
1. Introduction
Virtually all of the most commonly used earth system models, for example those used for the CMIP climate mod-
el intercomparison studies (Meehl et al., 2000), are implemented in the Fortran programming language. Their 
ocean components, such as POP2 (Danabasoglu et al., 2012), NEMO (Madec et al., 2017), or MICOM (Bleck 
et al., 1995), are no exception.

Our ocean model Veros follows a different route. Veros is implemented in the high-level programming language 
Python, which has several key usability advantages over Fortran (see Häfner et al., 2018, for a discussion), and is 
arguably the most popular programming language in science today. This allows even undergraduates to perform 
non-trivial numerical experiments.

However, model performance has been a long-standing issue. The lack of a built-in optimizing compiler makes 
it that vectorized Python code is typically about 3–5 times slower than equivalent Fortran code. This may be fine 
for idealized experiments, but is unacceptable for large setups that occupy thousands of central processing units 
(CPU) cores for months.

Recently, we succeeded to close most of this performance gap by exploiting the just-in-time compiler of the JAX 
library (Bradbury et al., 2018). This results in competitive CPU performance, as we will demonstrate in this 
article. But using JAX has another advantage: It allows us to use graphical processing units (GPUs) without any 
additional code.

With the advent of machine learning in general and deep learning in particular, GPUs have experienced a renais-
sance. Model training is vastly more efficient on massively parallel hardware, which has led to a feedback loop 
between supply and demand that has amplified their capabilities. Today, GPUs are the industry standard devices 
to train artificial neural networks. This trend has also impacted the design of modern compute facilities; for 
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example, out of the 8 upcoming supercomputers in the EuroHPC Joint Undertaking, 7 are going to provide GPU 
resources, typically making up around 10% of the total compute power (see EuroHPC, 2021). These resources 
would be unusable with traditional Fortran models without considerable additional effort, such as a complete 
re-implementation using CUDA Fortran or by using a framework like OpenACC (Wienke et al., 2012), which 
requires compiler directives for every loop (see also Norman et al., 2015).

Here, we confirm that GPUs are a viable alternative for earth system modeling due to their strong performance 
and high energy efficiency. Perhaps more importantly, we also show that operational simulations on GPU are 
possible today, since we now have wide access to mature hardware and a modern software stack that allows us to 
exploit this hardware without maintaining a separate GPU implementation.

This combination of competitive CPU performance and seamless transition to GPUs puts Python on the map as 
an attractive alternative to traditional, low-level programming languages, even from a performance perspective.

In this article, we outline the computational task behind ocean models through a brief introduction to their un-
derlying equations (Section 2). We introduce Veros and JAX, and show some of the design decisions we made 
to obtain a well-performing implementation (Section 3). We present extensive benchmarks of Veros against a 
Fortran backend, and study scaling behavior and energy usage on CPU and GPU (Section 4). Finally, we describe 
a case study where we integrate a realistic 0.1° global resolution setup using a single cloud instance with 16 GPUs 
(Section 5, Figure 1).

2. Model Equations and Discretization
To illustrate the computational challenge behind ocean modeling, we briefly introduce the equations that are 
solved by most ocean general circulation models.

Ocean dynamics are governed by the primitive equations, a combination of momentum balance, mass continu-
ity, and equation of state. They are typically solved in form of the semi-compressible, hydrostatic Boussinesq 
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Figure 1. Snapshot of the ocean surface velocity after 1 year of integration of a global 0.1° Veros setup. Simulated in about 24 hr on a compute instance with 16 
NVIDIA A100 GPUs in single precision. All model code is written in Python.
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equations (see e.g., Adcroft et al., 2021), which suppress acoustic modes and neglect vertical momentum. In (x, 
y, z) coordinates and time t they read:

D ⃖⃗𝑣𝑣ℎ
D𝑡𝑡
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with horizontal velocity 𝐴𝐴 ⃖⃗𝑣𝑣ℎ , vertical velocity w, vertical unit vector 𝐴𝐴 �̂�𝑘 , in-situ density ρ, background density ρ0, 
dynamic pressure p′, hydrostatic pressure p0, gravitational acceleration g, Coriolis frequency f, potential tempera-
ture θ, and salinity S. ∇h is the horizontal Nabla operator, and 𝐴𝐴 D∕D𝑡𝑡 = 𝜕𝜕∕𝜕𝜕𝑡𝑡 + ⃖⃗𝑣𝑣 ⋅ ∇ is the total derivative. On the 
right hand side, 𝐴𝐴  , 𝐴𝐴 𝜃𝜃 , and 𝐴𝐴 𝑆𝑆 denote forcing and dissipation of momentum, potential temperature, and salinity, 
respectively.

These equations are discretized using finite differences, which leads to a set of discrete equations that can be 
stepped forward in time explicitly. Fast barotropic modes of the ocean surface—which would require unaccept-
ably small time steps to integrate explicitly—are usually treated separately through an implicit formulation, 
which requires a linear system to be solved in each time step.

Implementing a full dynamical core requires at least several thousand lines of Fortran code, while mature ocean 
models like POP2 (Danabasoglu et al., 2012) can reach close to 100,000 lines of Fortran code.

3. High-Performance Computing in Python
Among scientists, Python has long held a reputation of being slow. This is true to some extent, as the common 
NumPy library (Harris et al., 2020) is often several times slower than equivalent low-level code, and there is no 
unique, established way to accelerate numerical Python code. The following sections introduce the steps we took 
to obtain the near-Fortran performance described in the benchmarks in Section 4, and give a brief introduction 
to Veros.

3.1. Veros

Here, we outline the core capabilities of Veros, and present some recent developments that have not been de-
scribed previously (see also Häfner et al., 2018, for a more general description of Veros).

The dynamical core of Veros is a direct translation of the Fortran backend of the ocean model PyOM2 (Eden, 2016; 
Eden & Olbers, 2014). Veros features a regular, fully staggered computational grid (Arakawa C-grid, see Arakawa 
& Lamb, 1977); closures for mesoscale eddies (Eden & Greatbatch, 2008; Gent et al., 1995), turbulence (Gaspar 
et al., 1990), isoneutral mixing of tracers (S. M. Griffies, 1998), and internal waves (Olbers & Eden, 2013); and 
various parameterizations for friction, diffusion, advection, and equation of state (e.g., TEOS-10, McDougall & 
Barker, 2011).

In a nutshell, Veros is a full-fledged primitive-equation model, with the current limitations of a regular lat-lon 
grid (which implies that the Arctic cannot be modeled due to a vanishing grid size at the poles) and missing sea-
ice components. Veros supports both highly idealized setups and realistic configurations at any resolution. Just 
as most Fortran models, Veros writes output in NetCDF4 format, which ensures that its output can be analyzed 
with all standard post-processing tools.
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Since the initial publication of Veros (Häfner et al., 2018), we have taken some additional steps to optimize model 
performance:

•  JAX Backend: Up until recently, Veros relied on the accelerator framework Bohrium (Kristensen et al., 2013) 
as a high-performance backend. Switching to JAX yielded substantial speedups, especially for small prob-
lems, on many CPU cores, and on GPUs (see Section 3.2 for more information about JAX and Section 4 for 
benchmarks). Specifically, we find that JAX is typically between 2 and 10 times faster than Bohrium on GPU, 
and is up to 4 times faster on many CPU cores due to reduced overhead (see also Häfner, 2021).

•  Distributed Computation: Perhaps the most impactful change is that Veros is now fully parallelized via Mes-
sage Passing Interface (MPI; Gropp et al., 1999) primitives. This means that Veros can be used in distributed 
contexts on any number of processes, and across any number of independent computational nodes. This is 
possible through mpi4py (Dalcin et al., 2011) and mpi4jax (Häfner & Vicentini, 2021), which allow NumPy 
and JAX data to be communicated without intermediate copies (i.e., data can be read and written directly via 
network, even from/to GPU memory).

•  Distributed Barotropic Solvers: To compute the barotropic external mode, a 2-dimensional Poisson equa-
tion has to be solved in every model step, which becomes a bottleneck at high processor counts. Veros now 
supports fully distributed linear solvers via PETSc and petsc4py (Balay et al., 1997). Specifically, PETSc's 
GAMG preconditioner applies an Algebraic Multigrid method (AMG, Ruge & Stüben, 1987) and works on 
both CPU and GPU, which makes it so the same solver can be used on any architecture.

•  Hand-Written Tridiagonal Solvers: Veros uses some implicit parameterizations, for example, for vertical 
friction. These require a tridiagonal linear system to be solved for each horizontal grid cell, which cannot 
be expressed in NumPy/JAX array operations. To make this more efficient, Veros supplies a hand-written 
implementation of the Thomas algorithm (see e.g., Press et al., 1989) for each backend, written in Cython for 
CPU and CUDA for GPU (contributed as part of a student project; see Grenzdörffer, 2021). These special 
implementations are usable from JAX without overhead through its custom call mechanism. This is the only 
non-Python code in the Veros repository, and entirely optional. Using these extensions increases general 
model performance by about 10%.

Veros supports both NumPy and JAX as numerical backends. Additionally, since the dynamical core of Veros is 
a one-to-one translation of that of PyOM2, its original Fortran components can be used instead of the Veros core 
routines. In other words, we can use PyOM2 as a Fortran backend to Veros, which allows us to conduct a direct 
comparison between Python and Fortran performance (as done in Section 4).

Veros enforces consistent results between all computational backends through an automated testing suite that 
compares the output of each model subroutine and entire model setups to the Fortran reference. We find that both 
NumPy and JAX are consistent with the Fortran reference to a high degree (absolute error <10−8 , relative error 
<10−6 for all variables after 1 model step).

3.2. JAX

Massively parallel devices—such as GPUs and tensor processing units (TPUs)—are notoriously difficult to pro-
gram with low-level code. For example, writing CUDA kernels by hand requires in-depth awareness of different 
types of GPU memory, internal memory layouts, asynchronous execution, and the optimal number of threads per 
block for the problem at hand (see e.g., Sanders & Kandrot, 2010).

This calls for a more accessible way to run code on these devices. Therefore, the rising popularity of GPUs 
has also lead to the birth of accelerator frameworks such as TensorFlow (Abadi et al., 2016), Torch (Collobert 
et al., 2002), Theano (Bergstra et al., 2010), and JAX (Frostig et al., 2018), which perform native code generation 
for various hardware targets based on vectorized array operations.

Since all performance-heavy operations are executed within the accelerator framework, performance is virtually 
independent of the programming language used to express the numerical routines. This makes them an ideal fit 
for high-level languages like Python, and most numerical Python code can only achieve competitive performance 
by leveraging such an accelerator framework.
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In our case, we performed extensive benchmarks and comparisons between the most popular accelerator frame-
works (available on GitHub, see Häfner, 2021). Given its ease of use and consistently strong performance, we 
decided to use JAX as the computational backend for Veros. JAX provides a just-in-time (JIT) compiler that 
traces the given Python code, extracts the performed array operations, and executes them on the target device. 
Array operations are specified using the NumPy API, which makes it easy to port existing Python code that uses 
NumPy to JAX.

Internally, JAX generates a so-called HLO IR (high level operations intermediate representation) that is then 
passed to the compiler XLA, which performs the actual translation to machine code. XLA originated as Tensor-
Flow's TPU compiler and has since been extended to also target CPU and GPU devices. XLA applies a number of 
transformations to the original code, including loop fusion, elimination of redundant computations, and memory 
layout optimizations. Additionally, all JAX kernels are executed asynchronously, which further helps to hide 
Python overhead and host-device communication latencies.

JAX is gaining popularity in science, and has been successfully applied to molecular dynamics (Schoenholz & 
Cubuk, 2020), probabilistic programming (Phan et al., 2019), rigid body simulation (Freeman et al., 2021), and 
many-body quantum systems (Carleo et al., 2019).

For Veros, implementing a JAX backend has been a negligible effort compared to traditional approaches to GPU 
programming, and the result is much more concise and maintainable, since the same code runs on all hardware 
targets (see Figure 2 for an example). In fact, the biggest changes required to support JAX in Veros were related to 
its data model. Because compiled JAX functions must be pure (without side effects), we changed all core routines 
to explicitly return their results instead of modifying the model state in-place.

To the user, the resulting code behaves for the most part like any other Python code. This includes the correct 
propagation of exceptions and seamless interplay with other Python libraries (such as Matplotlib for plotting) 
outside of JIT compiled functions. Debugging within compiled functions is more difficult, but since Veros also 

Figure 2. From Fortran to NumPy to JAX. The same code snippet (from the turbulent kinetic energy closure) for all 3 backends. When going from Fortran to Python, 
explicit loops are replaced with array operations. Changes from NumPy to JAX are minimal (an additional JIT decorator and a different syntax for slicing). This results 
in tremendous speedups on CPU and GPU (see benchmarks).
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supports NumPy as a computational backend, all initial debugging can be done in NumPy before switching to 
JAX for performance.

4. Benchmarks
Here, we present full model benchmarks using different hardware and software stacks. One goal is to compare the 
performance of Veros to PyOM2's Fortran backend; this allows us to quantify the impact of switching from For-
tran to Python, since both implement the same numerical routines (see Section 3.1). Another goal is to benchmark 
the scaling behavior of CPUs and GPUs when increasing domain sizes and number of devices.

The setup we use here is part of the Veros repository (ACC benchmark) and consists of an idealized rectangular 
ocean basin with an open channel representing the Southern Ocean. All optional components (isoneutral mixing, 
turbulence, mesoscale eddy, and internal wave closures) are activated. We measure the average wall time per 
model iteration, excluding I/O (which incurs the same cost for all backends). Since this is an end-to-end model 
benchmark its results are representative for real-world scenarios, with the possible exception of the barotropic 
solver (the underlying linear system is easier to solve for an idealized geometry).

Because JAX relies on just-in-time compilation, the first model iteration has a constant additional overhead of 
about 40 s. Therefore, we discard the first 2 iterations, and report the mean wall time of the following 10 iterations.

The following sections present the results for varying problem size, varying number of CPUs, and varying num-
ber of GPUs. Finally, we quantify the energy savings when using GPUs instead of CPUs.

4.1. Scaling With Problem Size

For this benchmark, we keep the number of processes fixed at 24 for MPI-enabled backends; all other backends 
run on a single process. It is executed on a compute node with 24 CPU cores and a NVIDIA Tesla P100 GPU 
(architecture I in Table A1). Here, and in all following benchmarks, “number of grid elements” refers to the total 
(3-dimensional) number of grid points.

The results are shown in Figure 3. We find that, when using JAX with MPI, Veros is at most a factor of 1.4 slower 
than Fortran with MPI for intermediate to large setups (more than 106 grid cells). Notably, JAX is about 1.6 times 
faster than Fortran on a single process, which is because JAX uses some thread-based parallelism internally. 
NumPy is consistently 3 to 5 times slower than Fortran, which illustrates the substantial payoff from using JAX 
for acceleration.

On a single NVIDIA P100 GPU (JAX-GPU), Veros is about 2 times faster than Fortran on 24 CPU cores when 
the GPU is fully saturated (i.e., for large problems). In this configuration, this seems to be the case for domains 
exceeding 106 elements (corresponding to about 2° global resolution). In contrast, JAX achieves its full perfor-
mance on CPU for domains exceeding 105 elements (i.e., all but the smallest idealized setups).

Figure 3. With JAX, Veros performance is close to native Fortran code throughout a wide range of problem sizes (number of 3D grid cells), and on both on 1 and 24 
processes. Left: wall time per iteration for each backend. Right: speedup relative to single-process Fortran. Benchmarks executed on a single compute node (Table A1, 
architecture I).
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4.2. Scaling With Number of CPUs

After the initial benchmark with varying problem size, we now investigate the scaling behavior in fully distribut-
ed, multi-node contexts. For this, we hold the problem size constant at 6 × 106 grid cells (approximately the size 
of a global 1° × 1° setup), but vary the number of tasks committed to a CPU cluster (architecture II in Table A1) 
using a maximum of 8 nodes with 32 CPU cores each (256 CPU cores total).

We find that, when using JAX, Veros performance lies again within a factor of 1.4 of the Fortran implementation 
(Figure 4). For a low number of processes (≤4 ) and a high number of processes (256) we even find the same 
performance as Fortran, with a gap for an intermediate number of cores. For NumPy, this gap is even more pro-
nounced, with a plateau between 2 and 8 processes, before scaling continues.

We interpret this as evidence that Veros performance is memory bound, which would manifest only for an inter-
mediate number of processes. For a low process count, the node's memory bandwidth is large enough to keep 
up with demand. For a high node count, memory bandwidth matters less as communication overhead and the 
barotropic solver start to dominate the overall runtime. Interestingly, this also leads to the fact that NumPy is only 
a factor of 2 slower than Fortran on 256 processes (from a factor of 7 at 16 processes).

This memory bandwidth bottleneck is more pronounced for NumPy because NumPy manifests every temporary 
result in memory. But even JAX does not manage to fuse all array operations, which contributes to the observed 
gap.

4.3. Scaling With Number of GPUs

To investigate the scaling with number of GPUs, we conduct experiments using both strong scaling (constant 
problem size) and weak scaling (constant problem size per device). All multi-GPU benchmarks are executed on a 
a2-megagpu-16g instance on Google Cloud with 16 NVIDIA A100 GPUs (architecture III in Table A1).

The results show that saturating each GPU is critical for a good scaling behavior (Figure  5). During strong 
scaling, with a constant global problem size of 2 × 107 (filling a single GPU's 40 GB of memory), 16 GPUs are 
only about 3.4 times faster than 1 GPU. However, when each GPU is fully saturated (weak scaling), Veros/JAX 
achieves almost perfect scaling, with 16 GPUs being only about 20% slower than 1 GPU in terms of total solution 
time (for a 16 times larger domain).

In an additional CPU benchmark with the same problem size of 2 × 107 (included in raw benchmark results, see 
data availability section), we find that 256 CPU cores running Fortran reach a performance of about 3.2 × 10−2 s 
per 1M grid cells (as opposed to 2.5 × 10−2 s for a single GPU). This shows that each high-end GPU can replace 
well over 200 CPU cores running a traditional ocean model, both due to a higher computational efficiency and 
reduced communication overhead (since fewer devices participate in the solution).

Figure 4. With JAX, Veros reaches Fortran speed for both few and many CPU cores, with a 40% performance gap for an intermediate number of cores. Left: wall time 
per iteration for each backend. Right: speedup relative to multi-process Fortran. Benchmarks executed on a CPU cluster with 32 cores per node (Table A1, architecture 
II).
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4.4. Energy Consumption

Raw performance is not the only important metric in high-performance computing. A low energy consump-
tion is key to reduce computing costs and minimize carbon footprints. Because every GPU can ideally re-
place several computational nodes they provide a promising way to achieve this. This is especially true in 
multi-GPU contexts, since several GPUs (in practice up to 16) can be attached to the same node, reducing 
overhead.

However, total energy consumption is difficult to estimate and depends on many factors. Here, we provide one 
data point by measuring the total energy consumption of a CPU and GPU simulation, respectively. For this we 
integrate a global 1° × 1° Veros setup (containing about 6 × 106 grid cells) for 2,000 iterations and record the 
power usage (as reported by the node's remote access controller) every 3 s. This only measures the energy usage 
by the node itself; in a real-world setting, there are external systems like network and storage that contribute to 
the total energy footprint of a simulation that we cannot estimate here.

The results indicate that, in this case, using a GPU is 2.6 times more efficient than the node's CPU cores (Table 1). 
This factor is increased even further to 3.2 when using 2 GPUs. This is despite the poor strong scaling behavior on 
GPU (see Section 4.3) which causes each device to be underutilized (this is also why we only see a 50 W increase 
when adding a second GPU).

We are optimistic that a setup with 16 next-generation GPUs attached to 1 node (such as the architecture in Sec-
tion 4.3) reaches even higher energy efficiencies, especially if all devices are saturated, as in this configuration a 
single GPU node is able to replace several CPU nodes.

In terms of purchasing cost, we find that CPU and GPU systems of the same performance are comparable. 
Based on our benchmarks in Section 4.3, we estimate that 1 NVIDIA A100 GPU (retail price of 24,959 $) 
has the same performance as 3 to 4 high-end CPUs, such as the AMD EPYC 7742 with 64 cores each (as 

used e.g., in the Cambridge 1 supercomputer; total retail price of 20,850$ 
to 27,800 $). This implies that these energy savings could also translate 
into tangible cost savings. However, further studies on real-world energy 
consumption and performance are necessary to determine how large this 
difference turns out to be in practice.

5. Eddying 0.1° Setup
To show that GPUs are already viable for research applications, we use a 
a2-megagpu-g16 Google Cloud instance (the same as in Section 4.3) with 16 
A100 GPUs to integrate a global eddy-resolving setup.

Figure 5. Veros scales well in multi-GPU contexts, as long as the problems are big enough to saturate each GPU. Left: Strong scaling with constant problem size of 
2 × 107 elements. Right: Weak scaling with problem size of 2 × 107 elements per GPU. Benchmarks executed on a Google Cloud a2-megagpu-16g instance (Table A1, 
architecture III).

Time to solution Mean power usage Total energy usage

24 CPU cores 3297.17 s 354.47 W 0.32 kWh

1 P100 GPU 1386.74 s 316.34 W 0.12 kWh

2 P100 GPUs 945.55 s 364.88 W 0.10 kWh

Note. Shown is the power consumption of a single GPU node (architecture 
I, see Table A1) when running a global 1° Veros setup for 2,000 iterations, 
depending on the used hardware.

Table 1 
Simulations Can be Substantially More Energy Efficient on GPU
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For this, we use a model grid with constant 0.1° spacing and 3600 × 1600 × 60 grid cells (3.50 × 108 total ele-
ments). This results in a nominal resolution of 10 km (as defined in the CMIP6 specification), which is sufficient 
to resolve mesoscale eddies.

Because eddies are resolved explicitly, we disable the mesoscale eddy closure and use a reduced, constant thick-
ness diffusivity of 100 m2 s−1. We also disable the internal wave parameterization, and leave the turbulence clo-
sure active. To enable a more realistic representation of mesoscale eddies, we use biharmonic friction (Griffies 
& Hallberg, 2000) instead of the default Laplacian lateral friction, with a biharmonic viscosity of 1011 m4/s2 that 
decays with latitude ϕ as cos3ϕ. Initially, we use a time step of 120 s, which is increased to 150 s after 90 model 
days and to 180 s after 180 model days (when initialization shocks have settled down).

One important limitation when running large-scale models on GPU is available memory. GPUs come with a fixed, 
non-configurable amount of memory attached, which makes them less flexible to use. Fortunately, GPU memory 
has now grown to the sizes that we need to store even large-scale setups. Each A100 card used here has 40 GB of 
memory, which combined (640 GB) is just enough to hold the entire model state and diagnostics in double precision.

In this experiment, we also showcase Veros' capability to use single precision. Thanks to a fully dynamic type 
system in Python and JAX, we can change all data types with a simple runtime switch without code changes. This 
results in an about 70% higher overall model performance compared to double precision for this setup.

In fact, the use of single precision for earth system modeling has gained popularity in recent years. For example, 
after a series of preliminary studies (e.g., Nakano et al., 2018; Ván̆a et al., 2017), and a substantial effort to re-
write model components, ECMWF (the European Centre for Medium-Range Weather Forecasts) recently an-
nounced a switch to single precision for high-resolution and ensemble forecasts (Lentze, 2021), with convincing 
results. While the use of single precision is not yet mainstream in climate modeling (also due to issues like spuri-
ous wave growth, Nakano et al., 2018), we see Veros also as a tool to investigate the feasibility of this promising 
way to increase computational performance with acceptable loss of accuracy.

After about 24 hr of real time, we obtained the output shown in Figure 1 at the beginning of this article. Even 
though the overturning circulation is far from spun up after 1 model year, we can clearly identify most real-world 
ocean currents, and the integration is stable. With the final time step of 180 s we achieve a throughput of about 
1.3 model years per day in single precision, and 0.77 model years per day in double precision.

To put this into perspective, the Geophysical Fluid Dynamics Laboratory ocean model OM4 includes a nominal 
0.25° setup that achieves a performance of 12 model years per day on 4671 CPU cores (Adcroft et al., 2019). 
Given that this setup has 1440 × 1080 × 75 grid elements and a time step of 900 s, this gives an equivalent 0.1° 
throughput of 0.81 model years per day. Taking into account that OM4 is a more complicated model and includes 
a sea ice component, we estimate that our setup on 16 GPUs is able to replace at least 2000 (Fortran) CPU cores. 
This is in line with our benchmark comparisons with PyOM2 (Section 4.3), where we find that 1 GPU can replace 
at least 200 CPU cores on the same setup, leading to a conservative equivalent performance estimate of 3200 CPU 
cores for 16 fully saturated GPUs.

6. Discussion and Outlook
In the previous sections, we show that a pure Python code base coupled with an accelerator library like JAX can 
achieve comparable performance to a traditional Fortran model across a wide range of architectures. Additionally, 
we demonstrate that earth system modeling on GPUs is a viable alternative that performs well and uses signifi-
cantly less energy than CPUs, even when applied to real applications like an eddying model setup.

While Moore's law still seems to apply in the strict sense (in terms of transistor density), CPU clock speeds have 
increased sub-exponentially since the early 2000s. On GPUs however, exponential scaling seems very much 
alive—an observation that has been coined as Huang's law (Perry, 2018). While it is too early to determine wheth-
er this trend will be as persistent as Moore's law, it seems that GPUs offer huge potential for high-performance 
computing in general and earth system modeling in particular.

We are not the only ones to recognize this trend. Fuhrer et al. (2018) present COSMO, an atmospheric model written 
in a domain-specific language that can be compiled to different hardware architectures. They estimate their GPU-
based integrations to be at least 5 times more energy efficient than similar experiments on CPU, in line with what we 
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find here. Gridtools (Afanasyev et al., 2021), along with its Python bindings gt4py, is a project that specifically aims 
to accelerate stencil operations, the main operation throughout the Veros core. This is similar to what we achieve via 
JAX. Oceananigans.jl (Ramadhan et al., 2020) is an ocean model written in the high-level language Julia, which has 
a built-in just-in-time compiler that can also generate GPU code, and which has excellent performance.

Recently, cloud TPUs have been gaining traction in some large-scale machine learning applications (e.g., Doso-
vitskiy et al., 2021) as an alternative to GPUs. Since JAX has native TPU support, almost all routines of Veros 
can already run on TPU. However, TPUs are primarily optimized for matrix multiplication operations, which 
are not used in Veros outside of the linear solver. While TPUs could prove to be a way to even faster and more 
energy efficient models, it remains to be seen whether they can be used in practice. But with JAX on our hands 
we already have the tools to use them should they prove valuable.

We see projects like Veros as a way for academia to profit from the enormous amount of resources that has been 
invested into machine learning, both in terms of hardware and software developments. This investment is ongo-
ing, and JAX is still evolving rapidly, which is no surprise considering that the project is less than 3 years old.

For Veros, we see two important developments in the near future. First of all, we plan to address its current shortcom-
ings by implementing a tripolar grid structure (S. Griffies et al., 2005) and adding a sea ice model to achieve a realistic 
representation of the Arctic. While this is a challenging undertaking, we expect these new features to be well com-
patible with our current software stack (that is, JAX and PETSc), and be well suited for GPUs. Second, we anticipate 
Veros to become even faster on GPU, especially in multi-GPU contexts. With increasing number of devices, the linear 
(barotropic) solver eventually becomes a bottleneck. We expect to be able to remedy this by using NVIDIA's AmgX 
library (Naumov et al., 2015), which is optimized from the ground up for multi-GPU, distributed use cases like ours.

While the flexibility and rich library ecosystem of Python is a strong asset, there are also some notable obstacles 
when choosing Python over Fortran. Decades of real-world usage and the relative simplicity of the Fortran lan-
guage have led to an established community standard of model development. As a consequence, most Fortran 
models read similarly to each other. This is currently not the case in Python development, where the chosen 
abstraction and library stack have a huge influence on the structure of the model code. This calls for a collective 
effort to formalize a common interface for the development of high-performance models in Python. We are con-
fident that this can and will happen should this approach gain the required momentum.

We urge the community to explore this exciting possibility of high-level models with low-level performance, 
towards a more resource efficient generation of earth system models.

Appendix A: Benchmark Platforms
Benchmark platforms are shown in Table A1.

Compute node (I) CPU cluster (II)
Google cloud instance a2-megagpu-

16g (III)

CPU 2 × Intel Xeon E5-2650 v4 @ 2.20 GHz (24 cores 
total)

2 × Intel Xeon E5-2683 v4 @ 2.1 GHz (32 
cores total) per node

96 virtual CPU cores

GPU 2 × NVIDIA Tesla P100 (16 GB HBM2 memory) – 16 × NVIDIA A100 (40 GB HBM2 
memory)

Main memory 512 GB 128 GB per node 1360 GB

File system LUSTRE filesystem @ 128 MB s−1 read/write 
performance

LUSTRE filesystem @ 128 MB s−1 read/
write performance

1 TB persistent SSD storage

Operating system CentOS 7.9 CentOS 7.9 Ubuntu 20.04

Software stack CUDA 11.2, OpenMPI 4.0.5, PETSc 3.15, jaxlib 0.1.67 MPICH 3.3.2, PETSc 3.13, jaxlib 0.1.67 CUDA 11.3, OpenMPI 4.0.5, HDF5 
1.12.0, PETSc 3.15, jaxlib 0.1.68

Interconnectivity – 40 GBps Mellanox QDR Infiniband 
inter-node

9.6 TBps NVIDIA NVlink 
GPU-to-GPU

Note. Specifications of architecture III according to Parthasarathy and Kleban (2021).

Table A1 
Benchmark Platforms
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Data Availability Statement
Veros is available under MIT license at https://github.com/team-ocean/veros. The described version is v1.3.4. All 
scripts used to perform the benchmarks in this article, raw benchmark results, and plotting scripts are available at 
https://doi.org/10.17894/ucph.abb1726e-3e99-434d-92f9-2e112ee4c778. The 0.1° setup described in Section 5 
is available at https://github.com/dionhaefner/veros-01deg/tree/v1.0.
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