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Overview

e Introduction/motivation

® Planetary boundary layer

® Turbulence parameterization in NWP

e Artificial neural networks

® Development of neural network based model

® Implementation in WRF and comparison to other
schemes

® Conclusion and outlook
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Introduction and motivation

® Discretization of the governing equations for the
atmosphere introduces a need for parameterization
of dynamics on subgrid-scale.

® Turbulence parameterizations predicts turbulent flux
terms - typically by assuming some mathematical
relation with known mean field variables, and fitting
constants to observational/simulated data.

® More advanced turbulence parameterizations are
typically computationally expensive.

® A new method is proposed, where machine learning
models are used to predict the turbulent fluxes.
Thus, fewer assumptions are needed.
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Reynolds averaging and turbulent fluxes

® Reynolds averaging distinguish between the "mean
field variables” and the turbulent fluctuations.

® Methodology: Assume all variables can be written as
a mean variable and a small randomly fluctuating
part, A" = A+ a. Then take the average of the
equations to obtain (for a dry atmospheric boundary

layer)
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Planetary boundary layer

® The planetary boundary layer, PBL, is the lowest
part of the atmosphere, which is "in contact with”
the surface.

® |n the PBL, turbulence is most likely to occur, and
thus it tends to be well-mixed. Therefore, turbulence
parameterization focus mainly on the PBL.

U
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PBL structure

It is useful to further divide the PBL into sublayers:

e Surface layer, lowest part of the PBL, where
turbulent fluxes can be shown to be approximately
constant.

® An intermediate layer, where the characteristics
depend strongly on the static stability.

® An interfacial layer, marking the boundary between
the turbulent PBL and the free, laminar atmosphere
above.
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PBL structure

The turbulent structure of the PBL depend mainly on
two components: surface static stability and vertical wind

shear.
Example of unstable/convective boundary layer.
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Parameterization of turbulence in NWP

® First order parameterization methods assume
diagnostic relations with known prognostic variables.

® Second order methods use prognostic equations for
(some or all) turbulent fluxes and parameterize third
order terms.
This can be computationally demanding and may
account for a substantial part of the of the
computation time in a NWP model.

® |n both cases closure constants must be determined
by fitting to observed/simulated data.
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Mixing length hypothesis and K-closure

Idea behind Ludwig Prandtl's mixing length hypothesis:

e Consider an air parcel vertically displaced by Az. lts
temperature deviation from the surroundings is then

0=0(z)—0(z+ Az) =~ —Az—
(2) - Oz +Az) » — A2
® Assume that an air parcel moved by the turbulent wind
field u; will carry its properties some characteristic
distance, d, before it mixes with the surrounding air.
® The magnitude of the temperature deviation, ¢, must then
related to the characteristic length scale, d, such that
00 — 00 _
0~—-—d— = wl~—-—K—, where K= wd
0z 0z
® Note that only the vertical component is considered.
Horizontal gradients are negligible and can be ignored.

o
®
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MYNNZ2.5 parameterization scheme

The Mellor-Yamanda-Nakanishi-Niino level 2.5
parameterization scheme is a second order scheme, using
a prognostic equation for TKE:

9q? 0 (—5 wp ou oV g —
_= 2— ) =2 —_— —_— 2—=—wl, —2 1
ot az(wq+ po) (W“az+w"az)+ 0T @

where ¢°> = Y. wu; = 2TKE.
The remaining covariance terms are parameterized as

follows: B aU 00, &
wi = —Km—, wl = —Kp—, £= —o,
oz dz BiL
A — K, 2
- m 827 qw = h 82 )
PE— WD 2 PR —_
wa? + 2P _ 3k, 09 s = By + B e, )
) 0z

where q,, is the total water content and 6, is the liquid
water temperature.
‘Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion @

Slide 10/36 — Kasper Tgligse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

o
®



UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Machine learning models for regression

® One advantage of using a machine learning model is
that we do not need to assume how the variables
depend on the relevant inputs.

® Disadvantage: many model parameters may require
a large dataset to avoid overfitting.

® Training may be slow, but evaluation is typically fast
and can easily be parallelized.

e Artificial neural networks, ANN, is a class of
machine learning models suitable for both
classification and regression problems.
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Feed forward neural networks

Given input vector x;, the neural network prediction y;
can be written as the recurrence relation

zj(") :h(aj(.")) for n=1,2,...,N—1, where
n n)_(n—1 n

A = WD o),

Z-(O) = Xj.

i

Input layer Hidden layer 1 Hidden layer 2 Output layer
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Role of activation function
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Training neural networks

Training consist of determining the optimal model
parameters (weights Wj(,-") and biases b}")) - minimize the
error on predictions.

Equally important is optimizing the hyperparameters:

® Loss function (mean squared error, mean absolute
error, etc.)

e Optimization algorithm (e.g. stochastic gradient
descent)

® Batch size

® Learning rate (step size in gradient descent)

® Activation function

e Network size (number of layers and nodes per layer)

e Type of input/output normalization/scaling
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[llustration of learning curves

It is helpful to monitor "learning curves” during training
to avoid overfitting.

— Model 1
— Model 2

Loss

20 40 60 80 100

Epoch
Figure: Sketch of learning curves for two different models. The thick solid
lines show the loss on the training data for each of the two models, while the
thin solid lines show the loss on the validation data.

o
®
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Construction of dataset

® Six 24-hour (+6 hours spin-up) simulations with the
Weather Research and Forecast model, WRF

® 10x10 km horizontal resolution

® 41 n-levels, lowest level at ~ 10 m and 14 levels
within the lowest km

® Model output every 60 minutes. Each time, 500
randomly selected air columns are added to the
training dataset and the validation set

WPS Domain Configuration
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Model construction
Recall, the MYNN2.5 parameterization:

. U —__ 09 P
v=Kngy o wWO=ERg a-we
oV OQuw
wv = _Km77 7W: - b
v az wa h"oz
wq? + 2W7P = —3Kmi7 wly, = Bowb; + BqWqw,
2 0z

Considerations:

® Should the model compute the turbulent quantities
layer by layer? Or column by column?

e Should the model compute the tendencies (gradients
of fluxes)? The fluxes? Or the Diffusivities?

® Should the prognostic TKE equation be kept? Or
should the model predict the TKE as well? Or

should TKE '|ust be left out? .ﬁ

o
®
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Model construction
Recall, the MYNN2.5 parameterization:

U 90, P
-K - K, _ 9
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oV OQuw
—K — K, X
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— wp 0q? —_—
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Do not use TKE as prognostic variable.
Predict fluxes directly

wu, wl;, W, Wqw, wq? = f(input arguments)
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Model construction
Recall, the MYNN2.5 parameterization:

_k, 2% @ K
8z’ B L’

Keep TKE as prognostic variable.
Predict fluxes directly

—_— wp .
wi, wh;, Wv, Wqw, wg?, wg? + Z—P, e = f(input arguments)
P0

Slide 17/36 — Kasper Tgligse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020



UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Model construction
Recall, the MYNN2.5 parameterization:

@ wo, E}% e:@
cENc
o

,Bewiel + /Bq wQw,

@

wq +2—

Keep TKE as prognostic variable.
Predict diffusivities

Km, Kp, L, wb, = f(input arguments)

Combine with traditional method for solving TKE
equation and the diffusion problem.
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Determine model input

® Divide dataset based on local static stability - allow
for differences in variable dependence.

® Assume a set of "base variables”.

® |teratively add potentially relevant variables as input
to the neural network.
® Base variables:
—Vii Fw Fww __ 895 5_(%)2+(ﬂ)2
q=Vvuu+ w4+ ww, =0 0z =\ %5 P
e Additional variables to be tested:

z,Qo, U, ©, T,Q,, and Q..
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Determine model input

For statically stable model levels (shows loss on
validation set)

T T
6x 107! — Base model
——— Adding Q.
—— Adding z
—— Adding Qg
4x107! —— Adding u,
" —— Adding ©
é 3% 107! — Adding 0,
S —— Adding T
z
5
2x 107!
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Determine model input

For statically unstable model levels (shows loss on
validation set)

T
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Comment on input variables

Based on the iterative method applied, one could
conclude that all variables except T.

However, it turned out to give a better result to only use
following variables as input:

q, B75727 QO?“*

The reason was most likely overfitting, because the
validation dataset was not sufficiently independent
(sampled from the same simulations).
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Model optimization

® All models are trained using Tensorflow and Keras in
Python.

® The model parameters are optimized using the
stochastic gradient descent based optimization
algorithm Adaptive Moment Estimation, Adam.

® | earning rate is determined before all trainings start
by using a linear "learning rate scanner”. Further, a
cyclic learning rate schedule is used.

e Additional hyperparameters are optimized using grid
search in different "steps” .

Slide 22/36 — Kasper Tgligse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

[ ]




OF COPENHAGEN

Model optimization
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Model optimization

Hyperparameter optimization, first part:

Table: First column is the model number. Second column tells us, how the data is
categorized: None means one model is used for all samples. Stability means that two different
models are used for stable/unstable samples. Stability and TKE means stable samples are
further divided into samples with/without TKE. Third column shows the data processing, and
the fourth column shows the loss function used. mse is mean squared error, while mae is mean
absolute error.

Data categorization Pre- and postprocessing Loss function
Model 1 None Linear scaling mse on physical values
Model 2 Stability Linear scaling mse on physical values
Model 3 Stability Logarithmic scaling mse on log-scaled values
Model 4 Stability and TKE Logarithmic scaling mse on log-scaled values
Model 5 Stability and TKE Logarithmic scaling mse on physical values
Model 6 Stability and TKE Logarithmic scaling mae on physical values
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Model optimization
Hyperparameter optimization, first part (result):
Table: Performance of the models tested in the first step of the model optimization. The

model specifications are explained in Table 1. For each variable and each error measure, the
best performance is highlighted with red color, and the worst is highlighted with blue.

Stat Ky, Km L By —KyB  KmVS /L
Model 1k 02713 02861 01261 02835 04481 0.9068 0.2849
h 02986 03154 01598 02303 1.011 5.289 4.877
‘ 09508 09438 09841 09733 06927 01277 0.3667
Model 2 K 02275 03206 01120 02261 05495 1.218 0.2263
I 02250 02762  0.1476 01915  0.6040 8.798 0.7186
‘ 09727 09580 09864 09820 08598 02382 08736
Model 3 006222  0.04390 01168 005585 007348 002881  0.07455
h 01188 01136 01843 01082 01712  0.0683%6 01198
r 09924 09930 09793 00943 09853 09978 0.9927
Model 4 K 005847  0.04058 01124 004618 006845 002351  0.05988
h 01096 008420 01555 006163 01595 003453  0.1123
‘ 09935 09962 09850 09981 09872 09994 0.9939
Model 5 K 008943 007602 01212 009739  0.1960 0.4034 0.1119
I 01191 009794  0.1545 01364 02993 07136 0.1742
r 09924 09948 09851 00907 09627 09837 0.9844
Model 6 K 004779 0.03089  0.00572 003554 005976  0.01854  0.05179
h 01053 006758 01360 005300 01589 001868  0.09625
‘ 0.9941 00975 09887  0.9985  0.9873 0.9999 0.9954
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Batch size was found to have little or no impact
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FACULTY

Activation functions were found to have little impact:

RelLU and leakyReLU seem to work slightly better than

tanh and sigmoid.

OF SCIENCE
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Model optimization

Optimizing the network size.

FACULTY

Stable Unstable
—— 1 layer, 25 nodes 2%10°2 —— 1 layer, 25 nodes
6 10-3 ~—— 1layer, 50 nodes ~— llayer, 50 nodes
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" Moy \WN | A
. ool filde.
21077 T s
) T A
N
0 200 400 600 800 1000 0 200 400 600 800
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Due to lack of independence between training/validation,
the optimal network couldn't be estimated.

The chosen "optimal” network sizes were:

1 layer and 50 nodes per layer (stable samples)

2 layers and 25 nodes per layer (unstable samples)

Slide 28/36 — Kasper Tgligse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

OF SCIENCE




UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Predictions of "optimal” model

Plots of ANN predictions as function of true values.

K, B,
b 0.01 - 108
- S
. ) 10
g 0.00 . 10*
1=
3 10°
& -t 102
—0.01 1 [N
: .- 10!
. . . . ; - . 10°
0 250 500 750 0 100 200 ~0.02 —0.01 0.0
True True True

Slide 29/36 — Kasper Tgligse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020



UNIVERSITY OF COPENHAGEN FACULTY OF SCIEN

Implementation and test

Methodology: WPS Domain Configuration

two 72 hour simulations made with both
the MYNN2.5 and the ANN schemes
(summer/winter)

horizontal and vertical resolution same
as for training data

larger domain than for training
control run with MYNN2.5 scheme

for comparison, runs are made with two
additional PBL schemes: YSU and MYJ
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Results example

2-meter temperature (summer and winter)
2m temperature, 2018.08.02 06 UTC
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Results example

10-meter wind (summer and winter)
10m wind, 2018.08.02 06 UTC
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Results, error vs time (summer
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Results, error vs time (winter
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Results, efficiency

Time spend on % of total
Scheme the PBL scheme run time
MYNN 19.50 s 16.9%
ANN (matmul) 10.89 s 10.1%
ANN (sgemm) 9.49 s 9.1%
YSuU 3.61s 3.7%
MYJ 6.44 s 6.1%
Time spend on % of total
Scheme Subroutine the PBL scheme run time
MYNN Computing Km, Ky and L 5.53 s 4.8%
Condensation scheme 4.31s 3.7%
Computing tendencies 4.09 s 3.6%
Solving TKE equation 0.70 s 0.6%
Other 4.87 s 4.2%
ANN (matmul) Neural network prediction 1.58s 1.5%
Computing tendencies 3.77s 3.5%
Solving TKE equation 0.55s 0.5%
Other 4.99 s 4.6%
ANN (sgemm) Neural network prediction 0.85s 0.8%
Computing tendencies 3.72s 3.6%
Solving TKE equation 0.64 s 0.6%
Other 4.28s 4.1%
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Conclusions

® |t is possible to create an accurate and robust
turbulence closure model using neural networks.

e Demonstration of important results related to
scaling/normalization of inputs and outputs.

® Neural network based turbulence parameterizations
has potential of being an efficient alternative to
expensive second order PBL schemes while retaining
the second order accuracy.
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® Neural network optimization and training should be
repeated with a new and better dataset - ensure
validation set is independent.

® Perhaps test other types of machine learning models,
e.g. random forests or boosted decision trees.

® Train a machine learning model on a data from high
resolution models, e.g. LES.

Slide 36/36 — Kasper Tgligse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

[ ]



UNIVERS OF COPENHAGEN

Thanks for listening!
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Results example (extra slides)

Surface sensible heat flux (summer and winter)

surface sensible heat flux, 2018.08.02 07 UTC
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Results example (extra slides)

Surface latent heat flux (summer and winter)

surface latent heat flux, 2018.08.02 07 UTC
MYNN
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Results example (extra slides)

PBLH (summer and winter)

PBL height, 2018.08.02 07 UTC
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Results example (extra slides)

U. (summer and winter)

surface friction velocity, 2018.08.02 07 UTC
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