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L Linear Least Squares Problems

LWhat is a least squares problem?

What is a least squares problem?

Given an equation

f(x)=b (1)
where the vector b and the function f are known, and the vector x
is unknown.
Define the misfit:
E(x) = | f(x) —b| (2)

The Least-Squares solution to (1) is then

x = Argmin E(x) (3)
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LThe linear least squares problem

The linear least squares problem

If the relation between x and b is linear :
Ax=Db) (4)
the Linear least squares problem is to minimize
E(x) = [|Ax —b|*. (5)
This can be done analytically, and a solution vector X satisfies:

oF (6)

Vi : =0
STy
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L The well-determined problem

Existence and Uniqueness
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L The overdetermined (overconstrained) problem

The overdetermined (overconstrained) problem
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Figure: The overdetermined problem is characterized by a unique, but
(usually) inexact solution.
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LA solution to the overdetermined problem

A solution to the overdetermined problem

If the linear problem
Ax=b (7)

is overdetermined, minimizing the misfit

E(x) = || Ax — b]|*. (8)
through
. OFE
vy 05, 0 (9)

leads to the following formula for the least squares estimate:

x=(ATA)'ATD (10)
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The underdetermined problem
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Figure: The underdetermined problem is characterized by infinitely many
exact solutions.
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A solution to the underdetermined problem

If the linear problem
Ax=Db

is underdetermined, minimizing the misfit
E(x) = |Ax —b]|.
through

oE

Vi : =0
STy

leads to the following formula for the least squares estimate:

x=AT(AAT) b

(11)

(12)

(13)

(14)
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The mixed-determined problem

Figure: The mixed-determined problem is characterized by infinitely
many (usually) inexact solutions.
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An approximate solution to the mixed-determined problem

If the linear problem
Ax=Db (15)

is mixed-determined, minimizing the modified misfit
E(x) = |Ax — b]|* + €*||x||*. (16)

for suitable small € leads to the following approximate formula for
the least squares estimate:

x=(ATA+ 1) 1ATD (17)

This method is called Tikhonov Regularization.
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Example: The inverse geomagnetic problem

Figure: Magnetization of the ocean floor.
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Model of the ocean bottom

Sea surface

Figure: Model of the ocean bottom. The magnetization below the sea
bottom is represented by a series of vertical, thin plates of constant
magnetization.
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Magnetic data
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Figure: Observed vertical magnetic field profile perpendicular to the
ocean ridge.
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Relation between model parameters and data

If we assume that the magnetization of the ocean bottom depends
only on the z-coordinate, the magnetic field d; measured in z; can
be expressed as

d; = /00 gi(x)m(z)dz, (18)

—00

where m(x) is the magnetization, and

gi(z) = _;‘7(; [((561 - 35))22 _:22 2 (19)
T, —T) +

is the magnetic field at z; generated by an infinitesimally thin
vertical “plate” of magnetized material, located at .
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Thin-plate fields
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Figure: Magnetic fields from thin, vertical plates of magnetized material
below the sea bottom at z = -15 km and = = 15 km
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Model discretization 1

Consider a finite set of x-values: x1,xs,...,x). Let us represent
m(x) by the vector:

m = (m($1),m($2),...,m($M)) (20)
This leads to a discretized expression:

po  (wi — ;)% — b

2m [(l‘l — Jjj)2 + h?

gi(x;) = 2 (21)
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Model discretization 2

We can now discretize the problem:

d; :/ gi(x)m(z)dz
M (22)
~ Z gi(xp)mi Az
k=1
Putting G;; = gi(z;), we have
d=Gm (23)

which is a matrix equation relating data d to model parameters m.
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A least-squares solution based on Tikhonov Regularization
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Figure: Estimated (symmetric) magnetization m of the ocean bottom.
The regularization parameter € is chosen such that the N data are barely
fitted within their uncertainty: ||dps — Aml||? ~ No?
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Data residuals
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Figure: Re-computed data Am compared to observed data d,ps.
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Error propagation for overdetermined problems

If the linear problem
Ax=b (24)

is (purely) overdetermined, the pseudoinverse of A is defined as
AT = (ATA)IAT, (25)
and the Least Squares solution is %X = A™b.

A small perturbation Ab of b will now give rise to a perturbation

of the solution:
Ax = ATAb, (26)

that is,
[A%|| < |AT][|Ab]. (27)
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Error propagation for overdetermined problems

Let us compute the relative perturbation (error) of x:

A%] b
&S AR
bl - ||Ab
cona(a) bl 18D
AT T=T - bl
(28)
 cona(ay DL 14D
< TAZ] -]
1 |Ab|
= cond(A) —_
cos(@) o]

where cond(A) = ||A||||A*]| is A’s condition number, and 6 is
the angle between b and Ax.
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Solving overdetermined problems: QR-Factorization

QR factorization

m reduces a real n x m matrix A with n > m and full rank to a
simple form.

m improves numerical stability by minimizing errors caused by
machine roundoffs.

A suitably chosen orthogonal matrix Q will triangularize A:

Azq(ﬁ) (29)

with the n x n right triangular matrix R.
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Solving overdetermined problems: QR-Factorization

The equation
x=(ATA)'ATD (30)

now becomes
X = (RTQTQR)flRTQTb
= (RTR)"'RTQ"b (31)
— RleTb

or,
Rx = Q’b (32)
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QR-Factorization using the Gram-Schmidt process

Let A = (aj,ag,...ay) and

u]; = ap
up = ay — proje, (az) (33)
u3 = a3 — Proje, (a3) — proje, (as)
where
uy
e =
F
u2
7 T
e (54)
e3

- Jfus]
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QR-Factorization using the Gram-Schmidt process

Now the factorization

A=QR=(Q Q) < o ) = QiR; (35)

is accomplished by

Q1= (e1,...ep) (36)

and

(e3,a1) (e3,az) (es,as) (37)
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Singular Value Decomposition (SVD)
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L The mixed-determined problem (again)

The mixed-determined problem (again)

Figure: The mixed-determined problem is characterized by infinitely
many (usually) inexact solutions.
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L The mixed-determined problem (again)

A coordinate free picture
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Rotated coordinate systems in X and B spaces

I. |°"
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L The mixed-determined problem (again)

Rotated coordinate systems in X and B spaces

b
2
K yt \ y
Orthogonal matrix of coordinate Orthogonal matrix of coordinate
vectors in X: vectors in B:

V= (V17 Vo, Vg) (38) U= (ul, ug, U3) (39)
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L The mixed-determined problem (again)

Singular value decomposition

A =UxVvT
T
)\1 0 0 Vi (40)
= {ul,UQ,U3} 0 )\2 0 Vg
0 0 X vi

where
AL > Ao > A3 > 0. (41)
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L The mixed-determined problem (again)

The transformed problem

If we put
x' =VTx (42)
and
b’ =U™b (43)
we obtain
Ax=Db
UsvVix=b
(44)
>Vix =UTb

¥x' =Db’
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L The mixed-determined problem (again)

Solution to the the transformed problem

The solution is now trivial. Assume that Ay > Ay > A3 = 0. Then

%
/\113/1 = bll = :L’ll = 1
A1
/
Aty =by = 1'y= b—z (45)
A2

A3z'3 =b'3 = 12’3 can be chosen arbitrarily

This shows that small singular values amplify noise:

If \; is small, a noisy ¥'; results in a very noisy z/; !

and that zero singular values result in underdetermination:

If \; =0, 2’; is unconstrained !
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L The mixed-determined problem (again)

Returning to the untransformed problem
Once we have found x/, we can find x through
x = Vx/ (46)

If we have chosen the unconstrained components of x’ to be 0, we
arrive at the least squares solution:

x =V, %, 'Ub
-1
. )\1 0 u{ (47)
L)

Note that well-determined, ill-determined and undetermined
components of x’ mix in the expression for x !



	Linear Least Squares Problems
	What is a least squares problem?
	The linear least squares problem

	Existence and Uniqueness
	The well-determined problem
	The overdetermined (overconstrained) problem
	A solution to the overdetermined problem
	The underdetermined problem
	A solution to the underdetermined problem
	The mixed-determined problem
	An approximate solution to the mixed-determined problem

	Example: The inverse geomagnetic problem
	Solving overdetermined problems
	Singular Value Decomposition (SVD)
	The mixed-determined problem (again)




