
Faculty of Science

Development and implementation of a

neural network based PBL turbulence

parameterization scheme

Kasper Tølløse
Niels Bohr Institute

Supervisor:
Professor Eigil Kaas

March 27, 2020

Overview

• Introduction/motivation

• Planetary boundary layer

• Turbulence parameterization in NWP

• Artificial neural networks

• Development of neural network based model

• Implementation in WRF and comparison to other
schemes

• Conclusion and outlook

Slide 2/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Introduction and motivation
• Discretization of the governing equations for the

atmosphere introduces a need for parameterization
of dynamics on subgrid-scale.

• Turbulence parameterizations predicts turbulent flux
terms - typically by assuming some mathematical
relation with known mean field variables, and fitting
constants to observational/simulated data.

• More advanced turbulence parameterizations are
typically computationally expensive.

• A new method is proposed, where machine learning
models are used to predict the turbulent fluxes.
Thus, fewer assumptions are needed.

Slide 3/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Reynolds averaging and turbulent fluxes
• Reynolds averaging distinguish between the ”mean

field variables” and the turbulent fluctuations.

• Methodology: Assume all variables can be written as
a mean variable and a small randomly fluctuating
part, Ã′ = A + a. Then take the average of the
equations to obtain (for a dry atmospheric boundary
layer)

∂ũi

∂xi
= 0,

Dũ′i
Dt

= −
1

ρ0

∂p̃′

∂xi
+ gδ3i

θ̃′

θ0
− 2εijkΩj ũ

′
k + ν∇2ũ′i ,

Dθ̃′

Dt
= α∇2θ̃′ −

θ̃′

ρ̃cpT̃

∂R̃i

∂xi
,

Slide 4/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Reynolds averaging and turbulent fluxes
• Reynolds averaging distinguish between the ”mean

field variables” and the turbulent fluctuations.

• Methodology: Assume all variables can be written as
a mean variable and a small randomly fluctuating
part, Ã′ = A + a. Then take the average of the
equations to obtain (for a dry atmospheric boundary
layer)

∂Ui

∂xi
= 0,

DUUi

Dt
= −

∂

∂xj
ujui −

1

ρ0

∂P

∂xi
+ gδ3i

Θ

θ0
− 2εijkΩjUk + ν∇2Ui ,

DU Θ

Dt
= −

∂

∂xj
ujθ + α∇2Θ,−R where R =

θ̃′

ρ̃cpT̃

∂R̃i

∂xi

Slide 4/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Planetary boundary layer
• The planetary boundary layer, PBL, is the lowest

part of the atmosphere, which is ”in contact with”
the surface.

• In the PBL, turbulence is most likely to occur, and
thus it tends to be well-mixed. Therefore, turbulence
parameterization focus mainly on the PBL.

Slide 5/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

PBL structure

It is useful to further divide the PBL into sublayers:

• Surface layer, lowest part of the PBL, where
turbulent fluxes can be shown to be approximately
constant.

• An intermediate layer, where the characteristics
depend strongly on the static stability.

• An interfacial layer, marking the boundary between
the turbulent PBL and the free, laminar atmosphere
above.

Slide 6/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

PBL structure

The turbulent structure of the PBL depend mainly on
two components: surface static stability and vertical wind
shear.

Example of unstable/convective boundary layer.

Slide 7/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Parameterization of turbulence in NWP
• First order parameterization methods assume

diagnostic relations with known prognostic variables.

• Second order methods use prognostic equations for
(some or all) turbulent fluxes and parameterize third
order terms.
This can be computationally demanding and may
account for a substantial part of the of the
computation time in a NWP model.

• In both cases closure constants must be determined
by fitting to observed/simulated data.

Slide 8/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Mixing length hypothesis and K -closure
Idea behind Ludwig Prandtl’s mixing length hypothesis:

• Consider an air parcel vertically displaced by ∆z . Its
temperature deviation from the surroundings is then

θ = Θ(z)−Θ(z + ∆z) ≈ −∆z
∂Θ

∂z

• Assume that an air parcel moved by the turbulent wind
field ui will carry its properties some characteristic
distance, d , before it mixes with the surrounding air.
• The magnitude of the temperature deviation, θ, must then

related to the characteristic length scale, d , such that

θ ∼ −d ∂Θ

∂z
⇒ wθ ∼ −K ∂Θ

∂z
, where K = wd

• Note that only the vertical component is considered.
Horizontal gradients are negligible and can be ignored.

Slide 9/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

MYNN2.5 parameterization scheme

The Mellor-Yamanda-Nakanishi-Niino level 2.5
parameterization scheme is a second order scheme, using
a prognostic equation for TKE :

∂q2

∂t
= −

∂

∂z

(
wq2 + 2

wp

ρ0

)
− 2

(
wu

∂U

∂z
+ wv

∂V

∂z

)
+ 2

g

Θ0
wθv − 2ε, (1)

where q2 =
∑

i uiui = 2TKE .
The remaining covariance terms are parameterized as
follows:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw , (2)

where qw is the total water content and θl is the liquid
water temperature.

Slide 10/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Machine learning models for regression

• One advantage of using a machine learning model is
that we do not need to assume how the variables
depend on the relevant inputs.

• Disadvantage: many model parameters may require
a large dataset to avoid overfitting.

• Training may be slow, but evaluation is typically fast
and can easily be parallelized.

• Artificial neural networks, ANN, is a class of
machine learning models suitable for both
classification and regression problems.

Slide 11/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Feed forward neural networks
Given input vector xi , the neural network prediction ŷj
can be written as the recurrence relation

ŷj = w
(N)
ji z

(N−1)
i + b

(N)
j ,

z
(n)
j = h

(
a

(n)
j

)
for n = 1, 2, ...,N − 1 , where

a
(n)
j = w

(n)
ji z

(n−1)
i + b

(n)
j ,

z
(0)
i = xi .

Input layer Hidden layer 1 Hidden layer 2 Output layer

x1

x2

z
(1)
1

z
(1)
2

z
(1)
3

z
(2)
1

z
(2)
2

z
(2)
3

y1

y2

Slide 12/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Role of activation function

−10 −5 5 10

0.2

0.4

0.6

0.8

1

a

h(a)

sigmoid

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

a

h(a)

ReLU

−4 −2 2 4

−1

−0.5

0.5

1

a

h(a)

tanh

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

a

h(a)

leakyReLU

Slide 13/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Training neural networks
Training consist of determining the optimal model
parameters (weights w

(n)
ji and biases b

(n)
j) - minimize the

error on predictions.

Equally important is optimizing the hyperparameters:

• Loss function (mean squared error, mean absolute
error, etc.)

• Optimization algorithm (e.g. stochastic gradient
descent)

• Batch size

• Learning rate (step size in gradient descent)

• Activation function

• Network size (number of layers and nodes per layer)

• Type of input/output normalization/scaling

Slide 14/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Illustration of learning curves
It is helpful to monitor ”learning curves” during training
to avoid overfitting.

20 40 60 80 100

Epoch

Loss

Model 1
Model 2

Figure: Sketch of learning curves for two different models. The thick solid
lines show the loss on the training data for each of the two models, while the
thin solid lines show the loss on the validation data.

Slide 15/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Construction of dataset
• Six 24-hour (+6 hours spin-up) simulations with the

Weather Research and Forecast model, WRF
• 10x10 km horizontal resolution
• 41 η-levels, lowest level at ∼ 10 m and 14 levels

within the lowest km
• Model output every 60 minutes. Each time, 500

randomly selected air columns are added to the
training dataset and the validation set

Slide 16/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model construction
Recall, the MYNN2.5 parameterization:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw ,

Considerations:

• Should the model compute the turbulent quantities
layer by layer? Or column by column?

• Should the model compute the tendencies (gradients
of fluxes)? The fluxes? Or the Diffusivities?

• Should the prognostic TKE equation be kept? Or
should the model predict the TKE as well? Or
should TKE just be left out?

Slide 17/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model construction

Recall, the MYNN2.5 parameterization:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw ,

Do not use TKE as prognostic variable.
Predict fluxes directly

wu,wθl ,wv ,wqw ,wq2 = f (input arguments)

Slide 17/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model construction

Recall, the MYNN2.5 parameterization:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw ,

Keep TKE as prognostic variable.
Predict fluxes directly

wu,wθl ,wv ,wqw ,wq2,wq2 + 2
wp

ρ0
, ε = f (input arguments)

Slide 17/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model construction

Recall, the MYNN2.5 parameterization:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw ,

Keep TKE as prognostic variable.
Predict diffusivities

Km,Kh, L,wθv = f (input arguments)

Combine with traditional method for solving TKE
equation and the diffusion problem.

Slide 17/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Determine model input

• Divide dataset based on local static stability - allow
for differences in variable dependence.

• Assume a set of ”base variables”.

• Iteratively add potentially relevant variables as input
to the neural network.
• Base variables:

q =
√
uu + vv + ww , B =−

g

Θ0

∂Θv

∂z
, S =

(
∂U

∂z

)2

+

(
∂V

∂z

)2

• Additional variables to be tested:

z ,Q0, u∗,Θ,T ,Qv , and Qc .

Slide 18/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Determine model input

For statically stable model levels (shows loss on
validation set)

0 25 50 75 100 125 150 175 200
Epoch

2×10−1

3×10−1

4×10−1

6×10−1

V
al

id
at

io
n

lo
ss

Base model
Adding Qc

Adding z
Adding Q0

Adding u∗
Adding Θ
Adding Qv

Adding T

Slide 19/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Determine model input

For statically unstable model levels (shows loss on
validation set)

0 25 50 75 100 125 150 175 200
Epoch

10−2V
al

id
at

io
n

lo
ss

Base model
Adding z
Adding u∗
Adding Qc

Adding Q0

Adding Qv

Adding Θ
Adding T

Slide 20/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Comment on input variables

Based on the iterative method applied, one could
conclude that all variables except T .

However, it turned out to give a better result to only use
following variables as input:

q,B , S , z ,Q0, u∗

The reason was most likely overfitting, because the
validation dataset was not sufficiently independent
(sampled from the same simulations).

Slide 21/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model optimization

• All models are trained using Tensorflow and Keras in
Python.

• The model parameters are optimized using the
stochastic gradient descent based optimization
algorithm Adaptive Moment Estimation, Adam.

• Learning rate is determined before all trainings start
by using a linear ”learning rate scanner”. Further, a
cyclic learning rate schedule is used.

• Additional hyperparameters are optimized using grid
search in different ”steps”.

Slide 22/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model optimization

Illustration of learning rate optimization.

10−6 10−5 10−4 10−3 10−2

Learning rate

0.000

0.025

0.050

0.075

0.100

0.125

0.150

L
os

s

E (lr)

(E(lropt), lropt)

0 200 400 600 800 1000
Epoch

10−4

L
os

s

Training loss, lr = lropt

Validation loss, lr = lropt

Training loss, lr = clr
Validation loss, lr = clr

4×10−5

Slide 23/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model optimization

Hyperparameter optimization, first part:

Table: First column is the model number. Second column tells us, how the data is
categorized: None means one model is used for all samples. Stability means that two different
models are used for stable/unstable samples. Stability and TKE means stable samples are
further divided into samples with/without TKE. Third column shows the data processing, and
the fourth column shows the loss function used. mse is mean squared error, while mae is mean
absolute error.

Data categorization Pre- and postprocessing Loss function

Model 1 None Linear scaling mse on physical values

Model 2 Stability Linear scaling mse on physical values

Model 3 Stability Logarithmic scaling mse on log-scaled values

Model 4 Stability and TKE Logarithmic scaling mse on log-scaled values

Model 5 Stability and TKE Logarithmic scaling mse on physical values

Model 6 Stability and TKE Logarithmic scaling mae on physical values

Slide 24/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model optimization
Hyperparameter optimization, first part (result):

Table: Performance of the models tested in the first step of the model optimization. The
model specifications are explained in Table 1. For each variable and each error measure, the
best performance is highlighted with red color, and the worst is highlighted with blue.

Stat Kh Km L Bp −KhB Km
√

S q3/L

Model 1 l1 0.2713 0.2861 0.1261 0.2835 0.4481 0.9068 0.2849
l2 0.2986 0.3154 0.1598 0.2303 1.011 5.289 4.877
r 0.9508 0.9438 0.9841 0.9733 0.6927 0.1277 0.3667

Model 2 l1 0.2275 0.3206 0.1120 0.2261 0.5495 1.218 0.2263
l2 0.2250 0.2762 0.1476 0.1915 0.6040 8.798 0.7186
r 0.9727 0.9580 0.9864 0.9820 0.8598 0.2382 0.8736

Model 3 l1 0.06222 0.04390 0.1168 0.05586 0.07348 0.02881 0.07455
l2 0.1188 0.1136 0.1843 0.1082 0.1712 0.06836 0.1198
r 0.9924 0.9930 0.9793 0.9943 0.9853 0.9978 0.9927

Model 4 l1 0.05847 0.04058 0.1124 0.04618 0.06845 0.02351 0.05988
l2 0.1096 0.08420 0.1555 0.06163 0.1595 0.03453 0.1123
r 0.9935 0.9962 0.9850 0.9981 0.9872 0.9994 0.9939

Model 5 l1 0.08943 0.07602 0.1212 0.09739 0.1960 0.4034 0.1119
l2 0.1191 0.09794 0.1545 0.1364 0.2993 0.7136 0.1742
r 0.9924 0.9948 0.9851 0.9907 0.9627 0.9837 0.9844

Model 6 l1 0.04779 0.03089 0.09572 0.03554 0.05976 0.01854 0.05179
l2 0.1053 0.06758 0.1360 0.05390 0.1589 0.01868 0.09625
r 0.9941 0.9975 0.9887 0.9985 0.9873 0.9999 0.9954

Slide 25/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model optimization

Batch size was found to have little or no impact

0 200 400 600 800 1000 1200 1400
Epoch

2×10−3

3×10−3

4×10−3

6×10−3

L
os

s

Stable

Batch size = 256
Batch size = 512
Batch size = 1024
Batch size = 2048

0 200 400 600 800 1000 1200 1400
Epoch

10−2

4×10−3

6×10−3

L
os

s

Unstable

Batch size = 256
Batch size = 512
Batch size = 1024
Batch size = 2048

Slide 26/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model optimization

Activation functions were found to have little impact:
ReLU and leakyReLU seem to work slightly better than
tanh and sigmoid.

0 200 400 600 800 1000 1200 1400
Epoch

10−2

L
os

s

Stable

relu
sigmoid
tanh
leakyrelu

0 200 400 600 800 1000 1200 1400
Epoch

10−2

10−1

L
os

s

Unstable

relu
sigmoid
tanh
leakyrelu

Slide 27/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Model optimization
Optimizing the network size.

0 200 400 600 800 1000
Epoch

2×10−3

3×10−3

4×10−3

6×10−3

L
os

s

Stable

1 layer, 25 nodes
1 layer, 50 nodes
1 layer, 100 nodes
2 layers, 25 nodes
2 layers, 50 nodes
2 layers, 100 nodes
3 layers, 25 nodes
3 layers, 50 nodes
3 layers, 100 nodes

0 200 400 600 800 1000
Epoch

10−2

3×10−3

4×10−3

6×10−3

2×10−2

L
os

s

Unstable

1 layer, 25 nodes
1 layer, 50 nodes
1 layer, 100 nodes
2 layers, 25 nodes
2 layers, 50 nodes
2 layers, 100 nodes
3 layers, 25 nodes
3 layers, 50 nodes
3 layers, 100 nodes

Due to lack of independence between training/validation,
the optimal network couldn’t be estimated.

The chosen ”optimal” network sizes were:
1 layer and 50 nodes per layer (stable samples)
2 layers and 25 nodes per layer (unstable samples)

Slide 28/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Predictions of ”optimal” model

Plots of ANN predictions as function of true values.

0 250 500
True

0

200

400

600

Pr
ed

ic
tio

n

Kh

0 250 500 750
True

0

200

400

600

800

Km

0 100 200
True

0

50

100

150

200

L

−0.02 −0.01 0.00
True

−0.01

0.00

0.01

Bp

100

101

102

103

104

105

106

Slide 29/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Implementation and test

Methodology:

• two 72 hour simulations made with both
the MYNN2.5 and the ANN schemes
(summer/winter)

• horizontal and vertical resolution same
as for training data

• larger domain than for training

• control run with MYNN2.5 scheme

• for comparison, runs are made with two
additional PBL schemes: YSU and MYJ

Slide 30/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results example

2-meter temperature (summer and winter)

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

264
271
278
285
292
299
307
314

-11
-8
-5
-2
1
4
7
10

2m temperature, 2018.08.02 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

241
248
255
262
268
275
282
289

-23
-17
-11
-5
2
8
14
20

2m temperature, 2017.01.11 06 UTC

Slide 31/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results example

10-meter wind (summer and winter)

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
2
4
7
9
11
13
15

-13
-9
-5
-1
3
7
11
14

10m wind, 2018.08.02 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
4
8
11
15
19
23
26

-19
-13
-7
-1
4
10
16
22

10m wind, 2017.01.11 06 UTC

Slide 31/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results, error vs time (summer)

0 10 20 30 40 50 60 70

0.925

0.950

0.975

1.000

Pa
tte

rn
 c

or
re

la
tio

n

surface sensible heat flux

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0

20

40

rm
se

 [W
/m

2] ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.94

0.96

0.98

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface latent heat flux

0 10 20 30 40 50 60 70
Time since simulation start [hours]

20

40

rm
se

 [W
/m

2] ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.90

0.95

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface friction velocity

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.02

0.04

0.06

rm
se

 [m
/s

]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.25

0.50

0.75

1.00

Pa
tte

rn
 c

or
re

la
tio

n

PBL height

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0

200

400

600

rm
se

 [m
]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.98

0.99

1.00

Pa
tte

rn
 c

or
re

la
tio

n

2m temperature

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.0

0.5

1.0

rm
se

 [K
]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.90

0.95

Pa
tte

rn
 c

or
re

la
tio

n
10m wind

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.25

0.50

0.75

1.00

rm
se

 [m
/s

]

ANN
YSU
MYJ

Slide 32/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results, error vs time (winter)

0 10 20 30 40 50 60 70

0.96

0.98

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface sensible heat flux

0 10 20 30 40 50 60 70
Time since simulation start [hours]

10

20

30

rm
se

 [W
/m

2] ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.96

0.98

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface latent heat flux

0 10 20 30 40 50 60 70
Time since simulation start [hours]

20

40

rm
se

 [W
/m

2] ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.90

0.95

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface friction velocity

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.025

0.050

0.075

0.100

rm
se

 [m
/s

]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.6

0.8

1.0

Pa
tte

rn
 c

or
re

la
tio

n

PBL height

0 10 20 30 40 50 60 70
Time since simulation start [hours]

200

400

rm
se

 [m
]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.97

0.98

0.99

1.00

Pa
tte

rn
 c

or
re

la
tio

n

2m temperature

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.5

1.0

1.5

rm
se

 [K
]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.925

0.950

0.975

1.000

Pa
tte

rn
 c

or
re

la
tio

n
10m wind

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.5

1.0

1.5

rm
se

 [m
/s

]

ANN
YSU
MYJ

Slide 33/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results, efficiency
Time spend on % of total

Scheme the PBL scheme run time

MYNN 19.50 s 16.9%

ANN (matmul) 10.89 s 10.1%

ANN (sgemm) 9.49 s 9.1%

YSU 3.61 s 3.7%

MYJ 6.44 s 6.1%

Time spend on % of total
Scheme Subroutine the PBL scheme run time

MYNN Computing Km , Kh and L 5.53 s 4.8%
Condensation scheme 4.31 s 3.7%
Computing tendencies 4.09 s 3.6%
Solving TKE equation 0.70 s 0.6%
Other 4.87 s 4.2%

ANN (matmul) Neural network prediction 1.58 s 1.5%
Computing tendencies 3.77 s 3.5%
Solving TKE equation 0.55 s 0.5%
Other 4.99 s 4.6%

ANN (sgemm) Neural network prediction 0.85 s 0.8%
Computing tendencies 3.72 s 3.6%
Solving TKE equation 0.64 s 0.6%
Other 4.28 s 4.1%

Slide 34/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Conclusions

• It is possible to create an accurate and robust
turbulence closure model using neural networks.

• Demonstration of important results related to
scaling/normalization of inputs and outputs.

• Neural network based turbulence parameterizations
has potential of being an efficient alternative to
expensive second order PBL schemes while retaining
the second order accuracy.

Slide 35/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Outlook

• Neural network optimization and training should be
repeated with a new and better dataset - ensure
validation set is independent.

• Perhaps test other types of machine learning models,
e.g. random forests or boosted decision trees.

• Train a machine learning model on a data from high
resolution models, e.g. LES.

Slide 36/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Thanks for listening!

Slide 36/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results example (extra slides)

Surface sensible heat flux (summer and winter)

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-225
-107
11
129
247
365
483
600

-591
-433
-276
-118
39
197
354
512

surface sensible heat flux, 2018.08.02 07 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-670
-492
-314
-137
41
219
397
575

-544
-399
-254
-109
36
181
327
472

surface sensible heat flux, 2017.01.11 07 UTC

Slide 36/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results example (extra slides)

Surface latent heat flux (summer and winter)

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-91
10
111
212
313
414
515
616

-548
-402
-256
-110
37
183
329
475

surface latent heat flux, 2018.08.02 07 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-93
11
116
221
325
430
535
640

-474
-347
-221
-95
32
158
284
411

surface latent heat flux, 2017.01.11 07 UTC

Slide 36/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results example (extra slides)

PBLH (summer and winter)

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

1
702
1404
2105
2807
3508
4210
4912

-5707
-4185
-2663
-1141
380
1902
3424
4946

PBL height, 2018.08.02 07 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
517
1035
1552
2069
2587
3104
3622

-7146
-5241
-3335
-1429
476
2382
4288
6194

PBL height, 2017.01.11 07 UTC

Slide 36/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

Results example (extra slides)

U∗ (summer and winter)

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
0
0
1
1
1
1
2

-1
-1
-1
-0
0
1
1
2

surface friction velocity, 2018.08.02 07 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
0
1
1
2
2
2
3

-2
-2
-1
-0
0
1
1
2

surface friction velocity, 2017.01.11 07 UTC

Slide 36/36 — Kasper Tølløse — Development and implementation of a neural network based PBL turbulence parameterization scheme — March 27, 2020

Overview - Introduction - PBL parameterization - Neural networks - Development - Implementation and test - Conclusion

