
1. Introduction
During the last glacial period, Greenland ice cores recorded frequent millennial-scale climate changes 
named Dansgaard-Oeschger (D-O) events (Dansgaard et  al.,  1993). The events range from a century to 
many millennia and began with abrupt warming of 5–16°C from a cold phase (a Greenland stadial, GS) to 
a warm phase (a Greenland interstadial, GI) typically occurring within a few decades (Capron et al., 2021; 
Huber et al., 2006; Kindler et al., 2014). The Antarctic Isotope Maxima (AIM) are millennial-scale tempera-
ture changes with amplitude of 1–3°C identified in Antarctic ice cores (EPICA community members, 2006). 
After synchronizing Antarctic records to the Greenland ice-core records using records of globally well-
mixed atmospheric CH4, a bipolar seesaw (BPS) pattern is observed between AIM and D-O events (Blunier 
et al., 1998; EPICA community members, 2006; WAIS Divide Project Members, 2015): the GS coincides with 
the gradual warming phase of the AIM and the GI coincides with AIM cooling phase (Figure 1) with Ant-
arctica trend changes lagging Greenland transitions by about a century (Svensson et al., 2020; WAIS Divide 
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Plain Language Summary Glacial climate is characterized by millennial-scale variations 
in polar temperature and atmospheric CO2 concentration. The observed similarities between the shape 
of atmospheric CO2 and Antarctic temperature records, derived from Antarctic ice cores, have led to 
a common view that variations in both are dominated by a common Southern Ocean mechanism. 
However, a systematic comparison of the rates of change of Antarctic temperature and atmospheric CO2 
during these millennia-scale events has not previously been conducted. Furthermore, it is not clearly 
demonstrated if the rate of change of the Antarctic temperature and atmospheric CO2 were sensitive to 
changes in the mean climate state or the occurrence of massive iceberg discharge into the North Atlantic. 
Here, using ice-core data, we show that the rate of Antarctic warming reduces as the glacial climate cools. 
In contrast, the rate of atmospheric CO2 rise is insensitive to glacial cooling. Neither the warming rate nor 
the rate of atmospheric CO2 rise are affected by iceberg discharge events. Our result is in contrast with a 
simple common Southern Ocean control on atmospheric CO2 and Antarctic temperature and suggests that 
the millennial-scale atmospheric CO2 changes include significant contributions from mid-to-low latitudes 
and processes independent of the background climate.
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Project Members, 2015). According to the bipolar ocean seesaw hypothesis (Stocker & Johnsen, 2003), the 
BPS pattern results from changes in northward heat transport by the Atlantic Meridional Overturning Cir-
culation (AMOC): GS are associated with a weak AMOC, reduced northward heat transport in the Atlantic 
and warming in the South Atlantic from which AIM warming in Antarctica follows.

The BPS pattern is most pronounced during the Marine Isotope Stage 3 (MIS 3, here defined as 27.5–
59.4 kyr BP, thousand years before 1950 A.D.), and is observed throughout the last glacial period (Capron, 
Landais, Lemieux, & Schilt, 2010; WAIS Divide Project Members, 2015). This raises the question of how the 
BPS responds to the evolution of the glacial background climate state, in particular the long-term cooling 
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Figure 1. Millennial-scale climate events and atmospheric CO2 variations for the period 65 to 10 kyr BP. (a) Oxygen isotope (δ18O) data from the North 
Greenland Ice Core Project (NGRIP) ice core as a qualitative proxy for Greenland temperature (NorthGRIP Project Members, 2004; Svensson et al., 2008). (b) 
Antarctic five-core averaged δ18O record (Buizert et al., 2018). (c) West Antarctic Ice Sheet Divide ice-core (WDC) CO2 record (Bauska et al., 2021; Marcott 
et al., 2014). The orange and blue dots in (b and c) show the identified Antarctic Isotope Maxima (AIM) and CO2 maxima and minima, respectively (see text for 
definitions). (b and c) are on the WD2014 timescale, (a) has been transferred to the WD2014 timescale to match (b and c). The gray vertical shading shows the 
time spans of the Greenland stadials. Stadials and interstadials are numbered following Rasmussen et al. (2014), the timing of Greenland climate transitions is 
from Buizert et al. (2015) and WAIS Divide Project Members (2015). The approximate time span of the Heinrich (H) events are marked by the horizontal black 
bars (Seierstad et al., 2014). The AIM number is following EPICA community members (2006) and extended to AIM17.2.
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and increase in ice volume that accompanies MIS 3 and culminates in the last glacial maximum (Clark 
et al., 2009).

Previous work, based on the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land 
(EDML) ice core, identified a strong linear relationship (r2 = 0.85) between the duration of GS and the am-
plitude of corresponding AIM surface temperature rises during MIS 3 (EPICA community members, 2006). 
The linear relationship suggest that the operation of the BPS is not significantly influenced by the evolution 
of the climate state during the glacial. However, only eleven of the sixteen MIS 3 AIM were considered in 
the analysis and no significance test was provided. In a later study, when placing EDML oxygen isotope 
(δ18O) data on a common timescale with the Greenland records (Capron, Landais, Lemieux, & Schilt, 2010), 
Capron, Landais, Chappellaz, et al. (2010) found that the rate of AIM warming was generally higher in MIS 
5 (70.3–130 kyr BP) and low in MIS 2 (17.4–27.5 kyr BP), and that the linear relationship between AIM am-
plitude and GS duration breaks down for the longest events. The high MIS 5 warming rates indicate that the 
BPS could be sensitive to the background climate change between different marine isotope stages.

Here we extend these discussions focusing on MIS 3 specifically, as it is characterized by gradual back-
ground cooling and frequent BPS events, making it ideal for systematically testing the sensitivity of the BPS 
to the background climate state.

Furthermore, we test whether the rate of AIM warming is sensitive to the occurrence of Heinrich (H) 
events, which are characterized by large-scale iceberg discharge into the North Atlantic, suppressing the 
AMOC with widespread climatic impact (Hemming, 2004; Lynch-Stieglitz, 2016). Previous work disagrees 
on the impact of H events on Antarctic warming during stadials, with studies proposing that the rate of 
AIM warming is sensitive (Margari et al., 2010) and others that it is not sensitive (EPICA community mem-
bers, 2006) to the presence of Heinrich events during stadials.

The apparent similarity between atmospheric CO2 (hereafter CO2) concentrations and Antarctic tem-
perature changes in the Antarctic ice-core records (Figure  1) is hypothesized to result from a common 
cause, such as changes in wind-driven upwelling (Anderson et al., 2009; Anderson & Carr, 2010; Menviel 
et al., 2018; Toggweiler et al., 2006) or changes in the formation of Antarctic Bottom Water (AABW, Men-
viel et al, 2015). In both cases, the release of CO2 and heat involve coupled Southern Ocean processes: in-
creased ventilation of relatively warm and carbon-rich sub-surface waters in the Southern Ocean (Bauska 
et al., 2018; Gottschalk et al., 2019; Jaccard et al., 2016; Skinner et al., 2020); and/or increased poleward heat 
transport accompanying the AABW formation and CO2 ventilation (Menviel et al., 2015).

However, the assumption that millennial-scale CO2 and Antarctic temperature changes are dominated by 
common Southern Ocean process is questionable. For example, recent Earth System Model experiments 
suggest a significant contribution from tropical processes to the millennial-scale CO2 changes (Nielsen 
et  al.,  2019). One way to test this problem is to consider differences between millennial-scale CO2 and 
Antarctic temperature changes; two major differences have previously been suggested: (a) CO2 rises during 
Heinrich stadials (HS, stadials containing a H event, Barker et al. (2009)) are thought to be of larger ampli-
tude than during non-Heinrich stadials (nHS) (Ahn & Brook, 2014; Bauska et al., 2021); (b) CO2 maxima 
of some GS visibly lag the peak of the corresponding AIM events; that is, CO2 keeps rising after the GI 
onset and Antarctic cooling have commenced (Figure 1; Bauska et al., 2021; Bereiter et al., 2012). The first 
difference has been proposed to be caused by a sluggish Southern Ocean response during short GS (Ahn & 
Brook, 2014; Bauska et al., 2021). Based on the latest high-resolution CO2 data from WDC, the second differ-
ence is suggested to be caused by a superimposed centennial-scale CO2 rise at the start of the interstadials, 
probably caused by Northern Hemisphere and tropical processes as suggested by carbon-cycle box-model 
simulations (Bauska et al., 2021). Thus, whether millennial-scale CO2 and Antarctic temperature changes 
are dominated by common Southern Ocean process warrants further investigation.

Here we provide additional analysis by determining the rate of millennial-scale CO2 rise in the Antarctic 
ice-core CO2 data. Using the same statistical tests that are applied to AIM warming rates, we test whether 
the rate of millennial-scale CO2 changes are sensitive to the varying background climate state of MIS 3 
and different between nHS and HS. The results are then compared to Antarctic temperature to investigate 
whether CO2 and Antarctic temperature have the same sensitivity to background climate change and the 
occurrence of H events.
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2. Methods and Results
2.1. The Sensitivity of AIM Temperature Rise to Mean Climate State

We use the recently published Antarctic five-core averaged δ18O stack (on the WD2014 timescale, data 
range: 0–61 kyr BP; Buizert et al., 2018) to determine the individual AIM warming amplitudes (in unit of 
per mille (‰) δ18O). Then, we define the AIM amplitude divided by the corresponding GS duration as the 
BPS warming rate. The GS durations are obtained from previous work (Buizert et al., 2015).

To obtain a robust estimate for the BPS warming rate and its uncertainty, a Monte Carlo (MC) method is 
used: in every iteration, the maxima and minima of each AIM are determined from a randomly perturbed 
version of the five-core averaged δ18O record which is smoothed with a 200-yr moving average before calcu-
lating the BPS warming rate of each AIM. The randomly perturbed δ18O record is created by drawing values 
from a normal distribution centered on the five-core averaged δ18O record with standard deviation set at 
0.12‰ (found as the standard deviation of the residual of the smoothed data relative to the unsmoothed). 
Considering the 100–200 yr lag of the onsets and ends of AIM events relative to Greenland GS and GI tran-
sitions (Svensson et al., 2020; WAIS Divide Project Members, 2015), we conservatively search for the isotope 
maxima and minima in a 300 yr window starting at the time of the corresponding Greenland climate tran-
sition. To reduce data uncertainty, we exclude all stadials shorter than 300 years (19 events remain). For GS-
2.1a, we observe that a MIS 3-like AIM warming starts about 18 kyr BP (GS-2.1a to 2.1b boundary), and the 
BPS rate is therefore only determined using GS-2.1a rather than the entire stadial. After 100,000 iterations, 
the median AIM warming amplitude (Figure 2a) and BPS warming rate (Figure 2b) for each AIM is used as 
the output, and the 95% confidence interval (CI) of the MC-generated amplitudes and rates of each AIM is 
used as the estimate of uncertainty range.

We first study whether the BPS warming rates are sensitive to the background climate change of MIS 3. In 
contrast to the results of EPICA community members (2006), we do not observe a strong linear correlation 
between MIS 3 GS duration and AIM warming amplitude (Figure 2a). Instead, our data suggest a lower BPS 
warming rate during late MIS 3 than during early MIS 3 (Figure 2a). To test if this reduction is systematic, 
we plot the MIS 3 BPS warming rates against the AIM ages (defined as the onset of the corresponding GS). 
A clear decline in the warming rate across MIS 3 is observed (with a normalized slope of 0.076 unit per kyr, 
supporting information, Figure 2b). The significance of the observed slope is evaluated by comparing it 
with the slopes generated from randomly permuting the BPS warming rate data points (keeping the AIM 
ages) and re-calculating the resulting slopes 100,000 times. In only 0.04% of cases is the absolute value of 
the randomly generated slope larger than that obtained from the actual data (Figure 2c), demonstrating the 
declining trend of BPS warming rate during MIS 3 is significant.

Following EPICA community members (2006), our analysis above assumes that the BPS warming rate is 
linear. If the AIM warming instead is assumed to rise asymptotically as predicted by the “minimum thermo-
dynamic seesaw model” (Stocker & Johnsen, 2003), our definition of the BPS warming rate could be biased 
toward lower values for longer GS. To test whether our result holds under the assumption of an asymptotic 
rather than linear temperature increase during AIM, we fit the warming phase of each AIM using the min-
imum thermodynamic seesaw model (Stocker & Johnsen, 2003; Figure S1):  T T e

S N

t   /
1 , where 

ΔTS and ΔTN are the amplitudes of southern warming and northern cooling, respectively, t is the time since 
the start of the stadial, and τ is the equilibration timescale of the seesaw system, estimated as 1,120 year 
(Margari et al., 2010; Stocker & Johnsen, 2003). With τ kept constant, we find the amplitude of the fitted 
line is significantly lowered throughout MIS 3 (in 95% level, with a normalized slope of 0.061 unit per kyr, 
supporting information, Figure S2, Table S1). Indicating the BPS is also weakening significantly during MIS 
3 under the Stocker and Johnsen (2003) minimum thermodynamic seesaw model.

To test whether the AIM warming rates are different between nHS and HS, we group the BPS warming rates 
into HS and nHS categories (7 and 12 events respectively, Figure 2d). A Student's t-test shows no significant 
difference (at 95% significance level) between the two categories. Although H events could prolong the 
stadial duration (Barker et al., 2015), the AIM warming amplitude is not significantly different between HS 
and nHS (at 95% significance level). These results suggest that the processes controlling Antarctic warming 
rate are insensitive to the occurrence of H events.
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Figure 2. The analysis results for AIM warming. (a) Greenland stadial (GS) duration and Antarctic warming 
amplitude, the temperature rises are marked by their corresponding GS number. The error bar shows the uncertainty 
of GS duration (Buizert et al., 2015; WAIS Divide Project Members, 2015) and the 95% confidence interval (CI) of the 
amplitude. For illustration, MIS 3 events are divided into two equally large groups plotted in different color (early MIS 
3 category contains GS-11, 12, 13, 14, 15.1, 15.2, 16.1, and 17.1; late MIS 3 contains GS-4, 5.1, 5.2, 6, 7, 8, 9, and 10). The 
asterisk denotes HS. (b) Bipolar seesaw (BPS) warming rate plot against the age of the AIM, defined as the initiation of 
the corresponding GS. The error bar shows the range of 95% CI. (c) Distribution of the slopes of the randomly permuted 
BPS warming rates, the red dots mark ±1 times the observed slope, the 2.5% and 97.5% fractiles of the randomly 
generated slope are marked by vertical black lines. (d) Bar chart for Heinrich stadials (HS) and non-Heinrich stadials 
(nHS) BPS warming rates; note the inclusion of data from MIS 2 (GS-1 and GS-2.1) as well as MIS 3 (GS-3 to GS-17.1).
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Our result of a weakening BPS during MIS 3 is robust to replacing GS durations with the duration of the cor-
responding Antarctic isotope rise (the time between the identified isotope minima and maxima, Table S1). 
Removing the long-term signal represented by 20,000 yr smoothing of the five-core averaged isotope data, 
or using unsmoothed five-core average isotope also does not change the conclusions (Table S1, Figure S3). 
We evaluate the uncertainty of using δ18O as a proxy for temperature and this uncertainty does not change 
our conclusion (Supporting Information, Table S1). We also carry out the analysis of the BPS warming rate 
on the individual ice-core records going into the five-core averaged data set: WDC (WAIS Divide Project 
Members, 2013, 2015), EDML (EPICA community members, 2006), TALDICE (Landais et al., 2015; Sten-
ni et al., 2010), EDC (EPICA community members, 2004), and Dome Fuji (Kawamura et al., 2007, 2017; 
Watanabe et al., 2003). Similar results are obtained (Table S1, Figure S3). To test the influence of different 
timescales, we carry out the same analysis on the δ18O records on the AICC2012 timescale (EDML, TAL-
DICE, EDC, and Dome Fuji) and find that similar results are obtained (Figure S4, Table S2). Note that as the 
EDML, EDC and Dome Fuji δ18O records on the AICC2012 timescale extend through the whole last glacial 
period, the analysis of HS and nHS BPS warming rate can be extended to GS-25 (110 kyr BP). The results are 
presented in Figure S4 and Table S2.

2.2. The Sensitivity of Millennial-Scale CO2 Rise to Mean Climate State

We use the recently published high-resolution WDC CO2 record (Figure 1, Data range: 8.8–67 kyr BP; aver-
age resolution: 88 years; on the WD2014 timescale; Bauska et al., 2021; Marcott et al., 2014) for analysis. A 
MC method similar to that applied to the warming rate is used to determine the rate of CO2 rise (supporting 
information).

Previous research suggests that the CO2 rise of nHS is close to zero (Ahn & Brook, 2014; Bauska et al., 2021), 
To account for this, and to remove the effect of short events where the rate of CO2 increase can be heavily 
affected by noise, we only include nHS of sufficient amplitude in the subsequent analysis. To determine the 
threshold of significance, we randomly select two CO2 data points, then add their corresponding measure-
ment uncertainties in quadrature, and repeat the calculation 100,000 times to estimate the distribution of 
the uncertainty of the CO2 amplitudes (Figure S5). A total of thirteen CO2 rises are identified, six for the HS 
(GS-2.1a, 5.1, 9, 13, 15.1, 18) and seven for the nHS periods (GS-1, 4, 8, 11, 12, 16.1, 17.1; Figures 1 and 3a).

In contrast to AIM warming rates, the declining trend of MIS 3 CO2 rates does not stand out clearly (nor-
malized slope of 0.034, Figure 3b), and we do not find evidence for a significant decline in the rate of CO2 
rise across MIS 3 AIM events (two-sided significance: 82.7%, Figure 3c). This is not an artefact caused by 
the centennial-scale CO2 rise after the GI onset: when using the CO2 value sampled at the interstadial onset 
instead of the CO2 maxima, also no significant declining trend for CO2 rates is detected (two-sided signifi-
cance: 54.9%). The CO2 trend is also not sensitive to the use of unsmoothed CO2 data (Figure S6, Table S3) 
and removing the long-term trend in CO2 (The long-term trend is represented by 20,000 years smoothing 
of the CO2 record) also does not change the conclusion (Figure S6, Table S3). The difference is also not 
caused by a different number of events considered for CO2 and Antarctic temperature (see a one-to-one 
comparison for the same GS in Table S1). Our results are robust to the use of different time scales and CO2 
data set: we perform the same tests using the Bereiter et al. (2015) composite CO2 record on the AICC2012 
timescale instead of the WDC CO2 record (we use the section originating from Siple Dome, TALDICE and 
EDML, data range: 22–115 kyr BP). We also test whether a similar pattern is observed in previous glacial 
periods using the recently recovered high-resolution EDC CO2 record (on AICC2012 timescale, data range: 
330–440 kyr BP, Nehrbass-Ahles et al., 2020), and compare it with the EDC δD record (EPICA community 
members, 2004). Similar results are obtained (Figures S7 and S8, Table S4).

These results also suggest that our conclusion is not sensitive to the site-dependent bubble enclosure char-
acteristics (or gas diffusion, Bereiter et al., 2015) and depth/age-dependent ice diffusion (Ahn et al., 2008), 
which both could unevenly smooth the CO2 record and influence the detection of the long-term trend. We 
also find that the uncertainty of delta-age (the age difference between gas and ice at the same depth), which 
could influence the calculated event duration and thus influence the results, does not change our conclu-
sion (Supporting information). The different sensitivity between CO2 and Antarctic temperature rates is 
also not sensitive to the statistical method used to detect the trend: we design an alternative test that ran-
domly generates the temporal slope of the CO2 and Antarctic warming rates from their uncertainty range 
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Figure 3. The analysis results for millennial-scale CO2 rise. (a) CO2 amplitude versus the duration of CO2 rises, the 
error bar shows the 95% confidence interval (CI) of the amplitude and duration. (b) CO2 rate versus the age of the CO2 
rise, defined as the initiation of the corresponding Greenland stadial. The error bar shows the 95% CI. (c) Comparison 
between ±1 times the observed slope of the curve in (b) (red dots) with the slopes generated by randomly permuting 
the CO2 rate. The 2.5% and 97.5% fractiles of the randomly generated slopes are marked by vertical black lines. (d) Bar 
chart for Heinrich stadials (HS) and non-Heinrich stadials (nHS) CO2 rates; note the inclusion of data from MIS 2 (GS-1 
and GS-2.1) as well as MIS 3 (GS-4 to GS-18).
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(without permuting the rate). The results show a significantly larger temporal slope of the BPS warming 
rate compared to the temporal slope of the rate of CO2 rise (in 95% level, supporting information, Figure S9).

We do not find a significant difference between the rate or amplitude of CO2 rise during HS and nHS (t-test 
with 95% significance level, Figure 3d, Table S3). The same result is also observed using the composite CO2 
record (Table S4, Bereiter et al., 2012). Note that for the composite CO2 record, the analysis of HS and nHS 
CO2 rates is extended to GS-22 (87 kyr BP, Figure S6, Table S4).

3. Discussion
3.1. Interpreting the Sensitivity of the Bipolar Seesaw to the Mean Climate State

Our statistical analysis suggests that the AIM temperature response during the D-O events is gradually 
weakened throughout MIS 3. In contrast to previous research that suggested a threshold behavior for the 
response of the BPS to climate changes (Margari et al., 2010; McManus et al., 1999), our result suggests that 
the BPS is sensitive to the gradual cooling of the background climate state during MIS 3.

A recent coupled-model investigation of the BPS mechanism (Pedro et  al.,  2018) suggested that during 
Greenland stadials, the weakened AMOC drives Antarctic warming through the following chain of events: 
Reduced northward advection of heat in the Atlantic Ocean results in heat accumulation in the South At-
lantic. This heat then spreads east around the globe along the northern edge of the Antarctic Circumpolar 
Current (ACC). As a result, the temperature gradient across the ACC increases, driving an increase in the 
cross-ACC heat flux carried by ocean eddies. Temperature anomalies south of the ACC are amplified by the 
retreat of sea ice and the resulting ice-albedo feedback. Finally, heat from the Southern Ocean sea-ice zone 
is transported to Antarctica in the atmosphere by storms.

Thus, the declining BPS warming rate could be caused by a lowering in amplitude of the GS AMOC reduc-
tions throughout MIS 3, However, this trend is not observed in the reconstructed AMOC strength change 
during MIS 3 D-O events using 231Pa/230Th ratio (Henry et al., 2016), consistent with the Greenland tem-
perature reconstruction, which shows no significant trend in the amplitude of D-O temperature changes 
during MIS 3 (Kindler et al., 2014).

Cooling of the mean climate state across MIS 3 is shown by Antarctic water isotope records (Buizert 
et al., 2018), and Southern Hemisphere mid-latitude sea-surface temperature records (Pahnke et al., 2003). 
We propose that the reduced BPS warming rate results from progressive expansion of Antarctic sea ice over 
this interval. Expansion of the sea ice expected in a colder climate would lower the efficiency of atmospher-
ic heat transportation from the sea-ice margin to Antarctica, due to the greater distance between Antarctic 
and the sea-ice-free area. Indeed, Southern Ocean sea-ice expansion at the end of glacial periods is sup-
ported by sea-ice proxies, for example, diatom assemblages (Collins et al., 2012; Gersonde et al., 2005; Stuut 
et al., 2004), the WDC sea-salt Na record (WAIS Divide Project Members, 2015) (Figure S10) and coupled 
climate model simulations (Ferrari et al., 2014).

3.2. Interpreting the Insensitivity of Millennial-Scale Atmospheric CO2 Rise to the Mean 
Climate State

Our results suggest that in contrast to changes in Antarctic temperature, the millennial-scale CO2 rises are 
not significantly sensitive to varying background climate during MIS 3. Our results also show that the small-
er dependence on CO2 of background state is observed in earlier glacial periods (Nehrbass-Ahles et al., 2020; 
Figure S7, Table S4), which suggests it is a robust feature of millennial-scale climate variability during gla-
cial periods. Recent studies propose that increased Southern Ocean deep convection can jointly explain 
AIM warming and CO2 trends via the ventilation of heat and CO2 from the deep ocean (Menviel et al., 2018; 
Skinner et  al.,  2020). Carbon reservoir age and deep-water temperature reconstructions from the South 
Atlantic appear to support this “Southern Ocean hypothesis” during HS-4 (Skinner et al., 2020), but do not 
quantify the scale of its contribution. Furthermore, although strengthened winds are often invoked as the 
forcing for increased upwelling, Southern Ocean eddies may nullify the influence of wind changes on up-
welling (Munday et al., 2013). Our results on the different sensitivities of AIM temperature trends and CO2 
to the background climate state argue against that a single physical process dominates the millennial-scale 
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signals in both Antarctic temperature and CO2 throughout MIS 3. Instead, our results are consistent with a 
dominant influence of Southern Ocean processes on the AIM temperature evolution (Buizert et al., 2018; 
Pedro et al., 2018) and an important contribution of low- and mid-latitude processes to CO2. For example, 
a reduction of the biological pump (Nielsen et al., 2019) or CO2 release from terrestrial sources (Bauska 
et al., 2016; Marcott et al., 2014; Rhodes et al., 2015) would appear consistent with our results. Supporting 
this argument is the observation that glacial changes in mean climate state at high latitudes are amplified 
in comparison to their counterparts at low-to-mid latitudes (Annan & Hargreaves, 2013; CLIMAP project 
members, 1976; MARGO project members, 2009).

Alternatively, our results could be consistent with a common cause by Southern Ocean processes if the 
ventilation of ocean heat is reduced relative to the CO2 as MIS 3 progresses and the climate cools, or if heat 
ventilated by deep convection has less influence on Antarctic temperature due, for example, to expanded 
Antarctic sea ice (Collins et al., 2012; Gersonde et al., 2005; Stuut et al., 2004). In either case, our observa-
tions provide a new target for model studies seeking to replicate the millennial-scale variability of tempera-
ture and CO2 and their sensitivities to climate state and H events.

4. Conclusion
We here studied the sensitivity of millennial-scale Antarctic temperature and atmospheric CO2 changes 
to the varying glacial background climate and the presence of Heinrich events. We found markedly dif-
ferent sensitivity of AIM warming rate and CO2 rate to the gradual change in glacial background climate. 
We found no significant difference in rate or amplitude response of the millennial-scale Antarctic surface 
warming or CO2 rise between stadials with and without Heinrich events, consistent with previous research 
that suggest that the H events have limited impacts on the dynamics of the BPS (Barker et al., 2015). These 
results challenge the view that a single Southern-Ocean-based mechanism dominates the observed glacial 
variability in Antarctic temperature and atmospheric CO2. Our observations on the rates of change of Ant-
arctic temperature and CO2 provide a new set of constraints for ongoing studies of the dynamics of millen-
nial-scale climate events and CO2 changes.

Data Availability Statement
The WDC δ18O data are available on https://www.nature.com/articles/nature14401#Sec14. The EDML δ18O 
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