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ABSTRACT

A new method to quantify changes in El Niño–Southern Oscillation (ENSO) variability is presented, using

the overlap between probability distributions of the wavelet spectrum as measured by the wavelet probability

index (WPI). Examples are provided using long integrations of three coupled climate models. When subsets

of Niño-3.4 time series are compared, the width of the confidence interval on WPI has an exponential de-

pendence on the length of the subset used, with a statistically identical slope for all three models. This ex-

ponential relationship describes the rate at which the system converges toward equilibrium and may be used

to determine the necessary simulation length for robust statistics. For the three models tested, a minimum of

250 model years is required to obtain 90% convergence for Niño-3.4, longer than typical Intergovernmental

Panel on Climate Change (IPCC) simulations. Applying the same decay relationship to observational data

indicates that measuring ENSO variability with 90% confidence requires approximately 240 years of ob-

servations, which is substantially longer than the modern SST record. Applying hypothesis testing techniques

to the WPI distributions from model subsets and from comparisons of model subsets to the historical Niño-3.4

index then allows statistically robust comparisons of relative model agreement with appropriate confidence

levels given the length of the data record and model simulation.

1. Introduction

Predicting changes to the El Niño–Southern Oscilla-

tion (ENSO) has important societal implications, includ-

ing drought management in Australia and the American

Southwest (Seager 2007; Trenberth et al. 1998; Ropelewski

and Halpert 1996; Nicholls et al. 1996). However, ac-

curate ENSO simulation is limited by the short extent of

observations in the tropical Pacific (Guilyardi et al. 2009),

as well as model errors (Guilyardi 2006; AchutaRao and

Sperber 2006; van Oldenborgh et al. 2005). Here, the

goal is to provide a tool that can be used to test models’

performance relative to observations and to other models

in a statistically reliable manner, which will both guide

improvements to model performance and shed light on

the impacts of external forcing on ENSO.

Both modeling (Wittenberg 2009) and observational

(Zhang and McPhaden 2006) studies agree that modu-

lations in ENSO dynamics occur on long time scales,

meaning that longer records are necessary to capture the

full behavior of the system. Paleoclimatic proxy recon-

structions from sources such as fossil coral records are

often used to extend the temporal baseline, but their use

may be complicated by the need to account for the

physical location of the proxy record, sampling vari-

ability within the record, or small-scale effects leading to
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artificial fluctuations in the signal (McGregor and Gagan

2004; Brown et al. 2008). This implies that long coupled

climate model integrations are the best option for

generating long-term, spatially complete ENSO records

(Wittenberg 2009).

Coupled models suffer from some biases (Capotondi

et al. 2006; AchutaRao and Sperber 2006; van Oldenborgh

et al. 2005), but the present generation of coupled

models shows increased accuracy (Guilyardi et al. 2009).

In particular, the updated version of National Center for

Atmospheric Research (NCAR)’s Community Climate

System Model (CCSM3.5; Neale et al. 2008) is much

improved relative to the IPCC Fourth Assessment Re-

port (AR4)-class climate models at both fine and coarse

resolutions (Jochum et al. 2009). Although biases remain,

this version of CCSM performs as well as the current

generation of coupled models at a relatively low com-

putational cost, and it has therefore been used as the

primary coupled model for this study.

This paper uses long integrations of the coarse-

resolution CCSM3.5 to illustrate a new, wavelet-based

probabilistic model validation method, capable of deal-

ing with skewed and temporally variable distributions

and useful both for ENSO and for other climate indices.

Traditional tests (x2 or Kolmogorov–Smirnov) are not

suitable for non-Gaussian distributions; however, wave-

let probability analysis can provide quantitative statisti-

cal measures even for highly nonnormal distributions

of spectral power. This method is extremely versatile: it

may be used to predict the necessary length for a model

simulation (section 2a), to quantify agreement between

a model and observations (section 2b), or to examine the

relative performance of multiple models compared to

observations (section 2c).

2. Wavelet probability analysis

This method relies on the probability distribution

function (PDF) of wavelet power. Here, Niño-3.4 SST

from a 1200-yr integration of the CCSM3.5 (hereafter

CCSMcontrol) forms the primary dataset. CCSMcontrol

is configured as in Jochum et al. (2010) and validated

against SST from the Common Ocean-Ice Reference

Experiment (CORE) of Large and Yeager (2008; here-

after the CORE hindcast), covering the period from 1949

to 2003 and chosen for convenience. The Large and

Yeager (2008) Niño-3.4 is highly correlated ($0.95) with

other data products over this time window. However, we

note that other data products can easily be used as well.

Figure 1 shows the PDF of wavelet power, generated

using the wavelet toolkit of Torrence and Compo (1998).

This is equivalent to plotting a histogram of wavelet

power at each period; the variance is shown on the

horizontal axis, and the wavelet period on the vertical,

with probability densities shown in color. The median

and 25th/75th percentile values (interquartile range) of

wavelet power for each period are overplotted as the

gray line and pair of black dashed lines, respectively,

and the median wavelet PDF for the CORE hindcast is

shown for comparison as the white solid line. Looking

at the positions of the two median curves, one sees that

the CORE hindcast falls well within the model’s inter-

quartile range for all wavelet periods below 10 yr: in

other words, the range of short-period variability shown

by CCSM is consistent with the behavior of the recent

observational record. Some offsets do remain at long

periods, most likely due to errors in CCSM3.5’s repre-

sentation of ENSO or other decadal variability (e.g., the

Pacific Decadal Oscillation) but with some potential

FIG. 1. Probability distribution functions for CCSMcontrol Niño-3.4 wavelet power. The gray

line represents the median value for the model simulation, while the white line is the mean

value generated using the CORE hindcast. Dashed black lines correspond to the 25th and 75th

percentile values for the model simulation (interquartile range).
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contribution from undersampling the true range of ENSO

dynamics. Understanding how the contribution from nat-

ural variability compares to real errors in model physics

is the purpose of wavelet probability analysis.

Let f1(s, n) and f2(s, n) be two PDFs of wavelet power

s at frequency n. Then the joint PDF F(s, n) is the

probability that a given level of wavelet power is ob-

served in both datasets at frequency n, and the integral

of F(s, n) is the overlap between the two. We refer to the

latter quantity as the wavelet probability index, or WPI:1

WPI(n) 5

ð‘

0

F(s, n) ds 5

ð‘

0

f
1
(s, n) f

2
(s, n) ds. (1)

The two wavelet PDFs f1 and f2 have been assumed to

be independent, which allows us to interpret F as the

product of the two distributions: F(s, n) 5 f1(s, n)f2(s, n).

By definition, WPI lies between 0 and 1 and measures

statistical agreement between time series. WPI can be

used to measure internal variability (self-overlap; sec-

tion 2a), or to quantify agreement between records: for

example, model simulations, or a model versus data (sec-

tions 2b and 2c).

The choice of wavelet basis has a minor effect on the

results; here, we use the Morlet wavelet, of degree 6

(Daubechies 1990; Torrence and Compo 1998):

C(h) 5 p�1/4e�iv0he�h2/2, (2)

where h is the nondimensionalized time parameter and

v0 the nondimensionalized frequency. We note that the

known bias in the wavelet spectrum (Liu et al. 2007)

affects the numerical outcome of some of the analyses

below, but does not affect the results of hypothesis tests

or the major conclusions of this work. The same is true

for the choice of wavelet basis; the Morlet wavelet is

used throughout this analysis, but choosing a real-valued

rather than a complex wavelet does affect the outcome

to a minor extent. A full analysis of the wavelet basis

effect is beyond the scope of this introductory paper;

further analysis will be forthcoming.

The relevant steps for this analysis are as follows:

(i) Choose the two time series to compare (e.g., sub-

sets of a model versus entire simulation, subsets of

a model versus data).

(ii) Create a time series for the region of interest.

(iii) Perform a wavelet analysis on the two time series.

(iv) Compute the probability distribution function of

the wavelet power, for all time series of interest.

(v) Calculate the WPI according to Eq. (1).

(vi) Subsample the data to find the WPI distribution

due to internal variability.2 Confidence intervals at

the 1 2 a significance level may then be obtained

using the a/2 and 1 2 a/2 percentiles of the WPI

distribution.

Steps (i)–(vi) yield a quantitative measure of spectral

agreement between time series, accompanied by well-

defined significance levels. In this sense, the wavelet

probability method is a natural extension of qualitative

estimates of model–observed ENSO agreement, such

as Neale et al. (2008) or van Oldenborgh et al. (2005).

Three examples of using wavelet probability analysis are

presented here using the Niño-3.4 wavelet PDF: a self-

overlap calculation (section 2a), a data–model compar-

ison (section 2b), and a demonstration of the use of

hypothesis testing to accept or reject a climate model

based on ENSO variability (section 2c) are shown. A

suite of Matlab codes developed for this purpose has

been used in all three calculations, and is available for

download as both command-line codes and a graphical

user interface. (More information is available online at

http://atoc.colorado.edu/;slsteven/wpi/.)

a. Self-overlap

The first goal of this analysis is to quantify the internal

variability within an ENSO record, which is expected

to be quite large. Measuring the WPI distribution gen-

erated from subsamples of an (ideally equilibrated, con-

stantly forced) control time series yields the expected

degree of self-agreement as a function of time series

length. The 90% confidence interval is then the distance

between the 5th and 95th percentiles of the resulting

WPI distribution. As the simulation length and sub-

sample length increase, the 90% WPI confidence inter-

val becomes narrower, which allows a prediction of the

length needed for a given level of spectral convergence.

The self-overlap dependence on subinterval length is

shown in Figs. 2a,b, for the CCSM3.5 and the CM2.1,

respectively. For each of those models, example sub-

intervals of length 50, 100, and 200 yr have been used to

generate 90% WPI confidence intervals, plotted as the

black, blue, and red lines in each panel.

Subintervals of a time series are by definition drawn

from the same distribution. Therefore, the upper limit

of the WPI distribution should approach 1 for long

subintervals, a behavior that is observed in Fig. 2. Ulti-

mately, one expects a self-overlap WPI value of 1 for

very long comparison windows, but it is the width of the

1 One can also integrate WPI over frequency to obtain a single

value, but this destroys useful information.

2 This analysis uses only nonoverlapping subsamples, to elimi-

nate any possibility of introducing effects due to autocorrelation.
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confidence interval that quantifies the confidence one

has in the wavelet spectrum estimate. Thus, it is pro-

posed here that a good measure of confidence in the

convergence of the WPI is the width of the 90% confi-

dence interval Wim.

For ENSO, we have assumed that the most relevant

wavelet periods are those between 2 and 6 years and

have performed a regression on the average WPI con-

fidence interval width Wim against the model subinterval

length L, averaged over those wavelet periods. An ex-

ponential relationship provides a good fit:

lnW
im

5 b
0

1 b
1
L. (3)

Values for the slope and intercept coefficients b1 and

b0 are given in Table 1. The regression lines are shown

graphically in Fig. 2e; CCSM3.5 is shown in red, CM2.1

in blue, and CM4 in green, with the corresponding 90%

confidence interval for each fit given as dot–dashed lines

of the corresponding color.

The slope of Eq. (3) is demonstrated to be quite ro-

bust. Tests of the relationship have been performed with

a 2000-yr integration of the Geophysical Fluid Dynam-

ics Laboratory (GFDL) CM2.1 (Wittenberg et al. 2006;

Wittenberg 2009), and an 1155-yr preindustrial control

simulation of the L’Institut Pierre-Simon Laplace Cou-

pled Model, version 4 (IPSL CM4). For all three of these

models, the slope is statistically indistinguishable. How-

ever, the same cannot be said of the regression intercept;

this is specific to the individual model. In some sense, the

regression intercept may be said to inform the degree

to which self-overlap is built in to the coupled model in

question, since the total length of the simulation does

not greatly affect the value of the intercept.

This exponential convergence allows the determina-

tion of the necessary simulation length for any given

coupled model to settle down in terms of its ENSO sta-

tistics. If Niño-3.4 is the index of choice, then to sample

90% of the true ENSO variability in CCSM3.5, find the

FIG. 2. (a),(b) The 90% confidence interval on WPI distributions for self-overlap calculations (CCSMcontrol and CM2.1, respectively).

(c),(d) As in (a),(b), but for model–data WPI distributions. (a)–(d) Higher values of WPI indicate better agreement, ranging from 0 to 1.

(e) The regression of 90% confidence interval widths against subinterval length, for self-overlap calculations. CCSMcontrol (NCAR

CCSM3.5) data appear as red 3’s, GFDL CM2.1 as blue squares, and IPSL CM4 as green circles.
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value of L in Eq. (3) where Wim 5 0.1 (lnWim 5 22.3).

This simulation length is between 247 and 374 yr for all

models (see Table 1). Thus, 250 yr is a reasonable initial

simulation length for quantification of ENSO statistics.

However, it may take longer than 250 yr for the model

to equilibrate; note that each of the three models tested

have a different value of b0 in Eq. (3). It is recommended

that a run of 250 yr (or shorter) be used to determine b0,

which will allow for a more accurate estimate of the sim-

ulation length needed to reach Wim 5 0.1. The online

tools at http://atoc.colorado.edu/;slsteven/wpi/ allow au-

tomated calculation of the necessary simulation length.

Before comparing models to data in the next section,

it is interesting to use the convergence rate of Wim in

models to estimate the observational record length with

Wim 5 0.1, just as if the observations were a preliminary

(short) model simulation. Doing so with the Hadley

Centre Global Sea Ice and Sea Surface Temperature

(HadISST) dataset, for instance, yields b0 5 20.927.

Then using the b1 value from CCSM3.5 indicates that

90% confidence in convergence of the Niño-3.4 data will

require an observational record 240 yr long. In other

words, both twentieth-century climate simulations and

the observational record are too short to sample the full

range of ENSO.

Ideally, the modern record would be used to generate

its own WPI regression, from which upper and lower

bounds on the needed observation length could be cal-

culated. This is precluded by its short length, but a rough

estimate may be generated using the 90% confidence

interval width on b0 from the CCSMcontrol regression.

When this is done, we find that the minimum observation

length needed for 90% convergence is 175 yr, and the

maximum is 334. Thus, as many as 334 yr of observations

may be required to uncover the true picture of ENSO.

b. Validation against data

Even if the model and data records are too short to

reach Wim 5 0.1 as above, one can use them to formu-

late quantitative estimates of model/data agreement and

agreement uncertainty. Estimating the expected agree-

ment between distinct time series (e.g., a model and ob-

servations) as a function of their lengths is another use of

wavelet probability analysis, which helps deal with vali-

dation against an observational record too short to sample

the full range of variability. The method follows section 2a,

except that now the WPI values are derived from com-

paring the entirety of the CORE hindcast to subintervals

of various lengths taken from the model integrations.

Figures 2c and 2d show model–data agreement for

CCSMcontrol and CM2.1, using the same plotting con-

ventions as their self-overlap counterparts in Figs. 2a,b.

Below 5 yr, the model–data WPI ranges from 40% to

80%, and it is much lower from 8 to 12 years. CM2.1’s

lower agreement with CORE relative to CCSM is con-

sistent with CM2.1’s known overestimate of ENSO am-

plitude (Wittenberg et al. 2006). However, the upper

bound of WPI never approaches 1 for either model–data

comparison; this implies that there is a real offset, or

equivalently that both models differ from CORE in a

statistically significant way. It should also be noted that

the dependence of the model–data WPI confidence in-

terval on simulation length is exponential (not shown),

as was the model self-overlap of section 2a.

A visual examination of Fig. 2a versus Fig. 2c and

Fig. 2b versus Fig. 2d allows for a qualitative assessment of

how CORE/model and model–model agreement com-

pare. For 50-yr model subintervals (black dashed lines

in Figs. 2a–d), the data/model and model self-overlap

confidence interval pairs overlap for both the CCSM3.5

and CM2.1; the internal variability present in both models

spans the range of WPI values observed for model–data

comparison. In other words, the comparison of Fig. 2a to

Fig. 2c and Fig. 2b to Fig. 2d implies that 50-yr subinter-

vals of both CCSM3.5 and CM2.1 are indistinguishable

from the data. In contrast, for intervals longer than 200

years, self-overlap and model–data WPI confidence inter-

vals do not overlap; simulations (or data records) longer

than 200–300 yr are needed to identify real offsets, a re-

sult which will be made more precise in the next section.3

TABLE 1. Dependence of the 90% WPI confidence interval width on model subinterval length, from confidence intervals averaged over

the 2–6-yr band. The Db0 and Db1 refer to the bounds of the 90% confidence intervals on those coefficients; Lmin is the minimum length

required to achieve 90% convergence in Niño-3.4 statistics for each model and DLmin is the range between the upper and lower limits

on Lmin.

Simulation b0 b1 Db0 Db1 Lmin DLmin

CCSMcontrol 20.891 20.0057 21.09 to 20.694 20.0067 to 20.0047 247 180–342

GFDL CM2.1 20.956 20.0042 21.06 to 20.852 20.048 to 20.0037 320 258–391

IPSL CM4 20.504 20.0048 20.683 to 20.324 20.0057 to 20.0039 374 283–507

3 This work focuses on stable control simulations. In transient

forcing scenarios, longer simulations may not be applicable, thus

simulation ensembles can be used to reduce the uncertainty to an

acceptable level. Extending the WPI calculations to account for mu-

tual information between ensemble members is presently underway.
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In general, rather than aiming to get a climate model to

agree as closely as possible with observations, the most

appropriate goal might be for the model to lie inside the

range of acceptable agreement.

c. Empirical hypothesis testing

The power of wavelet probability analysis lies in the

specification of the significance level at which two time

series disagree, which is done through hypothesis testing

on WPI distributions (i.e., Fig. 2). Empirical methods

are used, since preliminary analysis showed that the

WPI distributions of sections 2a and 2b can be highly

nonnormal (see Fig. 1). This makes the use of traditional

tests, such as the Student’s t test or the F test, impossible

(Montgomery and Runger 2007). In this case, even the

application of the nonparametric Kolmogorov–Smirnov

(KS) test is questionable because samples drawn from

different distributions cannot be dismissed without a

priori knowledge of the correct distribution.

The procedure for conducting a hypothesis test on

wavelet probability data includes the following steps:

1) Determine the type of test to perform: model–model

or model–data.

2) Create the appropriate WPI distributions from sub-

sets of the input time series. For a model–data com-

parison, model self-overlap (section 2a) will be tested

against the model–data WPI distribution (section 2b).

For a model–model comparison, the two model–data

distributions will be compared.

3) To determine whether two distributions differ at sig-

nificance level a, compute the a/2 to 1 2 a/2 con-

fidence intervals on the two WPI distributions. If

these intervals overlap, the distributions are equiva-

lent; otherwise, they differ.

4) To determine the level of confidence one may have

in differences between distributions, repeat step c at

many values of a. The largest a for which the confi-

dence intervals overlap is then equivalent to the

smallest significance level at which the distributions

differ. Where amax # 0.1 (1 2 amax $ 0.9), for ex-

ample, the null would be rejected at the 90% level. In

the limit of identical distributions, amax (minimum

significance) approaches 1(0); when there is no over-

lap, amax (minimum significance) approaches 0 (1).

The end result of steps 1–3 is a map of locations in

parameter space where the two time series differ at

confidence level a. This can be depicted as a graph of

the test result [0 (agree) or 1 (disagree)] versus wavelet

period. Step 4 provides the significance level at which

the time series differ at every wavelet period; now ev-

erywhere the time series differ at or above 90%, for

example, the plotted values will meet or exceed 0.9. For

consistency with statistical conventions, the plotting

convention for the WPA hypothesis tests in Fig. 3 differs

from that in Figs. 2a–d, in which lower values indicated

less agreement; in Fig. 3, lower values indicate greater

agreement. The left-hand panels of Fig. 3 show exam-

ples of hypothesis test results for the case where a single

FIG. 3. Results of hypothesis testing procedure. (left) Validation of (top) CCSMcontrol, (middle) RHLOW, and (bottom) CM2.1

against the CORE hindcast. (right) Comparison of (top) CCSMcontrol vs CM2.1 and (bottom) CCSMcontrol vs RHLOW. In all panels,

confidence levels plotted range from 0 (agreement) to 1 (disagreement). Note: see text for description of model simulations.
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model subinterval (55 yr) is used; the right-hand panels

show similar results, plotted as a function of both wavelet

period and model subinterval length (see below).

The analyses conducted in this study were meant to

validate different climate models against observations,

then to compare different models to one another. Ex-

amples of each are shown in Fig. 3c (see below). If the

CORE hindcast is tested against a version of itself con-

taminated with an AR(1) red noise spectrum of vary-

ing amplitude (not pictured), reliable results are found;

CORE does not differ from itself by this metric for

modest noise levels, and disagreement grows with addi-

tional noise.

Validation against observations is performed on three

model simulations: CCSMcontrol, the CM2.1 simulation

discussed earlier, and an additional 600-yr CCSM sim-

ulation using a lower value of the threshold relative

humidity for cloud formation, hereafter RHLOW. Fre-

quency bleeding, or shifting of wavelet power to differ-

ent periods depending on the length of the time series,

is prevented by using model subintervals of the same

length as CORE (in this case, 55 yr). Results are found

in Fig. 3 (left) where horizontal lines indicate differences

at the 80%, 90%, and 95% levels. CCSMcontrol agrees

relatively well with CORE at all wavelet periods; the

same is true for RHLOW. CM2.1 is similar to CORE

at 90% confidence for all periods except the 8–12-year

band, which is the same period range where model–data

agreement drops off sharply in Fig. 2d below.

Model/model comparison is then performed for

CCSMcontrol/CM2.1 and CCSMcontrol/RHLOW (Fig. 3,

right): CCSMcontrol and CM2.1 differ throughout the

8–20-year band, but only at long ($300 yr) subinterval

lengths. In contrast, for the CCSMcontrol/RHLOW

comparison, the areas of disagreement are smaller than

for CCSMcontrol/CM2.1. Some areas of disagreement

between CCSMcontrol and RHLOW are seen near 2–3,

6–8, and 12–16 years, but only at subinterval lengths longer

than 300 yr.

The above test cases constitute sanity checks: CCSM

simulations that differ only by a parameter adjustment

are closer to one another than to CM2.1. We expect

this method to usefully quantify true physical differ-

ences between models, and prevent overtuning based

on statistically insignificant model–data and model–model

differences.

3. Conclusions

Wavelet probability analysis is a robust method of

measuring agreement between one or more datasets.

Using the PDF of the Niño-3.4 wavelet power, CCSM3.5

is seen to agree well with the ocean hindcast product of

Large and Yeager (2008). Although NIÑO-3.4 is not nec-

essarily the best measure of ENSO variability (Guilyardi

et al. 2009; van Oldenborgh et al. 2005), the wavelet PDF at

least indicates that probabilistic measures of Niño-3.4

statistics yield results consistent with previous work on

validating CCSM3.5 (Neale et al. 2008). Also, wavelet

probability analysis can easily be applied to other time

series aside from Niño-3.4, and this is anticipated to pro-

vide additional information on model performance.

Self-agreement depends on the record length; the 90%

confidence interval on the self-overlap WPI distribu-

tion narrows exponentially with record length, and in

general halves for every increase of 80 yr in simulation

length. Using a 1200-yr CCSM3.5 simulation, a 2000-yr

GFDL CM2.1 simulation, and an 1155-yr IPSL CM4

simulation, statistically identical regression slopes are

found; this property may be exploited to provide the

expected level of agreement for a model simulation of

arbitrary length. It is likely that 250 yr is sufficient to

illustrate 90% of the range of ENSO behavior, and

should be viewed as a minimum length for future long

baseline simulations. Additionally, when the regression

is calibrated against HadSST, we find that approxi-

mately 240 yr of observations are required to achieve

convergence, indicating that the observational record

is itself temporally limited. We note that the length es-

timates from both models and observations are longer

than typical IPCC scenario simulations, which are roughly

110 yr long. Further analysis may be conducted on any

arbitrary dataset using the online wavelet probability

analysis toolkit, which among other things, provides for

the rapid assessment of the needed simulation length for

any model.

A procedure for validating shorter model simulations

against observations is demonstrated using an empirical

hypothesis testing procedure on CCSM and CM2.1, with

the ocean hindcast of Large and Yeager (2008) as a ref-

erence. Differences between CCSM3.5 and CM2.1 at

some frequencies are detectable only for model subinter-

vals longer than 200 yr, suggesting this value as a reason-

able minimum length for CCSM model intercomparison

studies. More dramatic changes to model physics lead to

more dramatic intermodel differences, providing evidence

that the method is sensitive to the degree of physical

changes.

Wavelet probability analysis is a simple but powerful

tool that provides robust statistical limits on the expec-

ted level of agreement between time series of any length,

from any source; this technique should prove useful for

the development of future climate models.
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