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Accelerating radiation computations In
dynamical models by using neural networks
(and optimized code)



Background

Climate/weather prediction models need physics parameterizations
Trend toward greater complexity (e.g. higher resolution)
Larger simulations already consume lots of energy

Accuracy and computational efficiency are linked



Radiation: important but expensive

Radiative transfer is well-understood, but expensive to solve accurately in large-
scale models. Even fast radiation parameterizations can take ~50% of
computational time in climate models

Conclusion: Radiation is a key bottleneck in predictive modeling.

Goal: Improve the accuracy/speed ratio of radiation codes by using neural networks
and code optimization



The four components of a radiation scheme

©
= Cloud optical
_ properties
® Determines | W

spectral resolution

® RRTM-G uses 252
spectral intervals

® Determines how
sophisticated
interactions with
clouds will be

® Codes should be modular, allowing components to be changed independently




Solver: physical equations, but big assumptions




- Radiation Transmitted by the Atmosphere
Gas optics | ! 70

Downgoing Solar Radiation Upgoing Thermal Radiation
70-75% Transmitted 15-30% Transmitted

Spectral complexity

Changes in greenhouse
gases particularly
Important for climate
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The trick behind modern radiation codes: Correlated-k method
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Figure 1. Absorption coefficients due to carbon dioxide for a layer (P = 507 mbar) in the midlatitude
summer atmosphere for the spectral range 630-700 cm™" (a) as a function of wavenumber and (b) after being
rearranged in ascending order.

1) Rearrange absorption coefficients (k’s) in ascending order (“k-distribution”)
k(v) - k(9)
2) Break into sub-intervals (‘g-points’), compute average k for each g for various mixing
fractions, temperature, pressure
3) Store these k(g, T, p, m) in a look up table
4) Interpolate from this look up table to obtain k(g) at given T, p, gas mixing ratios.



Methods

Use new radiation code RRTMGP to predict optical properties for a large
number of atmospheric profiles

RRTMGP takes high number of gases as input and has high spectral
resolution (16 bands, 256 g-points)

Train neural networks to predict the optical properties for a given
atmospheric layer

Plug neural network model back in the RRTMGP Fortran code

Hope it’s faster and no less accurate



Obtain profiles of atmospheric
conditions and gas
concentrations from:

Reanalyses

climate projections

|dealized profiles

Sample present-day, pre-
Industrial, future, LGM..

Preparing data



Obtain profiles of atmospheric
conditions and gas
concentrations from:

Reanalyses

climate projections

|dealized profiles

Sample present-day, pre-
Industrial, future, LGM..

More data: hypercube
sampling of gases, +-
temperature with constant RH,
etc.

— 7 million training samples

Preparing data

sampler = Halton sequence, N=80




Why it's efficient

For each layer 7 = 1...J in each column k£ = 1... K

For band b = 1...B
Tal . Compute the g-point vector 7, maj, ;, by 3D linear interpolation in T, p
riginal code:

and 7).
For each minor gas

Compute 7,,;» by 2D linear interpolation in temperature and 7

Ti,j.g — Tmaj + Tmin

Neural network:

Predicts all NGPT spectral points (256) and NGAS gas contributions simultaneously

=f(X, ), whereY and X are vectors, and f() is modelled by the neural net.

YNGPT Ngas

Possible to further collapse layers J and columns K into M=J*K and obtain batch predictions
Y, cer v Where Y is now a matrix.

The core computations are then matrix-matrix multiplications which we can delegate to a
optimized library (GEMM calls to a BLAS library such as MKL)



Code refactoring
(boring to some, but climate models need fast code)

Order of dimensions changed form (col, lay, g-point) to (g-point,
lay, col)

- fluxes can be computed inside a column loop, reducing
memory use

Further changes to improve vectorization and reduce memory by
Inlining computations and combining loops

Inefficiency often stems from the processor having to wait for slow
memory accesses, not being exposed to parallelism, or both
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Longwave

Intel, ifort+MKL

1.7x

AMD, GFortran+BLIS

Reference Refactored + NNs Reference

EE Gas optics (kernel) I Gas optics (other)

Speed-up

Shortwave

Intel, ifort+MKL

AMD, GFortran+BLIS

1.4x

Refactored + NNs

B Solver RTE



Elapsed time (ms)
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Longwave

Intel, ifort+MKL

1.7x

AMD, GFortran+BLIS

Reference Refactored + NNs Reference

EE Gas optics (kernel) I Gas optics (other)

Speed-up

Shortwave

Intel, ifort+MKL

Refactored + NNs

B Solver RTE

The neural network
actually does 4x more

floating points
operations...

But with much better
efficiency (7-8 times
more operations per
second)
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R-squared = 0.99993
MSE = 6571.31522
MAE = 8.38610
| RMS % error = 5856
100000 200000 300000 400000 500000
Optical depth

Normalized optical depth

—

Solver (up and downward
radiative transfer through 1D

atmosphere)
--> Broadband fluxes u,v

Transmittance
T =exp(-T7)

Transmittance (predicted)

R-squared = 0.99978§
MSE = 0.00005
(\/‘//’ , '2) MAE = 0.00188
R % errd
' 0.4 0.6 .

--> Heating rates (K/day) B, S




» Accuracy was evaluated
using benchmark line-by-line
computations on independent
data

 Errors in fluxes, heating rates
and radiative forcings were
all very similar to RRTMGP

Accuracy
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Top-of-atmosphere radiative forcing, pre-industrial to future

RRTMGP NN

» Accuracy was evaluated
using benchmark line-by-line
computations on independent
data

Bias (all): -g.
RMSE (all): 0.
RMSE (test): 0.

 Errors in fluxes, heating rates

and radiative forcings were

all very similar to RRTMGP
NN errors [t

RMSE (test): U.

Bias (all):

REF errors A




| Here

were used to accelerate an existing scheme, but they

can also be used to develop new, more realistic/accurate physics schemes by
training with high-resolution models, or even observations !

Line-by-line
modeling

Parameterizations

LBLRTM

RRTMGP

Application

Fluxes and Heating
Rates for climate and
weather models

Cut out the middle man?

Neural

| hetwork




Conclusion

A new radiation scheme was accelerated by 2-3X (note: clear-sky flux
computations) by using targeted machine learning and code optimization

The accuracy is virtually identical to the original scheme



Conclusion

A new radiation scheme was accelerated by 2-3X (note: clear-sky flux
computations) by using targeted machine learning and code optimization

The accuracy is virtually identical to the original scheme

Why use ML and particularly neural networks
Scientific advantages (better physics?):

Flexible non-linear data fitting tools, can be used to model arbitrary
relationships IF appropriate training data is available and skip the need
for overly simplistic assumptions and ad-hoc equations

Computational advantages (faster physics):
High performance, portable code, future-proof (fast on GPUs, etc)
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