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Real‑world rogue wave 
probabilities
Dion Häfner1*, Johannes Gemmrich2 & Markus Jochum1

Rogue waves are dangerous ocean waves at least twice as high as the surrounding waves. Despite 
an abundance of studies conducting simulations or wave tank experiments, there is so far no reliable 
forecast for them. In this study, we use data mining and interpretable machine learning to analyze 
large amounts of observational data instead (more than 1 billion waves). This reveals how rogue wave 
occurrence depends on the sea state. We find that traditionally favored parameters such as surface 
elevation kurtosis, steepness, and Benjamin–Feir index are weak predictors for real‑world rogue 
wave risk. In the studied regime, kurtosis is only informative within a single wave group, and is not 
useful for forecasting. Instead, crest‑trough correlation is the dominating parameter in all studied 
conditions, water depths, and locations, explaining about a factor of 10 in rogue wave risk variation. 
For rogue crests, where bandwidth effects are unimportant, we find that skewness, steepness, and 
Ursell number are the strongest predictors, in line with second‑order theory. Our results suggest that 
linear superposition in bandwidth‑limited seas is the main pathway to “everyday” rogue waves, with 
nonlinear contributions providing a minor correction. This casts some doubt whether the common 
rogue wave definition as any wave exceeding a certain height threshold is meaningful in practice.

An extreme ocean wave (“rogue wave” or “freak wave”) is commonly defined as any wave that is higher than 2 
or 2.2 times the significant wave height HS , and they pose a substantial threat to seafaring vessels and offshore 
 structures1.

Despite having been in research focus for almost 25 years, they are still being studied  extensively2–7. By now, 
we know several ways to produce truly exceptional waves in wave tanks and  simulations8–10. However, things 
are more difficult in the real ocean, where theoretical assumptions (such as unidirectionality) break down. The 
causes of real-world rogue waves are therefore still unknown, and heavily  debated11–18.

In recent years, more and more studies approached the problem from a different angle: by inferring the 
dependence of rogue wave occurrence on the sea state from observed field  data3,5,11,18. However, no study has so 
far quantified the probability to encounter a rogue wave depending on the sea state throughout a wide regime 
of conditions, taking into account more than one parameter at a time, and in a statistically robust fashion. Here, 
we aim to fill this gap.

In this study, we use FOWD (the Free Ocean Wave Dataset)19, a wave catalogue based on data recorded by 
buoys in 158 different locations around the US coasts and overseas territories, based on raw data from  CDIP20 
(Coastal Data Information Program). We use the pre-filtered version of FOWD-CDIP (v0.4.4) containing about 
1.5 billion individual waves (of which about 100,000 exceed 2HS ), which has already removed faulty deployments 
and waves recorded during conditions where buoys are unreliable.

We create an aggregated version of the full dataset that bundles together 100 waves at a time (see “Methods”), 
and are thus able to analyze all sea states simultaneously using robust Bayesian statistics and machine learning. 
By finding the conditions that show the highest rogue wave probability, we aim to test some common hypotheses 
concerning rogue waves and their creation mechanisms. To this end, we include only a subset of 12 sea state 
parameters that we can meaningfully tie to a (hypothesized) cause of rogue waves or crests (Table 1).

We identify the key control parameters for real-world rogue wave risk via careful examination of the cor-
relation between these parameters and measured rogue wave occurrences. Because many of the parameters are 
also correlated with each other, we have to account for possible confounding along every step (correlation matrix 
shown in Supplementary Figure S1).

The upcoming sections present the results of this analysis, followed by a discussion of possible limitations 
and conclusive remarks.
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Results
Throughout the following sections, we characterize the extremeness of a wave or crest by its abnormality index 
( AI for waves and CAI for crests). This is defined as AI = H/HS and CAI = η/HS , where H is the measured zero-
crossing wave height, η the measured crest height, and HS the 30 min spectral significant wave height.

Unless stated otherwise, all analysis is based on the full, aggregated FOWD-CDIP dataset (or stratified ver-
sions of it).

The following sections present the 4 main results of this study.

Bandwidth effects are the dominant pathway to rogue waves. To quantify how the rogue wave 
probability p depends on the sea state, we first examine how p changes when varying one sea state param-
eter at a time. Here, p is defined as the probability of any given wave to exceed the rogue wave threshold, i.e., 
p = Pr[AI > y] with y = 2.0 and, where we have enough data, also y = 2.4.

We split each sea state parameter x (Table 1) evenly into N bins, and assume that the associated wave height 
measurements are independently, identically distributed within each bin (see “Methods”). The “predictive power” 
Px of a parameter x then quantifies the logarithmic ratio between the highest and lowest binned value of p(x). 
For example, a value of Px = 2 implies that p(x) changes by 2 orders of magnitude as x is varied.

Applying this binning, we find that crest-trough correlation has the highest univariate predictive power out 
of all parameters (Fig. 1), explaining about 1 order of magnitude in variation of p (with values ranging between 
3 · 10−5 and 2 · 10−4 for AI = 2 ). Spectral bandwidth, mean period, and low-frequency energy content are also 
informative with P between 0.5 and 0.8, but these parameters are strongly correlated with crest-trough correla-
tion, so we have to control for possible confounding.

To examine whether spectral bandwidth or crest-trough correlation is the real causal factor, we stratify our 
analysis on each of these parameters. When stratifying on spectral bandwidth, crest-trough correlation is still 
the most informative parameter with P ≈ 0.5 , while all other parameters drop to P < 0.2 . When stratifying on 
crest-trough correlation, all other parameters become unimportant with most values of P between 0 and 0.2, 
depending on which value of crest-trough correlation we condition on (see also Supplementary Figure S2).

This implies that spectral bandwidth (and most other parameters) act through their correlation with crest-
trough correlation. This is strong evidence that crest-trough correlation is the key control parameter for rogue 
waves, with some other factors serving as minor corrections.

When we take the full, multivariate parameter space into account, things are more difficult to analyze, because 
interactions between parameters could possibly create “hot corners” of elevated rogue wave activity that are not 
detectable by univariate analysis. To discover whether this is the case, we run a clustering algorithm that identi-
fies rectangular regions in parameter space where we find higher rogue wave probabilities than in any univariate 
bin (see “Methods” section).

This multivariate analysis reveals that crest-trough correlation is still the most important parameter in all 
found clusters, where all cluster populations have crest-trough correlations above 0.75 (Fig. 2). All of the clusters 
are also located in swell-dominated conditions with high mean period, low directional spread, and low steepness. 
We examine the role of wave period and steepness further below.

Surface elevation kurtosis does not predict rogue waves. The kurtosis (fourth standardized 
moment) of the sea surface elevation is a commonly studied parameter in connection with rogue  waves13,29,31, 
and a central ingredient of ECMWF’s rogue wave  forecast26. However, some authors have expressed doubt 
whether a high kurtosis is the cause or effect of extreme  waves32,33, as kurtosis is a measure for tail-heaviness of 
a distribution, and rogue waves are extreme outliers by definition. In other words, we examine the question: is a 
sea state that is more prone to outliers in the recent past also prone to more outliers (rogue waves) now?

We examine this by studying how the predictive power of kurtosis depends on the time lag between the end of 
the aggregation period (based on which the sample kurtosis is computed) and the observed wave height. Because 

Table 1.  The sea state parameters examined in this study. See Table 2 for more information about the 
estimation of each parameter.

Parameter Physical meaning References

Crest-trough correlation Correlation coefficient between wave crest heights and trough depths 18,21,22

Spectral bandwidth Spectral peak width, controls wave group dynamics 11

Mean period Mean wave period 2

Rel. low-frequency energy Relative low-frequency (swell) energy content 2,4,23,24

Directional spread Short-crestedness of waves 6

Ursell number ( log10) Non-linear shallow water effects 25

Benjamin–Feir index Degree of non-linearity, modulational instability 26–28

Excess kurtosis Proneness to outliers of sea surface elevation 13,26,29

Steepness Weakly nonlinear corrections, wave breaking 15,17

Significant wave height Reference wave height, total energy 14

Skewness Shape asymmetry between wave crests and troughs 13,30

Relative depth ( log10) Shallow-water effects 27
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Figure 1.  When looking at one sea state parameter at a time, some are better predictors for rogue wave 
occurrence than others. In particular, crest-trough correlation and spectral bandwidth are much more 
informative than e.g. Benjamin–Feir index and steepness. (a) Shows the predictive power of each parameter, 
which is computed from the range spanned by the curves in (b) (the variation of the rogue wave probability with 
each parameter).

Figure 2.  “Hot corners” of rogue wave activity have high crest-trough correlation, strong swells, and low 
steepness. Shown is the distribution of each cluster population in parameter space, and the distribution of all 
waves with high crest-trough correlation for comparison. Clusters are computed through decision-tree based 
clustering (see “Methods”), taking all parameters into account at the same time. All clusters show a higher rogue 
wave incidence than any univariate bin. Ranges in legend indicate 95% credible interval.
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we can only study this in non-time aggregated data, which requires 100 times more resources than aggregated 
data, we need to restrict this analysis to a subset of the full dataset. We use the FOWD data from all Hawaiian 
CDIP stations (098p1, 106p1, 146p1, 165p1, 187p1, 188p1, 198p1, 225p1, 233p1), containing 160 million waves.

We also include two robust kurtosis estimators in this analysis (based on quantile spread and expected 
exceedance  probabilities34), as the sample kurtosis based on the fourth moment of the sea surface elevation is a 
noisy quantity that is highly sensitive to single extreme measurements. These robust alternatives should be more 
accurate estimators for the true kurtosis of the sea state (as can be obtained through simulations or very long, 
controlled experiments under identical conditions).

Results show that even a small time lag of only 3 waves between the end of the aggregation period and 
observed wave height reduces the predictive power of kurtosis to its (low) background value (Fig. 3). If the kur-
tosis is computed including future state (negative time lag), it is extremely informative as expected, since rogue 
wave occurrence causes very high values of kurtosis. But even for a time lag of 0, where the end of the aggregation 
period lies right before the current wave, we discover a substantially elevated predictive power.

We explain this with the common occurrence of multiple rogue waves within the same wave group, where 
measuring the first rogue wave gives an elevated probability of encountering a second one right after. Indeed, 
the FOWD dataset contains a relatively high number of multiple rogue waves in rapid succession (about 2500 
waves with AI > 2 within 30 s of each other, which corresponds to about 3% of all rogues)19.

We also find that the robust kurtosis estimators are not more informative than straightforward sample kur-
tosis, even though they are indeed less affected by time lag.

We conclude therefore that surface elevation kurtosis is a short-ranged predictor that is only useful within 
a single wave group, and has little predictive quality otherwise. This has an important implication. If outliers 
in the past are a poor predictor for outliers in the future, one sensible interpretation is that the encounter of a 
rogue wave is indeed mostly up to chance (and thus unlikely to elevate the general proneness to outliers in the 
whole sea state).

The effects of steepness and Benjamin–Feir index depend on wave period. If we look at how 
the rogue wave probability depends on spectral energy content (Fig. 1), we notice something curious: p attains 
a local maximum for both very high-frequency and very low-frequency seas. To investigate this, we re-run our 
analysis for high-frequency and low-frequency conditions.

As low-frequency/high-frequency seas we take all data where the relative energy content in the spectral band 
0.05 Hz to 0.1 Hz (representing swell) lies in the interval (0, 0.1) and (0.8, 0.85), respectively.

This reveals a fundamental difference between these regimes (Fig. 4). Low-frequency seas have naturally 
higher values of p, even for similar values of crest-trough correlation. High-frequency seas show a lower base-
line p, but are able to reach almost the same maximum p through an additional dependency on steepness and 
Benjamin–Feir index (BFI) that is absent in the low-frequency case. In fact, this relationship is inverted in low-
frequency seas, where p is lower for higher steepness and BFI.

To understand this, it is important to keep in mind that steepness acts on extreme waves in multiple ways. On 
one hand, steepness is the key parameter in weakly nonlinear modifications to the wave height  distribution17. On 
the other hand, steepness also governs wave breaking, an effect that tends to remove tall  waves35,36. Depending 
on the physical regime, either effect might take over, and fundamentally change the way steepness influences 
extreme waves.

High-frequency seas can under certain, rare conditions reach about the same rogue wave probabilities as low-
frequency seas. The strongest multivariate cluster has a lower bound p of 1.6 · 10−4 for AI = 2 (Supplementary 
Figure S3). Therefore, the chance to encounter a rogue wave within a certain time window is greatest under these 
conditions (so far, we have only considered the probability per wave).

Figure 3.  Past sea surface elevation kurtosis is a poor predictor for rogue wave occurrence in the future. Shown 
is the scaling of the rogue wave probability p with kurtosis for 2 different values of time lag (a) and the resulting 
predictive power of various quantities depending on time lag (b). Here, time lag refers to the time between the 
end of the aggregation period used to compute each sea state parameter and the start of the observed wave.
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Rogue crests are governed by skewness, steepness, and Ursell number. Crest heights differ in 
some fundamental ways from wave heights, since they are affected by second-order nonlinearities that cancel 
out for wave  heights22, and they are (by definition) not affected by crest-trough correlation. Therefore, we re-run 
our full analysis for rogue crests.

We find that crest-trough correlation and spectral bandwidth are indeed of very low predictive power (Fig. 5). 
Instead, surface elevation skewness, steepness, and Ursell number are the strongest parameters, with predictive 
powers between 0.5 and 1.0. Our multivariate analysis fails to reveal any regions with higher rogue wave prob-
ability than the most extreme univariate bin (where log10(Ursell number) ∈ (1.8, 2.2)).

A positive skewness indicates steeper crests and flatter, more rounded troughs, and is frequently cited as a 
proxy for second-order bound nonlinear  corrections13,30,37. Steepness and Ursell number are the central param-
eters of the Forristall crest height  distribution25. Therefore, it seems that rogue crest heights are well explained 
by second-order theory at this level of detail, but further corrections of up to fourth order may be needed for 
extremely rare rogue  crests17.

Discussion
The results presented during the previous sections are robust to analysis parameter choices and sample size effects 
(all statements are based on 95% credible intervals).

In particular, we find that our results are stable with regard to sensor location and water depth. To investigate 
this, we re-ran the analysis on several subsets of the full data, grouped by geographic region (Southern California, 
Hawaii, US East Coast, West Pacific), relative water depth, and single stations. We did not detect any notable 
deviations from the dependencies of p on the sea state presented above (wherever such comparisons were pos-
sible due to the reduced amount of data).

This is surprising, as shallow-water effects and interactions with bathymetry are one hypothesized cause of 
rogue  waves38,39. On the other hand, these effects typically require special topographic conditions, which might 
simply not be present in our data.

The weak dependence of p on significant wave height seems to imply that large rogue waves tend to be gov-
erned by the same dynamics as small rogue waves. As with location and water depth, we investigated this to some 
degree by re-running the analysis using only conditions with a significant wave height > 4 m . Again, we did not 
observe notably different scalings of p with the sea state (where there were enough data).

We identified crest-trough correlation as the most important parameter for rogue wave formation. It is well 
understood that bandwidth effects are an important parameter for wave  heights11,21,22. Perhaps more surprising 
is the absence of a strong dependency on steepness and BFI, which are central ingredients in current rogue wave 
 prediction26, even though we did detect a small positive influence in high-frequency seas (such as storms). For 
more discussion on the implications of these findings see “Conclusion” section.

Regarding the reliability of our results, some caveats still apply. As the underlying data are supplied by buoys 
in mostly coastal regions, there are some considerations that might limit the applicability of these results.

Wave buoys are known to underestimate extreme crests through several mechanisms, such as lateral move-
ments around the crest, being dragged through the crest, or linearization of the sea state due to their Lagrangian 
motion. Even though these effects were found to be of minor  importance40, we cannot rule out that our conclu-
sions are potentially biased by this. Therefore, our buoy data could underestimate the total number of rogue 
waves to some degree, and the influence of second-order effects on wave crests might be even higher if measured 
by a different sensor (this does not affect wave heights, though).

Figure 4.  Low-frequency seas have naturally higher rogue wave activity for similar crest-trough correlations, 
but scale negatively with steepness and BFI. Shown is the scaling of the rogue wave probability p with some sea 
state parameters. Low-frequency/high-frequency conditions are all seas with relative low-frequency energy in 
the interval (0.8, 0.85) and (0, 0.1), respectively. Curves for P(AI > 2.4) are scaled by a factor of 20.
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The location of the buoys is another biasing factor. Overall, we are confident that our findings are robust in 
the studied regime of coastal and island regions in shallow and deep water at moderate significant wave heights, 
but they might be different in other regions and conditions where we did not have data.

We also do not include any parameters that are not measurable from the sea surface elevation, such as 
atmospheric conditions (winds), ocean currents, or local topography. There is good evidence that these factors 
can be important in certain  situations39,41,42, but since they depend on localized features we do not expect them 
to be very good predictors in aggregated data from different locations (with the possible exception of winds).

Overall, it is important to keep in mind that our results relate to the rogue wave probability per wave at one 
given location in space. For extended periods of time and large objects such as oceangoing vessels, the total risk 
to encounter a rogue wave will be dramatically higher than the probabilities we present here.

Conclusion
By analyzing over 1 billion wave measurements from buoys, we find that the by far most important parameter for 
rogue wave occurrence is crest-trough correlation (parameter r in the Tayfun  distribution22). This suggests that, 
in most conditions, the Rayleigh distribution for Gaussian  seas43 is in fact an upper bound for real-world rogue 
waves, as the Tayfun distribution converges to the Rayleigh distribution for r → 1 . Characteristic steepness, BFI, 
and swell strength provide minor corrections to this. On the other hand, sea surface elevation kurtosis, which 
is taken as an important indicator for rogue wave activity in many  studies13,29,31, appears to have no detectable 
predictive quality when controlling for the fact that rogue waves naturally cause higher kurtosis.

We interpret this as evidence that almost all “freaks” are actually rare realizations of linear or weakly nonlinear 
seas that are fairly well described by available wave height  statistics22,25. A similar conclusion has been reached 
by other, simulation-based  studies13,17.

This implies that the term rogue wave should perhaps be reserved for waves that are truly a “different breed” 
(such as those caused by modulational instability and other nonlinear effects, or those occurring during a storm), 
not just any wave that exceeds an arbitrary abnormality index threshold.

Rogue crests seem to be reasonably well-described by second-order, weakly nonlinear  theory25,30,37, as we 
found the most important parameters to be skewness, steepness, and Ursell number. However, we did focus on 
waves during our analysis, so there might be more to uncover—e.g., when conditioning on skewness or differ-
ent depth regimes.

We also see this work as a demonstration how machine learning methods can be helpful in extreme wave 
research. Some previous studies have attempted to perform binary classification on rogue wave  data44,45 (i.e., 

Figure 5.  For rogue crests, skewness, steepness, and Ursell number are the most informative parameters. Plots 
are identical to Fig. 1, except that they refer to crest instead of wave heights.
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to predict whether a rogue wave will occur in some block of data or not). We believe that due to the inherently 
stochastic nature of ocean waves, predicting rogue wave probabilities is a better way forward, and have demon-
strated that this can lead to tangible insights.

Finally, our statistical and machine learning-based analysis in this study has been purely descriptive. We 
believe that this work also has important implications for rogue wave prediction. Crest-trough correlation can be 
computed from the wave spectrum, which is routinely forecast globally by agencies like ECMWF. This provides a 
strong baseline for a rogue wave risk forecast. Combined with more sophisticated machine learning algorithms 
that are not piecewise constant and take the actual wave height into account (not just binary classification), we 
are confident that wave height distribution tails will become much more forecastable in the future.

Methods
Parameter estimation. Most parameters are taken directly from FOWD without modification. The only 
exceptions are peak relative depth, Ursell number, and dominant directional spread, which are not part of 
FOWD, but can be computed based on other FOWD parameters.

An overview over how each parameter is estimated is shown in Table 2. All parameters are based on a 30 
min aggregation window.

Since the crest-trough correlation r is a central parameter to this article, we give the full expression  here19,22:

where S(ω) is the wave spectral density, mn its n-th moment, ω the angular frequency, and T = m0/m1 the 
spectral mean period.

Data preprocessing. We apply the following preprocessing steps to the FOWD wave catalogue: 

1. To account for the sampling variability of our relatively low-frequency buoy data, we correct all wave/crest 
heights and trough depths (and quantities directly derived from them) based on the mean wave period T  
and sampling frequency f018: 

 As FOWD filtering already removes all records with mean period lower than 5 s for 1.28 Hz CDIP data, this 
correction factor is quite conservative (maximum possible value of 4.2%).

2. To reduce the 800 GB FOWD-CDIP dataset to a manageable size, we aggregate records into chunks by map-
ping each 100th sea state to the maximum measured wave height in the upcoming 100 waves.

  This is notably different from the traditional approach to create fixed-time chunks (usually 20  min11,18). 
Having a fixed number of waves allows us to directly translate the probability of finding at least one rogue 
wave within the aggregation window ( p100 ) to the rogue wave probability for any given wave (p), assuming 
that all wave heights are identically, independently distributed (iid.) within the aggregation period: 

(1)r =
1

m0

√

ρ2 + �2 with ρ =

∫ ∞

0
S(ω) cos

(

ω
T

2

)

dω, � =

∫ ∞

0
S(ω) sin

(

ω
T

2

)

dω

(2)h′ = h ·

(

1−
π2

6(f0T)2

)−1

(3)p = 1− (1− p100)
1/100

Table 2.  Overview of how each sea state parameter is estimated from the sea surface elevation.

Parameter Related FOWD variable(s) Estimation

Crest-trough correlation sea_state_30m_crest_trough_correlation See (1). This represents the envelope of the autocorrelation function at time 
lag of 1/2 mean zero-crossing period for linear waves

Spectral bandwidth sea_state_30m_bandwidth_peakedness Peakedness (quality factor) of wave spectral  density46

Mean period sea_state_30m_mean_period_spectral
√
m0/m2  , with n-th moment of wave spectral density mn

Rel. low-frequency energy sea_state_30m_rel_energy_in_frequency_interval m−1
0

∫

S(f ) df  in the frequency interval 0.05 Hz to 0.1 Hz, with wave 
spectral density S(f)

Directional spread direction_dominant_spread_in_frequency_interval, 
sea_state_30m_rel_energy_in_frequency_interval

Average over frequency-dependent directional spread weighted with 
energy in each frequency band

Ursell number ( log10) sea_state_30m_steepness Ursell number U = ǫ/D̃3 , with relative water depth D̃ and characteristic 
steepness ǫ

Benjamin–Feir index sea_state_30m_benjamin_feir_index_peakedness Through characteristic steepness and spectral bandwidth (peakedness)46

Excess kurtosis sea_state_30m_kurtosis Fourth standardized moment of surface elevation time series

Steepness sea_state_30m_steepness Characteristic steepness ǫ =
√
2m0kp with spectral peak wavenumber kp

Significant wave height sea_state_30m_significant_wave_height_spectral Significant wave height HS = 4
√
m0

Skewness sea_state_30m_skewness Third standardized moment of surface elevation time series

Relative depth ( log10) sea_state_30m_peak_wavelength, meta_water_depth Relative depth D̃ = D/�p with water depth D and peak wavelength �p
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  This process also removes the influence of multiple rogue waves occurring back-to-back, because we only 
measure the probability that at least one wave in the record is a rogue wave. This has an additional regular-
izing effect that prevents the analysis from over-emphasizing conditions which have a tendency for multiple 
rogue waves.

All preprocessed data are freely available for download (see data availability statement).

Univariate binning. In the univariate case, we split all wave height observations into N equal-sized bins 
for each sea state parameter x. Our analysis then hinges on the assumption that all binary samples within a bin 
(consisting of n+ rogue and n− non-rogue observations) are identically, independently distributed (iid.) accord-
ing to a binomial distribution with rogue wave probability p as the only parameter. Our goal is to estimate p, 
which we interpret in Bayesian fashion as a random variable, from measurements of n+ and n− within each bin 
(we introduced this process in the initial publication of  FOWD19).

For p we assume a Beta distributed prior with parameters α0 , β0 (Table 3). The role of this prior is to constrain 
p to a reasonable order of magnitude, while being weakly informative so the exact choice of parameters does 
not influence final results.

Because the Beta prior is conjugate to the binomial likelihood, we obtain for the posterior of p:

Since this is just another Beta distribution, the posterior for p is easy to evaluate with any modern statistical 
software. Specifically, we quantify our best estimate for p through the median of (4), and our uncertainty by the 
95% credible interval (based on quantiles of the posterior).

The assumption that measurements are iid. within each univariate bin is obviously not fulfilled if p depends 
on more than one sea state parameter, so the uncertainties obtained through this process can only give an indi-
cation of our confidence in the marginal rogue wave probability when we can only measure one parameter at 
a time. We also need to pick small enough bins such that the variance of the true p(x) is small within each bin.

In the case of aggregated data, we model p100 instead of p via (4), where n+/n− relate to the number of 100-
wave chunks containing a rogue wave/no rogue waves, and with β0 reduced by a factor of 100. After estimating 
the desired statistical properties of p100 (median and quantile-based credible interval), we translate those into 
the corresponding values of p via (3) (all reported quantities are per wave).

Predictive power. We define the “predictive power” Px of a parameter x as:

where pi denotes the value of p in the i-th bin of x, and Qq(pi) denotes the q-th quantile of pi . This measures how 
much of the variation of p is explained by x (if we can only consider this one parameter) in a way that is robust to 
sample size effects. We also quantify our uncertainty in Px through Monte Carlo sampling, based on the known 
distributions of pimax and pimin as given in (4).

High‑dimensional clustering. To account for interactions between sea state parameters, we use a deci-
sion-tree based clustering algorithm to identify rectangular regions in feature space where the rogue wave prob-
ability is higher than any probability obtained via univariate analysis.

At its core, the algorithm is a two-step process: 

1. Fit a deep random forest classifier to binary data to obtain p̃(X) , which is a rough, noisy estimate of p(X). 
Here, X denotes the vector of all sea state parameters x.

(4)P(p | n+, n−) = Beta(n+ + α0, n
− + β0)

(5)Px = log10

(

pimax

pimin

)

(6)imax = argmax
i

[

Q0.025(pi)
]

(bin index with highest lower bound p)

(7)imin = argmin
i

[

Q0.975(pi)
]

(bin index with lowest upper bound p)

Table 3.  Beta prior parameters for p for different wave ( AI ) and crest ( CAI ) height thresholds.

α0 β0

AI > 2 1 10,000

AI > 2.4 1 1,000,000

CAI > 1.2 1 10,000

CAI > 1.4 1 1,000,000
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2. Fit a shallow decision tree regressor to log p̃(X) (with mean squared error criterion). The leaves of this sur-
rogate model then represent the desired clusters wherein p(X) is approximately constant. We find and retain 
the 12 leaves with the highest (significant) imbalance between classes.

As this process represents a model search it is vulnerable to overfitting. Therefore, we only use 34% of all available 
data to identify clusters, and the remaining 66% of the data to analyze the conditions within the cluster (i.e., they 
determine the final reported rogue wave probability).

This is a conservative process, where all estimators are piecewise constant, which severely limits their learn-
ing capabilities. On the other hand, this process should be robust to overfitting, its outputs are easy to analyze 
(since they just represent another rectangular bin in feature space), and the efficient computation of decision 
trees ensures that it can scale to billions of data points.

For the decision tree and random forest algorithms, we used the implementations by scikit-learn47. The full 
implementation of our analysis is available as a Jupyter notebook (see Data availability section) that can be used 
to reproduce all plots in this publication.

Data availability
All preprocessed input data are available at https:// doi. org/ 10. 17894/ ucph. 99bab 774- 2c97- 4e9f- 871f- 3c349 cc0d5 
10. The Jupyter notebook used to generate the results and figures in this report is available at https:// doi. org/ 10. 
5281/ zenodo. 47244 96.
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