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Overview

• Introduction/motivation

• Planetary boundary layer

• Turbulence parameterization in NWP

• Artificial neural networks

• Development of neural network based model

• Implementation in WRF and comparison to other
schemes

• Conclusion and outlook
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Introduction and motivation
• Discretization of the governing equations for the

atmosphere introduces a need for parameterization
of dynamics on subgrid-scale.

• Turbulence parameterizations predicts turbulent flux
terms - typically by assuming some mathematical
relation with known mean field variables, and fitting
constants to observational/simulated data.

• More advanced turbulence parameterizations are
typically computationally expensive.

• A new method is proposed, where machine learning
models are used to predict the turbulent fluxes.
Thus, fewer assumptions are needed.
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Reynolds averaging and turbulent fluxes
• Reynolds averaging distinguish between the ”mean

field variables” and the turbulent fluctuations.

• Methodology: Assume all variables can be written as
a mean variable and a small randomly fluctuating
part, Ã′ = A + a. Then take the average of the
equations to obtain (for a dry atmospheric boundary
layer)
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Planetary boundary layer
• The planetary boundary layer, PBL, is the lowest

part of the atmosphere, which is ”in contact with”
the surface.

• In the PBL, turbulence is most likely to occur, and
thus it tends to be well-mixed. Therefore, turbulence
parameterization focus mainly on the PBL.
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PBL structure

It is useful to further divide the PBL into sublayers:

• Surface layer, lowest part of the PBL, where
turbulent fluxes can be shown to be approximately
constant.

• An intermediate layer, where the characteristics
depend strongly on the static stability.

• An interfacial layer, marking the boundary between
the turbulent PBL and the free, laminar atmosphere
above.
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PBL structure

The turbulent structure of the PBL depend mainly on
two components: surface static stability and vertical wind
shear.

Example of unstable/convective boundary layer.
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Parameterization of turbulence in NWP
• First order parameterization methods assume

diagnostic relations with known prognostic variables.

• Second order methods use prognostic equations for
(some or all) turbulent fluxes and parameterize third
order terms.
This can be computationally demanding and may
account for a substantial part of the of the
computation time in a NWP model.

• In both cases closure constants must be determined
by fitting to observed/simulated data.
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Mixing length hypothesis and K -closure
Idea behind Ludwig Prandtl’s mixing length hypothesis:

• Consider an air parcel vertically displaced by ∆z . Its
temperature deviation from the surroundings is then

θ = Θ(z)−Θ(z + ∆z) ≈ −∆z
∂Θ

∂z

• Assume that an air parcel moved by the turbulent wind
field ui will carry its properties some characteristic
distance, d , before it mixes with the surrounding air.
• The magnitude of the temperature deviation, θ, must then

related to the characteristic length scale, d , such that

θ ∼ −d ∂Θ

∂z
⇒ wθ ∼ −K ∂Θ

∂z
, where K = wd

• Note that only the vertical component is considered.
Horizontal gradients are negligible and can be ignored.
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MYNN2.5 parameterization scheme

The Mellor-Yamanda-Nakanishi-Niino level 2.5
parameterization scheme is a second order scheme, using
a prognostic equation for TKE :
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i uiui = 2TKE .
The remaining covariance terms are parameterized as
follows:
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where qw is the total water content and θl is the liquid
water temperature.
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Machine learning models for regression

• One advantage of using a machine learning model is
that we do not need to assume how the variables
depend on the relevant inputs.

• Disadvantage: many model parameters may require
a large dataset to avoid overfitting.

• Training may be slow, but evaluation is typically fast
and can easily be parallelized.

• Artificial neural networks, ANN, is a class of
machine learning models suitable for both
classification and regression problems.
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Feed forward neural networks
Given input vector xi , the neural network prediction ŷj
can be written as the recurrence relation
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(N)
j ,

z
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j = h
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(n)
j
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Role of activation function
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Training neural networks
Training consist of determining the optimal model
parameters (weights w

(n)
ji and biases b

(n)
j ) - minimize the

error on predictions.

Equally important is optimizing the hyperparameters:

• Loss function (mean squared error, mean absolute
error, etc.)

• Optimization algorithm (e.g. stochastic gradient
descent)

• Batch size

• Learning rate (step size in gradient descent)

• Activation function

• Network size (number of layers and nodes per layer)

• Type of input/output normalization/scaling
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Illustration of learning curves
It is helpful to monitor ”learning curves” during training
to avoid overfitting.

20 40 60 80 100

Epoch

Loss

Model 1
Model 2

Figure: Sketch of learning curves for two different models. The thick solid
lines show the loss on the training data for each of the two models, while the
thin solid lines show the loss on the validation data.
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Construction of dataset
• Six 24-hour (+6 hours spin-up) simulations with the

Weather Research and Forecast model, WRF
• 10x10 km horizontal resolution
• 41 η-levels, lowest level at ∼ 10 m and 14 levels

within the lowest km
• Model output every 60 minutes. Each time, 500

randomly selected air columns are added to the
training dataset and the validation set
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Model construction
Recall, the MYNN2.5 parameterization:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw ,

Considerations:

• Should the model compute the turbulent quantities
layer by layer? Or column by column?

• Should the model compute the tendencies (gradients
of fluxes)? The fluxes? Or the Diffusivities?

• Should the prognostic TKE equation be kept? Or
should the model predict the TKE as well? Or
should TKE just be left out?
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Model construction

Recall, the MYNN2.5 parameterization:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw ,

Do not use TKE as prognostic variable.
Predict fluxes directly

wu,wθl ,wv ,wqw ,wq2 = f (input arguments)
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Model construction

Recall, the MYNN2.5 parameterization:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw ,

Keep TKE as prognostic variable.
Predict fluxes directly

wu,wθl ,wv ,wqw ,wq2,wq2 + 2
wp

ρ0
, ε = f (input arguments)
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Model construction

Recall, the MYNN2.5 parameterization:

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
, ε =

q3

B1L
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw

∂z
,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw ,

Keep TKE as prognostic variable.
Predict diffusivities

Km,Kh, L,wθv = f (input arguments)

Combine with traditional method for solving TKE
equation and the diffusion problem.
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Determine model input

• Divide dataset based on local static stability - allow
for differences in variable dependence.

• Assume a set of ”base variables”.

• Iteratively add potentially relevant variables as input
to the neural network.
• Base variables:

q =
√
uu + vv + ww , B =−

g

Θ0

∂Θv

∂z
, S =

(
∂U

∂z

)2

+

(
∂V

∂z

)2

• Additional variables to be tested:

z ,Q0, u∗,Θ,T ,Qv , and Qc .
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Determine model input

For statically stable model levels (shows loss on
validation set)
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Determine model input

For statically unstable model levels (shows loss on
validation set)
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Comment on input variables

Based on the iterative method applied, one could
conclude that all variables except T .

However, it turned out to give a better result to only use
following variables as input:

q,B , S , z ,Q0, u∗

The reason was most likely overfitting, because the
validation dataset was not sufficiently independent
(sampled from the same simulations).
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Model optimization

• All models are trained using Tensorflow and Keras in
Python.

• The model parameters are optimized using the
stochastic gradient descent based optimization
algorithm Adaptive Moment Estimation, Adam.

• Learning rate is determined before all trainings start
by using a linear ”learning rate scanner”. Further, a
cyclic learning rate schedule is used.

• Additional hyperparameters are optimized using grid
search in different ”steps”.
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Model optimization

Illustration of learning rate optimization.
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Model optimization

Hyperparameter optimization, first part:

Table: First column is the model number. Second column tells us, how the data is
categorized: None means one model is used for all samples. Stability means that two different
models are used for stable/unstable samples. Stability and TKE means stable samples are
further divided into samples with/without TKE. Third column shows the data processing, and
the fourth column shows the loss function used. mse is mean squared error, while mae is mean
absolute error.

Data categorization Pre- and postprocessing Loss function

Model 1 None Linear scaling mse on physical values

Model 2 Stability Linear scaling mse on physical values

Model 3 Stability Logarithmic scaling mse on log-scaled values

Model 4 Stability and TKE Logarithmic scaling mse on log-scaled values

Model 5 Stability and TKE Logarithmic scaling mse on physical values

Model 6 Stability and TKE Logarithmic scaling mae on physical values
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Model optimization
Hyperparameter optimization, first part (result):

Table: Performance of the models tested in the first step of the model optimization. The
model specifications are explained in Table 1. For each variable and each error measure, the
best performance is highlighted with red color, and the worst is highlighted with blue.

Stat Kh Km L Bp −KhB Km
√

S q3/L

Model 1 l1 0.2713 0.2861 0.1261 0.2835 0.4481 0.9068 0.2849
l2 0.2986 0.3154 0.1598 0.2303 1.011 5.289 4.877
r 0.9508 0.9438 0.9841 0.9733 0.6927 0.1277 0.3667

Model 2 l1 0.2275 0.3206 0.1120 0.2261 0.5495 1.218 0.2263
l2 0.2250 0.2762 0.1476 0.1915 0.6040 8.798 0.7186
r 0.9727 0.9580 0.9864 0.9820 0.8598 0.2382 0.8736

Model 3 l1 0.06222 0.04390 0.1168 0.05586 0.07348 0.02881 0.07455
l2 0.1188 0.1136 0.1843 0.1082 0.1712 0.06836 0.1198
r 0.9924 0.9930 0.9793 0.9943 0.9853 0.9978 0.9927

Model 4 l1 0.05847 0.04058 0.1124 0.04618 0.06845 0.02351 0.05988
l2 0.1096 0.08420 0.1555 0.06163 0.1595 0.03453 0.1123
r 0.9935 0.9962 0.9850 0.9981 0.9872 0.9994 0.9939

Model 5 l1 0.08943 0.07602 0.1212 0.09739 0.1960 0.4034 0.1119
l2 0.1191 0.09794 0.1545 0.1364 0.2993 0.7136 0.1742
r 0.9924 0.9948 0.9851 0.9907 0.9627 0.9837 0.9844

Model 6 l1 0.04779 0.03089 0.09572 0.03554 0.05976 0.01854 0.05179
l2 0.1053 0.06758 0.1360 0.05390 0.1589 0.01868 0.09625
r 0.9941 0.9975 0.9887 0.9985 0.9873 0.9999 0.9954
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Model optimization

Batch size was found to have little or no impact
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Model optimization

Activation functions were found to have little impact:
ReLU and leakyReLU seem to work slightly better than
tanh and sigmoid.
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Model optimization
Optimizing the network size.
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Due to lack of independence between training/validation,
the optimal network couldn’t be estimated.

The chosen ”optimal” network sizes were:
1 layer and 50 nodes per layer (stable samples)
2 layers and 25 nodes per layer (unstable samples)
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Predictions of ”optimal” model

Plots of ANN predictions as function of true values.
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Implementation and test

Methodology:

• two 72 hour simulations made with both
the MYNN2.5 and the ANN schemes
(summer/winter)

• horizontal and vertical resolution same
as for training data

• larger domain than for training

• control run with MYNN2.5 scheme

• for comparison, runs are made with two
additional PBL schemes: YSU and MYJ
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Results example

2-meter temperature (summer and winter)
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Results example

10-meter wind (summer and winter)
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Results, error vs time (summer)
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Results, error vs time (winter)
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Results, efficiency
Time spend on % of total

Scheme the PBL scheme run time

MYNN 19.50 s 16.9%

ANN (matmul) 10.89 s 10.1%

ANN (sgemm) 9.49 s 9.1%

YSU 3.61 s 3.7%

MYJ 6.44 s 6.1%

Time spend on % of total
Scheme Subroutine the PBL scheme run time

MYNN Computing Km , Kh and L 5.53 s 4.8%
Condensation scheme 4.31 s 3.7%
Computing tendencies 4.09 s 3.6%
Solving TKE equation 0.70 s 0.6%
Other 4.87 s 4.2%

ANN (matmul) Neural network prediction 1.58 s 1.5%
Computing tendencies 3.77 s 3.5%
Solving TKE equation 0.55 s 0.5%
Other 4.99 s 4.6%

ANN (sgemm) Neural network prediction 0.85 s 0.8%
Computing tendencies 3.72 s 3.6%
Solving TKE equation 0.64 s 0.6%
Other 4.28 s 4.1%
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Conclusions

• It is possible to create an accurate and robust
turbulence closure model using neural networks.

• Demonstration of important results related to
scaling/normalization of inputs and outputs.

• Neural network based turbulence parameterizations
has potential of being an efficient alternative to
expensive second order PBL schemes while retaining
the second order accuracy.
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Outlook

• Neural network optimization and training should be
repeated with a new and better dataset - ensure
validation set is independent.

• Perhaps test other types of machine learning models,
e.g. random forests or boosted decision trees.

• Train a machine learning model on a data from high
resolution models, e.g. LES.
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Thanks for listening!
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Results example (extra slides)

Surface sensible heat flux (summer and winter)
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Results example (extra slides)

Surface latent heat flux (summer and winter)
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Results example (extra slides)

PBLH (summer and winter)
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Results example (extra slides)

U∗ (summer and winter)
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