Exercise 10



The total kinetic energy of a fluid is,


\begin{displaymath}E=\frac{1}{2}\int d^3x {\bf u}({\bf x})\cdot {\bf u}({\bf x})
=\frac{1}{2}\int d^3k u_{{\bf k}}u_{-{\bf k}}
\end{displaymath} (1)

Show the last identity (Parceval's theorem).



From this you can express the spectral energy density,

\begin{displaymath}E=\int dk E_k.
\end{displaymath} (2)

The enstrophy is defined as,

\begin{displaymath}Z=\frac{1}{2}\int d^3x {\bf\omega}({\bf x})\cdot {\bf\omega}({\bf x})
\end{displaymath} (3)

where the vorticity is the curl of the velocity, $\omega = \nabla \times {\bf u}$.



Express the Fourier transform of $\omega$ in terms of $u_{{\bf k}}$and show that the spectral enstrophy density is given as,


Zk=k2 Ek (4)








1998-11-25