ‖b‖

≤ cond(A)
‖b‖ · ‖∆b‖
‖Ax̂‖ · ‖b‖

= cond(A)
1

cos(θ)
‖∆b‖
‖b‖

(28)

where cond(A) = ‖A‖‖A+‖ is A’s condition number, and θ is
the angle between b and Ax̂.
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Solving overdetermined problems

Solving overdetermined problems: QR-Factorization

QR factorization

reduces a real n×m matrix A with n ≥ m and full rank to a
simple form.

improves numerical stability by minimizing errors caused by
machine roundoffs.

A suitably chosen orthogonal matrix Q will triangularize A:

A = Q
(

R
O

)
(29)

with the n× n right triangular matrix R.
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Solving overdetermined problems

Solving overdetermined problems: QR-Factorization

The equation
x̂ = (AT A)−1AT b (30)

now becomes

x = (RT QT QR)−1RT QT b

= (RT R)−1RT QT b

= R−1QT b

(31)

or,
Rx = QT b (32)
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Solving overdetermined problems

QR-Factorization using the Gram-Schmidt process

Let A = (a1,a2, . . .aM ) and

u1 = a1

u2 = a2 − proje1
(a2)

u3 = a3 − proje1
(a3)− proje2

(a3)
(33)

where

e1 =
u1

‖u1‖

e2 =
u2

‖u2‖

e3 =
u3

‖u3‖
...

(34)
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Solving overdetermined problems

QR-Factorization using the Gram-Schmidt process

Now the factorization

A = QR = (Q1 Q2)
(

R1

O

)
= Q1R1 (35)

is accomplished by
Q1 = (e1, . . . em) (36)

and

R1 =


〈e1,a1〉 〈e1,a2〉 〈e1,a3〉 . . .
〈e2,a1〉 〈e2,a2〉 〈e2,a3〉 . . .
〈e3,a1〉 〈e3,a2〉 〈e3,a3〉 . . .

...
...

...

 (37)
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Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD)

The mixed-determined problem (again)

The mixed-determined problem (again)

Figure: The mixed-determined problem is characterized by infinitely
many (usually) inexact solutions.
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Singular Value Decomposition (SVD)

The mixed-determined problem (again)

A coordinate free picture
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Singular Value Decomposition (SVD)

The mixed-determined problem (again)

Rotated coordinate systems in X and B spaces
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Singular Value Decomposition (SVD)

The mixed-determined problem (again)

Rotated coordinate systems in X and B spaces

Orthogonal matrix of coordinate
vectors in X:

V = (v1,v2,v3) (38)

Orthogonal matrix of coordinate
vectors in B:

U = (u1,u2,u3) (39)
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Singular Value Decomposition (SVD)

The mixed-determined problem (again)

Singular value decomposition

A = UΣVT

= {u1,u2,u3}


λ1 0 0
0 λ2 0
0 0 λ3




vT
1

vT
2

vT
3

 (40)

where
λ1 ≥ λ2 ≥ λ3 ≥ 0. (41)
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Singular Value Decomposition (SVD)

The mixed-determined problem (again)

The transformed problem

If we put
x′ = VT x (42)

and
b′ = UT b (43)

we obtain

Ax = b

UΣVT x = b

ΣVT x = UT b

Σx′ = b′

(44)
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Singular Value Decomposition (SVD)

The mixed-determined problem (again)

Solution to the the transformed problem

The solution is now trivial. Assume that λ1 ≥ λ2 > λ3 = 0. Then

λ1x
′
1 = b′1 ⇒ x′1 =

b′1
λ1

λ2x
′
2 = b′2 ⇒ x′2 =

b′2
λ2

λ3x
′
3 = b′3 ⇒ x′3 can be chosen arbitrarily

(45)

This shows that small singular values amplify noise:

If λi is small, a noisy b′i results in a very noisy x′i !

and that zero singular values result in underdetermination:

If λi = 0, x′i is unconstrained !
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Singular Value Decomposition (SVD)

The mixed-determined problem (again)

Returning to the untransformed problem

Once we have found x′, we can find x through

x = Vx′ (46)

If we have chosen the unconstrained components of x′ to be 0, we
arrive at the least squares solution:

x̂ = VpΣ−1
p UT

p b

= {v1,v2}
{
λ1 0
0 λ2

}−1{ uT
1

uT
2

} (47)

Note that well-determined, ill-determined and undetermined
components of x′ mix in the expression for x !
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