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1 Introduction

These notes provide a description of a time dependent, zonally averaged, one-dimensional energy
balance climate model. I.e., it is a model, which is designed to simulate the temporal evolution
of the surface temperature at each latitude where the model temperature represents an average
along all longitudes, i.e., averaged in the west - east direction around the whole Earth. The
model is symmetric around equator, i.e., the temperature at, e.g. 50◦N, is the same as that at
50◦S. Also the model is a so called aqua-planet model, which - in this context - means that the
simulated surface temperature represents the average temperature of a layer of water. In its
present configuration the model has no annual cycle.

Technically the model is set up as an Internet based application, where the user interactively
can modify a number of input parameters.

When launched the model first performs a long so-called control simulation which is sup-
posed to represent present day climate conditions. The final state of this simulation is then
used as starting point for a second simulation of the same length. In this second run the model
can be exposed to an external user defined (radiative) forcing in addition to the present day
short and long wave forcings.

In the following, section 2 provides a brief introduction to the simpliest types of energy
balance models while section 3 describes the specific model used here. Section 4 is an overview of
the experimental setup which is used when the model is run, and lists different input parameters
to the model, which may be changed by the user, and section 5 describes practical details when
running the model. Finally, section 6 suggests a few exercises that can be used to understand
the model and various basic concepts of climate research.

∗Corresponding author address: Eigil Kaas, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copen-
hagen, Denmark. E-mail: kaas@gfy.ku.dk
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2 Simple energy balance models

Considering our entire planet over a long period the absorbtion of solar radiation must be
balanced approximately by radiation emitted by the Earth system to space. Thus, in the
simplest type of climate model one estimates a so called effective planetary black body emission
temperature Te, which balances the globally averaged absorbed solar radiation. Since the total
area of the Earth is 4πa2, where a is the radius of the Earth, we therefore get that the total
amount of energy emitted (i.e. lost) to space, the global average of the so-called outgoing long
wave radiation OLR, is:

4πa2OLR = 4πa2σT 4
e . (1)

This is Stefan-Bolzmann’s law giving the total radiation emitted from a perfect black body with
temperature Te and with an area of 4πa2. In (1) σ= 5.67×10−8W/m2/K4 is Stefan-Bolzmann’s
constant. Since the temperature of the Earth is low as compared to the sun, the actual radiation
emitted by the Earth system is dominated by infrared wavelengths, as opposed to the visible
wavelengths emitted from the sun. The infrared radiation is often referred to as the long wave
or thermal radiation, and the solar radiation as the short wave radiation (of course referring to
the actual wavelength of the radiation).

The total radial flux of solar radiation (energy per squaremeter) at the Earth’s distance
from the sun is the solar ‘constant’, S ≈ 1360 W/m2. Since the area of the Earth disc, as
seen from the sun is πa2, the total downward component (as seen from the top of the Earth’s
atmosphere) of solar radiation is πa2S. A certain fraction, the planetary albedo α, of this short
wave radiation is reflected back to space. Therefore the total amount of short wave radiation
absorbed on the planet is:

Ein = πa2S(1− α) . (2)

The energy balance requirement Ein − 4πa2OLR ≈ 0 gives the following time independent
simple energy balance climate model:

S(1− α)

4
− σT 4

e = 0 . (3)

Solving for Te we get Te=255K, using a satellite based estimate of α = 0.29.
Obviously, the Earth’s effective temperature, i.e. solving (3), constitutes a poor model for

the temperature near the Earth’s surface: At present the area weighted arithmetic mean of the
near surface global temperature Ts is about 288K. The main reason for the difference δT =
Ts−Te is the atmosphere - or greenhouse - effect: The atmosphere contains clouds, greenhouse
gases and particles which can absorb and emit infrared radiation. The radiation to space is on
the average emitted from molecules and cloud droplets / ice crystals relatively high up in the
atmosphere where the temperature is much lower than the temperature of the surface where
most solar radiation is absorbed. This is the essence of the greenhouse effect: The average
emission temperature for molecules emitting fotons which escape to space without being re-
absorbed higher up is much lower than the surface temperature of the Earth. Fotons emitted
from the relatively warm surface will, with a high likelyhood, be absorbed in the atmosphere,
i.e. they will only rarely escape directly to space. Put in other words: the greenhouse effect
act as an isolating blanket keeping the surface considerably warmer than it would be without
the existence of the atmosphere.

Normally the strength of the greenhouse effect is defined from the amount of downward
long wave radiative energy at the Earth’s surface. However, one can also use δT=Ts − Te as a
simple measure of the strength of the greenhouse effect. The stronger the greenhouse effect the
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Figure 1: Estimated global averages of energy fluxes (W/m2) between the surface, the atmo-
sphere and space. Note that a net absorbed amount of energy (0.6 W/m2) into the surface
(i.e., mainly the oceans) has been ”allowed” to account for the best estimate of actual climate
energy imbalance. (From IPCC (2013)).

larger δT , and thereby σT 4
s if S and α are unchanged. We can therefore re-write (3) as follows,

where the ”unknown” variable is Ts
1:

S(1− α)

4
− σ(Ts − δT ))4 = 0 . (4)

It can be seen from Figure 1 that the largest contribution to the present day planetary
albedo of α = 0.29 is due to clouds, aerosols and gases2. In addition to their direct influence,
aerosols also have an indirect influence on α. The indirect effect is due to the role of some
aerosols as cloud condensation nuclei. It is noted, that the present day surface contribution to
α is less than half of that due to clouds. Furthermore, only a relatively small fraction of the
present day surface contribution to α can be ascribed to ice and snow.

The present day greenhouse effect, corresponding to δT = 33K, is determined by the actual
atmospheric state including its distribution of water vapour, well mixed greenhouse gases3,
clouds and other other trace gases gases such as O3. Also aerosols contribute directly to the
greenhouse effect, although this contribution is very small and much smaller than the direct
effect of aerosols on α. Indirectly, via clouds, aerosols are of cause important for the strength of
the greenhouse effect. According to Figure 1 the total long wave atmospheric radiative forcing

1Note that (4) leads to the present day Ts of 288 K when the present day values for α and δT , i.e. 0.31 and
34 K, respectively, are inserted.

2 Some well mixed greenhouse gases, e.g. CO2, contribute slightly to α.
3Well mixed greenhouse greenhouse gases, i.e. CO2, CH4, N2O and CFC gases, survive so long time in the

atmosphere that their concentration is almost uniform.
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is about 396 − 239 = 157 W/m2, i.e, if the atmosphere was suddenly removed completely the
Earth would loose 396 W/m2 in the long-wave domain, instead the actual 239 W/m2.

So far we have just considered the present day situation. What happens if the climate
starts to warm up due to increased solar irradiance, i.e. S increases? Basically (4) continues
to apply, but we have to be aware that both α and δT depend on the actual climate state, i.e.
Ts. Therefore we re-formulate the climate model as follows

S(1− α(Ts))

4
− σ(Ts − δT (Ts))

4 = 0 . (5)

The α and δT dependencies on Ts describe short and long wave feedbacks, respectively,
in the climate system. For example the planetary albedo α will increase if Ts decreases from
its present value of 288 K. This is due to increased ice and snow covered areas. Similarly,
δT decreases when it becomes colder, mainly because a colder atmosphere can hold less water
vapour, which is the dominating greenhouse gas. The opposite applies when Ts increases: δT
increases and α decreases, although the influence on α vanishes at some point when all snow
and ice has melted.

Since both α and δT depend on the amount and type of cloud cover, which again depends
on Ts, all cloud feedbacks are supposed to be included in the α and δT functions. In general,
the functional influence of Ts on α and δT involves a huge number of climate feedback processes
which can enhance or damp the initial change in Ts.

In analyses of climate processes it is customary to introduce the concept of radiative forcing,
i.e. an imposed imbalance of the planetary radiation, which is due to some process that is not
an inherent part of the climate system. Here we will distinguish between radiative forcings that
are related to changes in the solar irradiance, and radiative forcings, F , of terrestrial origin.
The global energy balance model can then be re-written once again:

F +
S(1− α(Ts))

4
− σ(Ts − δT (Ts))

4 = 0 . (6)

Note: a change in S of 1 Wm−2 corresponds to a global energy imbalance (radiative forcing)
of 1× (1− α)/4 Wm−2.

The terrestrial radiative forcing, F , can be due to geological and biological processes4, and
anthropogenic activities. Geological processes can change the composition of the atmosphere,
e.g. the CO2 concentration, and the surface characteristics of the Earth. On short time scales,
the strongest natural contribution to F comes from volcanic eruptions which emit huge amounts
of gases and particles into the atmosphere. In particular the sulphate (SO2) emissions from
explosive volcanoes can lead to formation of aerosols in the stratosphere, which in a year or
so after the eruption leads to a strong increase of the planetary albedo. The largest eruption
in recent years, resulting in a short term (about one year) negative F -value with a peak value
between −2 and −3 W/m2, was Pinatubo at the Phillipines in 19915. The total anthropogenic
greenhouse gas contribution to the F value (since pre-industrial times) has been about 2.5
W/m2. A main contribution to this number comes from the emission of CO2 and other green-
house gases. Note, that we have chosen to include the radiative forcing related to anthropogenic
greenhouse gases in the term F , although it would make more physical sense to implement such
a forcing as a change in the function δT (Ts).

A positive radiative forcing, i.e. F > 0, implies that Ts must increase a certain amount in
order to satisfy (6). However, the required increase is highly sensitive to the above mentioned

4If the climate system is considered to consist of the entire Earth system the natural geological and biological
contributions to F disappear and become part of the feedbacks. I.e. in a simple Earth System model they will
be included in α and δT .

5 Exersize: Calculate the change in planetary albedo, which, in terms of planetary radiative imbalance,
would correspond to a radiative forcing of F = −2.5 W/m2.
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Figure 2: An estimate of the globally and annually averaged temporal evolution of the instanta-
neous radiative forcing due to various agents, as simulated in the MIROC+SPRINTARS model
(Nozawa et al. (2005); Takemura and et al. (2005)).

climate system feedbacks: e.g. the more steeply δT increases with Ts the larger the increase in
Ts has to be.

As a final step we can make the global energy balance model time-dependent:

C
∂Ts
∂t

= F +
S(1− α(Ts))

4
− σ(Ts − δT (Ts))

4 . (7)

Here the left hand side represents the change per time unit of the heat content in a vertical
column of water with an area of 1 m2 and a heat capacity C = dρwLw, where d is the depth
of the water column, ρw the density of water and Lw the specific heat of water. The depth
d determines the thermal inertia of the model, i.e. how long time it takes to reach a new
equilibrium after some terrestrial radiative forcing F , or a change in the solar constant, has
been introduced.

3 Description of the meridional energy balance model

This section describes the meridional (south-north) one-dimensional model corresponding to
the zero-dimensional model in (7), i.e. the model simulates the temporal evolution of the
zonal mean6 surface temperature Ts at different latitudes. For simplicity we have introduced a
coordinate x in the meridional direction which is equal to sine of the latitude φ, i.e. x = sin(φ).
One of the advantages obtained by this choise is that the surface area of the Earth between two
x-values x1 and x2 is equal to 2a2π(x2 − x1), assuming the Earth has a pure spherical shape.

If we only consider so-called local radiative balance/imbalance, i.e. the local surface tem-
perature is determined by short wave input, long wave output and thermal inertia we obtain:

C
∂Ts(x, t)

∂t
= F +Q(x)(1− α(Ts(x, t)))− σ(Ts(x, t)− δT (Ts(x, t)))

4, (8)

6The zonal mean is the average along a latitude circle
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where Q(x) = 0.25S(1.− 0.241(3x2− 1)) is an approximation to the annual average downward
short wave flux at the top of the atmosphere (TOA) at the present day inclination of the
rotation axis of the Earth 7.

Note that from now on all dependent variables listed below are functions of x and t, as
opposed to the previous section, which only considered global mean quantities. The forcing F
in (8) is, however, introduced simply as a global mean forcing.

To obtain an estimate of the albedo, which agrees reasonably well with satellite based
present day estimates, we use the following expression 8:

α(Ts) = min[0.7, αa + αs(Ts)− αaαs(Ts)− Aaαs(T (s)] (12)

where αa = 0.2 + 0.08x2 and αs(Ts) = 0.60fi + (1− fi)(0.1 + 0.15x4) represent the atmospheric
(i.e. clouds, gases and particles) and surface (e.g. ice and snow) albedoes, respectively, and Aa

= 0.32(1 − 0.85x2) is an estimate of the fractional atmospheric absorption of solar radiation.
The parameter fi = k1(273− Ts) is the fraction of snow/sea ice with albedo set equal to 0.60.
Note, that fi is enforced to be within the interval [0,1]. The constant k1 is a user specified
constant, which determines the sensitivity of fi to the surface temperture Ts, i.e. k1 determines
the strength of the ice/snow albedo feedback. The default value of k1 is 0.06 K−1. Note that we
have not introduced any short wave atmospheric feedback parameter representing possible (and
likely) short wave cloud feedbacks. In (12), and in what follows, we have for brewity omitted
the functional arguments (x, t) for Ts and x for αa and Aa, respectively.

We express the functional dependency of δT on Ts, i.e. all types of long wave feedbacks, as

7Note that x varies between -1 (the South Pole) and 1 (the North Pole) and that the global integral of a
variable Ψ depending only on latitude (such as the zonal mean of a variable) can be written as:

2πa2
∫ π/2

−π/2
Ψ cosφdφ = 2πa2

∫ 1

−1

Ψdx. (9)

As an example the globally integrated downward solar radiation at the top of the atmosphere becomes:

2πa2
∫ π/2

−π/2
Q(φ) cosφdφ = 2πa2

∫ 1

−1

Q(x)dx

=
S

2
πa2

∫ 1

−1

(1− 0.241(3x2 − 1))dx = Sπa2 (10)

This is exactly the solar constant times the area of the Earth disc as seen from the sun.
If we introduce the notation < ψ > to indicate the global average of a variable ψ that is independent of

longitude we get

< ψ > =
2πa2

4πa2

∫ 1

−1

ψ(x)dx

=
1

2

∫ 1

−1

ψ(x)dx (11)

8The form of (12) is obtained in the following approximate way. Assume we have an atmospheric absorbtion
fraction Aa, an atmospheric albedo αa and a surface albedo αs and consider a unit area of the globe. Then
the amount of short wave radiation reaching the surface is Q(x)(1 − αa − Aa). Because of the surface albedo
only the fraction (1 − αs) of this number will actually be absorbed at the surface, i.e. the total amount of
absorbed radiation at the surface is Q(x)(1 − αa − Aa)(1 − αs) = Q(x)(1 − αa − Aa − αs + αaαs + Aaαs) =
Q(x)(1− (αa +Aa +αs −αaαs −Aaαs)). The amount of absorbed solar radiation absorbed in the atmosphere
is similarly Q(x)Aa so that adding the surface and the atmospheric absorptions we get the total amount of
solar radiation absorbed in the Earth system : Q(x)(1 − (αa + αs − αaαs − Aaαs)). This means that the
effective albedo is αa + αs − αaαs − Aaαs. Note, that in the above we have ignored second order effects of
re-absorption/reflection of reflected light. The limitation to the value 0.7 in (12) is based on observations of
present day albedo over Antarctica where the value is about 0.7
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a very simple linear relationship:

δT (Ts) = δT0 + k3(Ts − T00) = (δT0 − k3T00) + k3Ts (13)

where δT0 = 33.1K, T00 = 287.5K and k3 is a user-specified constant defining the strength of
the long wave feedbacks. Positive values of k3 correspond to positive feedbacks (i.e. enhancing)
and negative values to negative feedbacks (i.e. damping). The default value of k3 is 0.5. Due
to the simplicity of the expression in 13 we have to restrict the minimum value of δT (Ts) since
there will always be some small greenhouse effect left in the atmosphere due do well mixed
trace gases, clouds and aerosols. This minimum value has crudely been set to 10K.

If one uses the model in (8) to estimate the surface temperature at different latitudes, one
obtains much too high temperatures in the tropics and much too low temperatures at high
latutudes. This is because the atmospheric and oceanic flows in the real world give rise to a
large scale turbulent poleward transport of heat. Figure 3 show an estimate of these transports.
A simple way to include such transports in our energy balance model is to assume that energy
crossing a given latitude can be re-presented as a large scale turbulent eddy diffusion. Then
the convergence of this transport, i.e. the local accumulation of heat is:

∂

∂x

(
D(1− x2)∂Ts

∂x

)
(14)

where D is a heat diffusion coefficient. The derivation of (14) is given in the appendix.
It has been argued (Alexeev et al., 2005) that the meridional diffusion coefficient should

be sensitive to the global mean temperature < Ts > because the moisture content in the
atmosphere for a given temperature increase tends to rise more at low (warm) latitudes than at
high (cold) latitudes. Therefore the meridional transport of moisture, i.e. latent heat, increases.
Effectively, this represents an increase in the meriodional heat transport. We therefore use the
following expression to describe D

D = D0 max[0.5, 1.+ k2(< Ts > −T00)] (15)

The default values of D0 and k2 are 0.66 W/m2/K and 0.01 K−1, respectively.
Using the expression in (14) to describe the meridional heat flux convergence we obtain the

prognostic equation for our time dependent meridional energy balance model:

C
∂Ts
∂t

= F +Q(1− α(Ts))− σ(Ts − δT (Ts))
4 +

∂

∂x

(
D(1− x2)∂Ts

∂x

)
(16)

The value of C has everywhere been set to 1.046×109 J/K. This corresponds to a depth of
the ”water” of 250 m, and it gives an effective thermal inertia of the simple model which is in
reasonable agreement with dynamical climate models.

4 Experimental setup

The model equation (16) is solved numerically using so-called centered differences to estimate
the values of the spatial derivatives. Thus, the model represents Ts in large number of grid-
points ranging from the south-pole to the north pole. From a given initial temperature distribu-
tion the model steps forward in time thereby gradually changing the temperature distribution
in the gridpoints.

The model is initialised by a surface temperature profile which varies in the x-direction as
follows:

Ts(x, 0) = T0 − ax2 +
1

2

∫ 1

−1

ax2dx = T0 + a
(1

3
− x2

)
(17)
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Figure 3: An estimate of the meridional heat transport. The red curve shows the transsport
needed to balance satellite based estimates of radiative imballances at different latitudes. The
blue curve is an estimate of the atmospheric transport based on the European Re-analysis
project ERA15. The gren curve is the residual (i.e. total minus atmospheric) representing the
oceanic transport plus temporal storage. Units: PW = 1015W

Table 1: List of user specified values and their default values that are used if nothing (or ”0”)
is specified.

Name Description Default value Unit
k1 Sensitivity of fi to temperature 0.06 K−1

k2 Sensitivity of D to < Ts > 0.01 K−1

k3 Sensitivity of local Ts − Te to Ts 0.5
D0 Present day turbulent diffusion coeff. 0.66 W/m2/K
T0 Initial value of < Ts > 288.0 K
S0 Present day/initial value of the solar constant 1365.0 W/m2

S1 Changed value of the solar constant 1365.0 W/m2

F Terrestrial radiative forcing 0.0 W/m2

with a = 45 K. T0 is a user specified global mean initial surface temperature with default value
of 288.0 K, i.e. 15 C. The model first reads the user specified constants if they are different
from the default values. Then it simulates the evolution over 500 years with a user specified
value of the present day solar constant S = S0. The default value of S0 in the model is 1365
W/m2. This first simulation where the forcing parameter F is set to 0 is also termed ”control
simulation”, to mimic the term used in dynamic climate modelling. The control simulation
is followed by a climate change simulation where the solar constant is set to a different user
specified value S1. In this second simulation the forcing parameter takes the user specified value
F . Default values of S1 and F are 1365 W/m2 and 0.0 W/m2, respectively. If you would like
to simulate the effects of a doubling of the atmospheric CO2 concentration you should replace
the F value by 3.75 W/m2.

A list of user specified values and their default values can be found in table 1.

5 How to run the model

To run the model go to the address:
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https://www.gfy.ku.dk/∼kaas/onedmodel/run.php
First type your name (or any user specific string). Then, after your own choise, type the

user specified values in decimal form, including the period. Note that typing ”0” (without a
period) has the same effect as typing nothing! Also note that it may be necessary to ”refresh”
your browser if nothing seems to happen with the output graphics.

Press the ”Run Program” botton.
The model produces output which is presented both as graphs and as a table. You have to

scroll down to see all the output. The graphs pupping up are shown and described in Figure
4. The plots show various variables as indicated at the top of each panel. Note that the true
latitude is given on the abscissa of the plots to enable comparison with other models.

In more detail the panels show the following graphs:

1. The initial, the present day simulated and the changed climate simulated temperatures
(C) as functions of latitude. The heading of the panel provides information of the corre-
sponding global mean averages.

2. Outgoing long wave radiation (OLR) in present day and changed climate simulations as
function of latitude. Global mean values are shown in the heading. Units: W/m2

3. Albedo in present day and changed climate simulations as function of latitude. The
heading provides information of the global mean values.

4. The simulated present day and changed climate meridional heat fluxes in PW (1015 W)

5. Meridional heat flux convergence (W/m2) in present day and in changed climate.

6. Simulated change in zonal mean temperature (C) as function of latitude. The degree of
polar amplification, estimated as

(Ts2(1)− Ts1(1)− (< T2 > − < T1 >))/(< T2 > − < T1 >)

is shown in the heading. Here subscripts ”1” and ”2” indicate the end of the control and
the changed climate simulations, respectively.

7. Time series of global mean temperature (Units: C).

6 Exercises

Below a few exercises are suggested.

Exercise 1. Sensitivity of the model. Calculate the sensitivity of the model due to a doubling
of the atmospheric concentration of CO2 by running with a radiative forcing of 3.9 W/m2.
Express the result in K/(W/m2).

Exercise 2. Zero feedback sensitivity of the model. Estimate the zero feedback climate sensi-
tivity by running the model with some forcing and with k1, k2 and k3 set to zero. Express
the result in K/(W/m2).

Exercise 3. Gain parameter. Using the results from the two previous exercises, calculate the
gain parameter of the model.
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Figure 4: Example of the seven graphs that are shown once the model has been run. In this
example the model was run with its default parameter values. A more detailed description of
the individual panels is provided in the text.
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Exercise 4. The relative influence of different feedbacks. Run the model with a given forcing
and only include one feedback, i.e. with only one of the parameters k1, k2 and k3 set at
its default value and the remaining set to zero, varying this procedure for all feedbacks.

How does the theory of combining different feedbacks parameters into one fit the actual
results.

Exercise 5. Change in solar constant, S. Identify what change in the solar constant is re-
quired to obtain the same climate change as with a doubling of the CO2 concentration
(i.e. alternatively running with a long wave radiative forcing of 3.9 W/m2). Estimate the
change in the term S(1 − α)/4 associated with the idenfied change in S, and compare
with the forcing for 2 times CO2 concentration (use a global mean α of 0.30).

Exercise 6. Change in the turbulent heat flux parameter D. What happens if D is set to
zero?

Vary D (but with k2 set to zero) and explain why the changes in heat flux are not directly
proportional to changes in D.

Fossiles of Crocodiles, originating from Eocene (53-57 million years ago), have been found
on Ellesmere Island (now at 80N). Assuming that these creatures can survive if the annual
mean temperature is 10C and that Ellesmere Island had approximately the same position
as today (which is likely) estimate the value of D which is required to allow survival of
the Crocodiles. What is the associated heat flux towards the poles.

Exercise 7. Polar amplification. Estimate the relative contribution in the model to polar
amplification from sea-ice albedo effect and the meridional latent heat transport effect
(run the model with a forcing of e.g. 4 W/m2. Are the effects additive. Is there a polar
amplification if both k1 and k2 are set to zero?.

Exercise 8. Sensitivity to initial condition. What happens if you set T0 = 246K? And T0 =
245K. Explain the reasons for the difference.

7 Appendix. Derivation of the eddy heat flux conver-

gence term

This appendix provides a derivation of the term

∂

∂x

(
D(1− x2)∂Ts

∂x

)
, (18)

which is the convergence of turbulent meridional heat flux in the atmosphere and the oceans.
The parameter D is a heat diffusion coefficient with units W/m2/K, Ts is surface temperature
(i.e. also the temperature of the upper ocean) and x = sinφ, where φ is the latitude.

Let us start considering a small latitude interval from φ to φ + δφ where δφ > 0. The
total northward heat flux over all longitudes across the latitude φ i.e. into the domain, can be
approximated by

−2πa cos(φ)

(
D ∂Ts
a∂φ

)
(φ), (19)

where D is the ”normally dimensioned” turbulent heat flux coefficient, which in genereal may
depend on latitude, and a is the radius of the Earth. D is equal to the northward energy flux per
unit meter longitude per unit meridional temperature gradient, i.e it has units (W/m)/(K/m)
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= W/K. Similarly the total northward heat flux over all longitudes across the latitude φ+ δφ,
i.e. out of the domain, can be approximated by

−2πa cos(φ+ δφ)

(
D ∂Ts
a∂φ

)
(φ+ δφ). (20)

Note that in (19) and (20) the first factor 2πa cos(φ) and 2πa cos(φ+ δφ), respectively, are the
distances around the Earth at each of the two latitudes φ and φ+ δφ.

The net turbulent transport into the domain, i.e. the flux in minus the flux out, is

−2πa cos(φ)

(
D ∂Ts
a∂φ

)
(φ) + 2πa cos(φ+ δφ)

(
D ∂Ts
a∂φ

)
(φ+ δφ). (21)

Now using first order Taylor series expansions we can approximate the terms cos(φ + δφ)
and

(
D∂Ts/(a∂φ)

)
(φ+ δφ) as

cos(φ+ δφ) ≈ cos(φ)− δφ sin(φ)

and (
D ∂Ts
a∂φ

)
(φ+ δφ) ≈

(
D ∂Ts
a∂φ

)
(φ) + δφ

∂

∂φ

(
D ∂Ts
a∂φ

)
(φ).

Inserting in (21) we get the approximate expression for the net transport into the latitude
band:

−2πaδφ sin(φ)
(
D ∂Ts
a∂φ

)
(φ) + 2πaδφ cos(φ)

∂

∂φ

(
D ∂Ts
a∂φ

)
(φ)− 2πa(δφ)2 sin(φ)

∂

∂φ

(
D ∂Ts
a∂φ

)
(φ)

≈ −2πδφ sin(φ)
(
D∂Ts
∂φ

)
(φ) + 2πδφ cos(φ)

∂

∂φ

(
D∂Ts
∂φ

)
(φ) (22)

where the last approximation is valid in the limit where δφ goes to zero. Now dividing (22) by
the area on the globe represented by the latitude band (in the limit where δφ goes to zero this
is approaches 2πa2δφ cos(φ)) we get the net turbulent heat flux convergence per unit area at
latitude φ:

HC = −D tan(φ)

a

∂Ts
a∂φ

+
∂

a∂φ

(
D ∂Ts
a∂φ

)
(23)

We can now perform the substitution x = sin(φ) implying also that ∂x = cos(φ)∂φ. Using
the following re-formulations:.

−D tan(φ)

a

∂Ts
a∂φ

= −D
a2

sin(φ)
∂Ts

cos(φ)∂φ
= −D

a2
x
∂Ts
∂x

(24)

and

∂

a∂φ

(
D ∂Ts
a∂φ

)
=

∂

∂φ

(
D
a2

cos(φ)
∂Ts

cos(φ)∂φ

)
= cos(φ)

∂

∂φ

(D
a2

∂Ts
cos(φ)∂φ

)
− sin(φ)

D
a2

∂Ts
cos(φ)∂φ

= cos2(φ)
∂

cos(φ)∂φ

(D
a2

∂Ts
cos(φ)∂φ

)
− sin(φ)

D
a2

∂Ts
cos(φ)∂φ

= (1− x2) ∂
∂x

(D
a2
∂Ts
∂x

)
− xD

a2
∂Ts
∂x

12



we can write (23) as:

HC = (1− x2) ∂
∂x

(D
a2
∂Ts
∂x

)
− 2x

D
a2
∂Ts
∂x

=
∂

∂x

(
D(1− x2)∂Ts

∂x

)
(25)

where D = D/a2.
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