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ABSTRACT: The occurrence of extreme (rogue) waves in the ocean is for the most part still shrouded in mystery, because

the rare nature of these events makes them difficult to analyze with traditional methods. Modern data-mining andmachine-

learningmethods provide a promising way out, but they typically rely on the availability of massive amounts of well-cleaned

data. To facilitate the application of such data-hungry methods to surface ocean waves, we developed the Free OceanWave

Dataset (FOWD), a freely available wave dataset and processing framework. FOWD describes the conversion of raw

observations into a catalog that maps characteristic sea state parameters to observed wave quantities. Specifically, we

employ a running-window approach that respects the nonstationary nature of the oceans, and extensive quality control to

reduce bias in the resulting dataset. We also supply a reference Python implementation of the FOWD processing toolkit,

which we use to process the entire Coastal Data Information Program (CDIP) buoy data catalog containing over 4 billion

waves. In a first experiment, we find that, when the full elevation time series is available, surface elevation kurtosis

and maximum wave height are the strongest univariate predictors for rogue wave activity. When just a spectrum is given,

crest–trough correlation, spectral bandwidth, and mean period fill this role.

SIGNIFICANCE STATEMENT: Rogue waves are ocean waves that are at least 2 times as high as the surrounding

waves. They tend to strike without warning, often damaging ocean-going vessels and offshore structures. Because of

their inherent randomness and rarity, there is no satisfying forecasting method for rogue wave risk, nor do we know

under which conditions they preferably occur. Modern machine-learning methods provide a promising new alternative,

but they require vast amounts of clean data. Here, we provide a way to create such a dataset from ocean surface

measurements.We demonstrate our method by processing a buoy dataset containing over 4 billion wavemeasurements;

the result is freely available for download. In a first experiment, we show that it is possible to extract risk factors for rogue

waves from data, with some conditions producing 10–100 times more rogue waves than others. This work paves the way

to a better physical understanding of and better forecasting methods for these dangerous events.

KEYWORDS: Wave properties; Waves, oceanic; Data mining; Data processing; Data quality control; Data science;

Machine learning

1. Introduction

During the last 25 years, the study of extreme ocean waves

(also known as ‘‘rogue waves’’ or ‘‘freak waves’’) has experienced

a renaissance, triggered by the observation of the 25.6-m-high

New Year wave at the Draupner oil rig in 1995 (Haver 2004). By

now, there are several known mechanisms to generate much

higher waves than predicted by linear theory (Adcock and

Taylor 2014; Kharif and Pelinovsky 2003; Slunyaev et al. 2011;

Dysthe et al. 2008), most of which rely on either highly non-

linear effects like Benjamin–Feir instability (e.g., Gramstad

et al. 2018) or weakly nonlinear corrections to the Rayleigh

wave height distribution (e.g., Toffoli et al. 2010).

However, while there is plenty of experimental evidence for

these mechanisms in wave tanks and simulations, the relative

importance of these processes in the real ocean is still un-

known. This is evidenced by the rich spectrum of studies em-

phasizing different physical causes of rogue waves (Janssen

and Bidlot 2009; Toffoli et al. 2010; Gemmrich and Garrett

2011; Xiao et al. 2013; Fedele et al. 2016; Gramstad et al. 2018;

McAllister et al. 2019). This has the consequence that, so far,

there is no reliable forecast for rogue wave risk (see also

Dudley et al. 2019), although there have been some recent

efforts (Barbariol et al. 2019).

There are several studies that aim to relate sea state parameters

to rogue wave occurrence (Cattrell et al. 2018; Casas-Prat and

Holthuijsen 2010; Karmpadakis et al. 2020; Gemmrich and

Garrett 2011), but they are limited by the analyzed amount of data

(often only one or several storms), their coverage of parameter

space (often only look at 1 or 2 parameters), or sophistication of

analysis (often no uncertainty analysis). To our knowledge, no

study has been able to show the dependence of rogue wave

occurrence on sea state (or show that it does not exist) with

statistical significance throughout a wide regime of sea states.

We attribute this shortcoming to a lack of sufficient amounts

of well-curated, accessible data on one hand, and a lack of a
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sophisticated analysis framework that handles nonlinearities

and feature interactions on the other hand. In this study,

we address the first issue and present the Free Ocean Wave

Dataset (FOWD).

Particularly since the advent ofmachine-learning competitions—

e.g., via the platform ‘‘Kaggle’’ (kaggle.com),where teams compete

to find the best-performing machine-learning solutions to

domain-specific problems—freely available, high-quality da-

tasets have become an invaluable resource both as benchmarks

for machine-learning researchers and as study objects for

domain experts. Enabling easy access to domain-specific data

allows even non–domain experts to participate in model build-

ing, to the benefit of the whole research community. We there-

fore also see this work as an important stepping-stone toward

opening extreme wave research to a wider, potentially more

machine-learning-literate, audience.

While we will be using rogue waves as a motivating example

throughout this publication, other researchers can and should of

course use FOWD to study phenomena other than extreme

wave/crest heights (e.g., wave steepness or characteristic shape).

In essence, FOWD relates aggregated sea state parameters to

individual wave measurements. Applications are therefore

plentiful.

As a primary data source for this version of FOWD we use

the Coastal Data Information Program (CDIP) buoy data

catalog. CDIP is a buoy network consisting primarily of

Datawell Directional Waverider buoys for wave monitoring

around the coasts of the United States (see, e.g., Behrens et al.

2019). The CDIP catalog (as of November 2020) contains

measurements at 161 locations along thewest and east coasts of

North America and U.S. overseas states and territories like

Hawaii, Guam, Puerto Rico, and the Marshall Islands.

Section 2 describes FOWD in detail, particularly which pa-

rameters are included, how they are computed, and which

quality control processes we employ to validate the results.

Section 3 outlines our Python reference implementation that

allows us to efficiently process massive amounts of raw data,

and section 4 describes the processing of the CDIP buoy

data catalog. Section 5 gives an example application in which

we look at how rogue wave probabilities vary depending on

various sea state parameters. Section 6 gives a summary and

conclusive remarks.

The FOWD–CDIP dataset is freely available for download

(https://doi.org/10.17894/ucph.c589422c-64fd-4585-af31-4571497bcbe5;

see also the data availability statement).

2. The FOWD specification

At its core, FOWD describes a mechanism to process raw

observations (elevation time series and, optionally, direc-

tional spectra) into a catalog that maps parameters de-

scribing the current sea state x to observed wave or crest

parameters y.

By ‘‘wave’’ we denote the series of surface elevations

(relative to the 30-min mean elevation) from a given zero

upcrossing to the next zero upcrossing. The crest and trough

are then the maximum and minimum elevation of the wave,

respectively, and the wave height is the sum of its crest height

and trough depth. Some waves might be excluded by quality

control criteria; see section 2c.

Throughout this study, we characterize extreme waves on

the basis of their abnormality index AI 5 H/HS, with wave

height H and spectral significant wave height HS 5 4(m0)
1/2,

wherem0 is the zeroth moment of the spectral density [see also

section 2a(2)].

FOWD output files are in netCDF4 format, which is widely

used throughout the sciences and allows additional metadata

to be attached. Every row in the resulting netCDF4 file

represents a single wave and the sea state in which it was

recorded.

Section 2a introduces the various quantities included in

FOWD output and gives a more in-depth description of the

computation of some parameters (where estimation is non-

obvious or ambiguous). Section 2b describes the running-

window processing approach we use in FOWD. Section 2c

lists our quality control (QC) criteria, and section 2d out-

lines the steps we take to ensure reproducibility of FOWD

output files.

a. Computed quantities

We group all output quantities into four categories:

1) Station metadata are anything that is specific to the sensor

(and is not directly related to waves or the sea state). This

includes both metadata describing the raw data source (to

ensure reproducibility; more in section 2d) and the condi-

tions in which it was recorded (latitude/longitude and

water depth).

2) Wave-specific parameters are all quantities that describe a

single wave, such as wave height or maximum slope. A

typical study using FOWD aims to determine how a wave-

specific parameter depends on one or several sea state

parameters.

3) Aggregated sea state parameters describe the circumstances

in which each wave occurred; that is, they relate to the past

sea state of each wave. They are computed from the

immediate 10- and 30-min history prior to (but not includ-

ing) the current wave (see also section 2b for more on this

running-window approach). Quantities are computed using

only the raw sea surface elevation as input (either directly

or by computing a spectrum first).

4) Directional sea state parameters: Some sensors (like the

CDIP buoys) might include additional directional informa-

tion that is not computable from the raw surface elevation

time series. When such directional information (in form of

a directional spectrum) is given, FOWD computes some

directional parameters from it and includes them in the

output. Note that this does not use the same running-window

approach as the aggregated sea state parameters. Instead,

each wave is mapped to the nearest (in time) available di-

rectional measurement. I.e., directional information usually

includes some information relating to the future of the wave.

But since directional information is robust to the influence of

individual extreme events, we do not consider this a problem.

A complete overview of all computed quantities is shown in

Table A1 in the appendix. Here, we outline some important
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quantities (as suggested in literature) and how they are esti-

mated from the observed time series.

1) SPACE–TIME DOMAIN TRANSFORMATIONS

Since FOWD only processes (one dimensional) point mea-

surements, we need somemechanism to transform information

from the time domain back to the spatial domain. We relate

frequencies f to wavenumbers k (and by extension, periods to

wavelengths) through the dispersion relation for linear waves:

f 2 5
gk

(2p)2
tanh(kD) , (1)

with water depthD and gravitational acceleration g5 9.81ms22.

This also assumes the absence of currents.

To determine the wavenumber for a given frequency, we use

an approximate inverse of (1) as given in Fenton (1988):

k’
a1b2 cosh22b

D(tanhb1b cosh22b)
, (2)

with

a5 (2pf )
2 D

g
and (3)

b5
affiffiffiffiffiffiffiffiffiffiffiffiffi

tanha
p . (4)

2) SPECTRAL DENSITY ESTIMATION

To compute spectral quantities, we need to estimate the

spectral density S( f ) from the raw surface elevation time

series. There is no unique way to do this, and any given

method is a trade-off between spectral resolution, bias, and

variance (noise).

In FOWD, we chose to use Welch’s method (Welch 1967)

with a window length of 180 s and a window overlap of 50%

using a Hann window (also known as a Hanning window).

This corresponds to about 230 measurements per segment in

the case of CDIP data with sampling frequency 1.28 Hz. This

implies that the 30-min spectra are an average of 20 indi-

vidual segments and the 10-min spectra are an average of 7

segments. All segments are zero padded to the next highest

power of 2. This gives a spectral resolution of 0.005 Hz and

a maximum (Nyquist) frequency of 0.64 Hz for 1.28-Hz

CDIP data.

We can then compute moments of S by integrating

m
n
5

ð‘
0

f nS(f ) df . (5)

We numerically approximate all integrals in FOWD through a

trapezoidal rule (with second-order accuracy).

3) WAVE PERIOD AND STEEPNESS

There are several popular approaches to define a dominant

wave period for a given sea state. Depending on the applica-

tion, either peak period, spectral mean period, or mean zero-

crossing period may be more appropriate. Also, since we only

have access to a noisy estimate of the true spectral density S,
some ways to compute the mean period from the spectrum are

more accurate than others, depending, for example, on the

frequency resolution of the sensor.

Therefore, we include several estimates of dominant wave

period/frequency in FOWD:

spectral peak period T
p
5

ð‘
0

S(f )4 dfð‘
0

fS(f )4 df
, (6)

mean zero-crossing period (spectral) T
s,0
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

0
/m

2

q
, and

(7)

mean zero-crossing period (direct) T
d,0

5
1

N
�
i50

N

t
i
, (8)

where ti refers to the zero-crossing periods of all waves in the

corresponding surface elevation slice (zero crossings deter-

mined by linear interpolation) and the expression for Tp is

taken from Young (1995).

For the characteristic wave steepness � we use the peak

wavenumber kp, approximated from the peak period (6) and

dispersion relation (1), following Serio et al. (2005):

�5
ffiffiffiffiffiffiffiffiffi
2m

0

q
k
p
. (9)

4) SPECTRAL BANDWIDTH AND BENJAMIN–FEIR INDEX

The computation of spectral bandwidth follows Serio et al.

(2005). As is the case with wave period, there is more than one

way to estimate spectral bandwidth from data; in fact, there are

at least three common quantities:

broadness s
B
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

m2
2

m
0
m

4

s
,

narrowness s
N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

0
m

2

m2
1

2 1

r
, and

peakedness s
Q
5

m2
0

2
ffiffiffiffi
p

p
�ð‘

0

fS(f )2 df
�21

. (10)

Some authors also refer to peakedness as ‘‘quality factor.’’

Broadness is problematic because of the occurrence of

m4, the fourth moment of the spectral density S. Because of

the f 4 term occurring in its estimation, broadness is ex-

tremely sensitive to the high-frequency tail of S, which

renders it an unacceptably noisy quantity at lower sampling

rates (such as CDIP’s 1.28 Hz). Therefore, FOWD only in-

cludes narrowness and peakedness as spectral bandwidth

estimates.

The Benjamin–Feir index (BFI) was introduced in Janssen

(2003) and is a central parameter quantifying the strength of

nonlinear interactions. Following Serio et al. (2005), we com-

pute the BFI from steepness �, bandwidth s (which could be

any of the three definitions above), peak wavenumber kp, and

depth D as
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BFI5
�n

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfb/a, 0g

p
, (11)

with

n5 11
2k

p
D

sinh(2k
p
D)

, (12)

a5 22 n2 1 8(k
p
D)

2
cosh(2k

p
D)

sinh2(2k
p
D)

, and (13)

b5
81 cosh(4k

p
D)2 2 tanh2(k

p
D)

8 sinh4(k
p
D)

2

h
2 cosh2(k

p
D)1

n

2

i2

sinh2(2k
p
D)

"
k
p
D

tanh(k
p
D)

2
n

2

#2 . (14)

In FOWD, we compute the BFI twice, with spectral bandwidth

s estimated through both narrowness and peakedness [as de-

fined in (10)].

5) CREST–TROUGH CORRELATION

Tayfun (1990) suggests another key parameter to describe

wave height distributions, the correlation coefficient r be-

tween squared crest height A2
0 and squared trough depth A2

1,

which we refer to as ‘‘crest–trough correlation.’’ This pa-

rameter r is closely related to spectral bandwidth (as, for

narrowband seas, crests and troughs are approximately of

the same size, becoming increasingly chaotic/uncorrelated

as more harmonics are added). By extension, it is also a

measure for the tendency of the sea state to form wave

groups (Fig. 1).

The estimation of crest–trough correlation from the spectral

density S is further elaborated in Tayfun and Fedele (2007).

Following these lines, we compute r via

r5
1

m
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 l2

q
, (15)

with

r5

ð‘
0

S(v) cos
 
v
T

2

!
dv and (16)

l5

ð‘
0

S(v) sin
 
v
T

2

!
dv , (17)

where T5m0/m1 is the spectral mean period and v 5 2pf is

the angular frequency.

6) SPECTRAL PARTITIONING

To characterize processes that act mostly on short or long

waves, spectral energy content is often more indicative than

quantities based on the whole spectrum (such as mean period).

Therefore, FOWD includes the relative energy content E over

several spectral bands, computed as a definite integral over the

spectral density S:

E
i
5

ð
fi

S( f )dfð‘
0

S(f ) df
5

1

m
0

ð
fi

S(f ) df . (18)

We use five distinct spectral bands (with limits fi), each char-

acteristic for a different physical regime (Table 1). [This is a

crude way to perform spectral partitioning as compared with

more-sophisticated approaches that take directionality into

account (Portilla-Yandún et al. 2016; Portilla-Yandún 2018).

However, this simple integral is straightforward to compute

and interpret, and can be estimated using only a surface dis-

placement time series].

Similarly to the relative energy content, we also compute the

total energy density contained in each frequency band (in

joules per meter squared):

P
i
5 rg

ð
fi

S(f ) df , (19)

with approximate density of seawater r 5 1024 kgm23 and

gravitational acceleration g 5 9.81m s22.

7) ANGULAR INTEGRALS

To make it possible to investigate the dependence of waves

on phenomena like swell-wind sea crossing angles, we also split

directional quantities into five distinct frequency bands, anal-

ogously to spectral energy content (Table 1). Since directional

spread and wave direction are measured as an angle, we need

FIG. 1. The crest–trough correlation r is higher in ‘‘groupy,’’ low-

bandwidth sea states. Shown are surface elevations generated from

Ochi–Hubble spectra (Ochi and Hubble 1976) with increasing

spectral bandwidth (from top to bottom) and the corresponding

value of r.
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to take special care when averaging these quantities. Furthermore,

we want to weight the directional value at each frequency with

the corresponding spectral energy at that frequency, to ensure

that the resulting average represents the dominant angle within

this frequency band.

To achieve this, we compute the integral of a directional

quantity q (which can be either dominant direction or directional

spread) component-wise in Cartesian coordinates, weighted

with the spectral density S:

x5

ð
fi

S( f ) sinq(f ) df and (20)

y5

ð
fi

S( f ) cosq(f ) df , (21)

where fi again demarcates the boundaries of each frequency

band. Then we transform the resulting Cartesian components

back to an angle:

q5 arctan(x/y) , (22)

which is the desired weighted angular average.

8) DIRECTIONALITY INDEX

A key parameter to characterize the influence of directional

spread on the wave dynamics is the ‘‘directionality index’’R (as

introduced in Fedele 2015). It is commonly defined as

R5
s2
u

2n2
, (23)

where su is the directional spread (in radians), and n denotes

the spectral bandwidth [we use narrowness, as in Fedele et al.

(2019)]. This factor R makes it possible to compute various

directionality-corrected versions of, for example, the Benjamin–

Feir index and kurtosis (Fedele 2015; Fedele et al. 2019). In

FOWD, we estimate R by computing the narrowness of the

spectrum as provided by CDIP. Directional spread is computed

as outlined above, which we integrate over all frequencies to

obtain su.

b. Running-window processing

Usually, studies that investigate extreme wave observations

divide all data into blocks of equal length in time, e.g., 30-min

chunks, that are then analyzed separately (e.g., Casas-Prat and

Holthuijsen 2010; Cattrell et al. 2018). However, the transient

nature of the ocean has long been identified as a potential

source for systematic error (Adcock and Taylor 2014; Gemmrich

and Garrett 2011; Gemmrich et al. 2016), as it is not clear that

the wave height distribution is constant within each chunk.

A related consideration is that the estimated quantities must

be agnostic of the future—that is, look-aheadsmust be impossible.

This property is critical for machine-learning applications,

where future state leaking into the training data may com-

pletely invalidate the generalization abilities of a machine-

learning algorithm.

We have therefore decided to use a running-window ap-

proach in FOWD. Here, we iterate through the raw data one

zero-upcrossing at a time, computing the characteristic sea

state parameters based on the immediate history of every

wave. This implies that there is no time gap between the end of

the aggregation period and the current wave, at the expense

of additional computation time (since the sea state has to be

recomputed for every wave).

Picking a window length is always a trade-off between

bias (longer windows are more prone to nonstationarity)

and variance (shorter windows leave us with less data with

which to work). Therefore, all parameters are computed

three times:

d The parameters are calculated twice using fixed 30- and

10-min windows. This makes it possible to investigate the

stationarity of the current sea state by comparing the values

obtained from each window length.
d The parameters are calculated one more time using a vari-

able, data-dependent window as suggested in Boccotti (2000)

and used in Fedele et al. (2019). We define the optimal

window size n to be the one that minimizes

std

 
s
n,i11

s
n,i

2 1

!
, (24)

where sn,i is the standard deviation of the sea surface

elevation in the ith chunk with length n, applied to the past

12 h of time series.

To make this process more robust, we recompute (24)

10 times for each candidate window with a different time

offset. FOWD tries a total of 11 different windows lengths

between 10 and 60min and selects the one that minimizes the

sum of (24) across all trials. This process tends to generate

time windows longer than 40min in most conditions but is

also capable of reducing the window size if needed (Fig. 2).

Because the standard deviation of the sea surface eleva-

tion s is directly related to significant wave height, we expect

this to yield near-optimal window sizes for significant wave

height and other slowly drifting quantities (such asmean period

and energy content), but suboptimal results for faster drifting

parameters (such as steepness, peak period, and kurtosis).

c. Quality control

FOWD uses a combination of QC flags, most of which are

inspired by the process suggested in Christou and Ewans (2014).

A measurement is discarded if any of the following conditions

are met when applied to the past 30-min surface elevation:

TABLE 1. Frequency bands used by FOWD and their approxi-

mate corresponding physical regime [as, e.g., given in Holthuijsen

(2010)]. Here, and elsewhere ID is identifier.

Band ID Frequency range Corresponding wave regime

1 ,0.05Hz Tides and seiches

2 0.05–0.1Hz Swell

3 0.1–0.25Hz Long-wave wind sea

4 0.25–1.5Hz Short-wave wind sea

5 0.08–0.5Hz Entire local wind sea
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1) There are any waves with zero-crossing period .25 s.

2) The rate of change of the surface elevation h exceeds the

limit rate of change by a factor of 2 or more at any point;

that is,

����›h›t
����. 2U

lim
. (25)

The limit rate of change Ulim is defined as

U
lim

5 2p
std(h)

hT
d,0
i
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN

p
, (26)

with standard deviation std, mean observed zero-crossing

periods hTd,0i, and number of waves in the record N. This

criterion removes records containing waves that are much

steeper than the average rate of change std(h)/hTd,0i—that

is, records with single, very steep waves—but leaves sea

states with many steep waves intact.

3) There are 10 consecutive data points of the same value.

4) There is any absolute crest or trough elevation that is

greater than 8 times the normalized median absolute devi-

ation (MADN) of the surface elevation; that is,

jhj. 8kmedian[jh2median(h)j] , (27)

with k 5 1.483, which ensures that MADN converges to

standard deviation for Gaussian distributed h with growing

sample size (see, e.g., Huber and Ronchetti 2009). This

criterion permits crest heights and trough depths of up to

about 2 times the significant wave height, which should be

more than enough for any real signal. [In a linear sea, a crest

exceeding 2HS would have a probability of exp(232) ’
10214].

5) Surface elevations are not equally spaced in time (but they

may contain ‘‘NaN’’ values).

6) The ratio of missing (NaN) data to valid data exceeds 5%.

7) There are less than 100 individual zero crossings.

All waves that fail QC and are larger than 2 times the sig-

nificant wave height are written to a log file to allow for manual

inspection. In addition, all waves that are larger than 2.5 times

the significant wave height are written to the log file, regardless

of whether they pass QC. This enables us to evaluate the QC

process and tweak thresholds or exclude faulty subdatasets as

needed. A brief evaluation of this QC process when applied to

the CDIP data is given in section 4b.

d. Additional metadata and reproducibility

All FOWD output files are self-documenting in the sense

that they include all relevant metadata as netCDF4 attributes,

both for each variable and the dataset as a whole. Apart from

the static metadata documenting the coordinates and param-

eters (which is the same for every FOWD output file), we also

include some metadata related to the processing environment

and raw data source to ensure reproducibility. Specifically,

each wave record includes the time stamp, file name, and a

unique file identifier (UUID) of the raw source file from which

it came (see Table A1). The output files also include the exact

version of the FOWD processing implementation used to

create the file in form of a ‘‘git’’ tag, along with a UUID. That

way, we enable users to reproduce any result by allowing them

to use the exact same processing version and input file.

3. Reference implementation

As part of this work, we supply a Python reference imple-

mentation of the FOWDprocessing toolkit. It makes use of the

popular Python packages xarray, numpy, and scipy to process

large amounts of input data efficiently. The implementation

processes either CDIP netCDF4 files or generic input files in a

fixed netCDF4 format. Multiple CDIP deployments (within

the same station) can be processed in parallel.

a. Memory efficiency

Because of FOWD’s running-window approach (see section 2b),

FOWD output datasets are about 10 times as big as the input

surface elevation time series (since every wave results in about

80 output features). This demands that the processing im-

plementation does not store entire output files in memory.

We achieve this by keeping only the immediate 30-min history

of the current processing time in memory. Each new record is

flushed to disk using Python’s ‘‘pickle’’ format. After the pro-

cessing has finished, these pickle files are read back by the main

process in chunks, reformatted to the netCDF4 output format,

and flushed to disk again. This ensures that themain process uses

only a negligible amount of memory while each worker process

only keeps the input data inmemory. In other words, if the input

data fit in memory, processing will succeed.

b. Testing strategy

In software engineering, automated tests are an invaluable

tool to ensure proper functionality of a product. Unfortunately,

writing automated tests for processing workflows of physical

data is often impossible or infeasible because of the lack of

ground-truth answers with which to compare. On the other

hand, faulty results are often easy to detect for humans when

they fall outside of reasonable physical limits or show the

wrong scaling behavior. We have therefore opted for semi-

automated sanity checks instead of fully automated unit tests

for the core processing.

Each sanity check test case generates a random surface ele-

vation time series from a different ground-truth wave spectrum

FIG. 2. Most dynamic windows are longer than 30min. Shown is

a histogram of the determined optimal window size across all

Hawaiian CDIP stations.
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FIG. 3. Sanity check test cases allow us to verify manually that computed parameters are reasonable. Shown are

test (left) inputs and (right) outputs for (top) high-frequency and (bottom) low-frequency seas. Estimated sea

state parameters are defined in TableA1. Spectral parameters are input parameters of theOchi–Hubble spectrum

used to generate each test case (as shown in upper-left panels).
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and runs it through the FOWD processing. Here, only the

spectral shape is prescribed externally, surface elevations are

drawn as harmonics with randomphases from the spectrum. The

resulting output parameters can then be inspected manually.

Two example sanity check spectra are bimodal Ochi–Hubble

spectra (Ochi and Hubble 1976) that are either swell dominated

(low-frequency peak is dominant) or wind dominated (high-

frequency peak is dominant). We would expect that the wind

dominated spectrum leads to lower period, higher steepness

and BFI, and shorter wavelength. In both cases, we expect to

find a spectral significant wave height of

SWH
total

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWH2

swell 1SWH2
wind

q
(28)

and excess kurtosis and skewness around 0. Directly estimated

significant wave height H1/3 is usually slightly lower than its

spectral counterpart Hm0
, and vice versa for wave period.

Indeed, all of these expectations are met for this partic-

ular test case (Fig. 3). Other sanity checks feature idealized

spectra, for example, containing just a single harmonic, that

allow us to validate parameters that are more difficult to

interpret like crest–trough correlation, or idealized direc-

tional spectra. Because of these sanity checks, we are con-

fident that the FOWD core processing produces meaningful

results.

4. Processing of CDIP buoy data

The following sections describe the CDIP input and FOWD

output data, analyze QC performance and the impact of

FOWD’s running-window processing, and discuss some caveats

that apply when using buoy data for extreme wave studies.

a. Input data and processing

In total, the CDIP catalog spans about 750 years of continuous

surface elevation measurements (almost all at sampling rates

of 1.28Hz) and is available in netCDF4 format through a

THREDDS server. This amounts to about 270GByte of rawdata.

While CDIP data files also include horizontal displacements

and a number of derived quantities (like significant wave

height, peak period, and others), we use only the raw vertical

surface displacement, station metadata, and directional quan-

tities for processing. This ensures that FOWD is applicable to

any instrument that delivers a surface displacement time series

(including radar or laser sensors).

We applied only minimal preprocessing to the data, which

consists of removing all data that have an error flag set and

subtracting the 30-min running mean from the raw vertical

surface elevation. After that, we processed all data in about 72

h on 10 cluster nodes in parallel (using the FOWD reference

implementation described in section 3). The resulting output

dataset has a total (compressed) size of 1.1 TB. We create one

output file per CDIP station, with individual file sizes ranging

between 1.7MByte and 38 GByte.

In total, FOWD contains about 4.2 billion individual waves

and sea states. An interactive map indicating all data locations

and some key statistics is available in the online supplemental

material.

b. Quality control and filtering

As outlined in section 2c, FOWD automatically logs waves

failing QC that are higher than 2 significant wave heights, and all

waves higher than 2.5 significant wave heights (whether they pass

QC or not). This allows us to assemble some higher-order statis-

tics to get an idea of how prevalent quality issues are in the CDIP

data and to verify that FOWD’s QC system works as intended.

In total, just under 80 000 waves fail QC (Table 2). About

80% of these QC failures occur in only 5 CDIP locations (of

161). This suggests that relatively few deployments with gen-

eral quality problems cause a majority of QC failures.

To investigate this further and isolate faulty deployments,

the FOWD implementation includes a postprocessing com-

mand that produces plots of all records in the QC logs. These

TABLE 2. The number of times eachQCflagwas triggered for the

whole CDIP catalog. See section 2c for a definition of flags a–g.

Note that multiple flags can be active for the same wave.

Flag Count

a 31 547

b 18 465

c 39 470

d 47 544

e 0

f 11 915

g 4089

Failed waves 77 371

TABLE 3. Blacklisted CDIP deployments that failed visual

inspection.

CDIP ID Excluded deployments

045p1 d01, d02, d03, d13, d15, d17, d19, d21

094p1 d01, d02, d03, d04, d05

096p1 d04

100p1 d11

106p1 d02

109p1 d05, d06

111p1 d06

132p1 d01

141p1 d03

142p1 d02, d15, d18

144p1 d01

146p1 d01, d02

158p1 d02, d04

162p1 d07

163p1 d01, d05

167p1 d01

172p1 d01

177p1 All deployments

196p1 d04

201p1 d03

205p1 All deployments

206p1 All deployments

261p1 All deployments

430p1 d06

431p1 d02
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plots show the raw surface elevation of the failing wave and its

immediate 30-min history.

After inspecting each of these plots, we decided to blacklist

38 deployments and 4 entire CDIP stations that showed obvi-

ous quality problems like frequent spikes, extreme oscillations,

unphysical values, or jumps (Table 3). On top of excluding

these blacklisted CDIP deployments, we also removed all

records in conditions in which buoys are known to be unreli-

able [similar to McAllister and van den Bremer (2020)]:

1) records with 30-min significant wave height smaller

than 1m,

2) records with spectral mean frequency higher than 1/3.2 of

the Nyquist frequency (for 1.28-Hz data, this is equiva-

lent to filtering all records with a mean wave period be-

low 5 s), and

3) records where the relative energy content of frequency band

1 exceeds 10% (extensive low-frequency drift).

After filtering, the final dataset contains about 1.4 billion waves

and sea states (about 67% filtered, most due to the minimum

significant wave height requirement).

Since FOWD is also intended for use by non–wave experts,

it is essential to provide access to a precleaned dataset.

Therefore, the filtered FOWD–CDIP dataset is available for

download along with the unfiltered one (see the data avail-

ability statement).

c. Impact of running-window processing

After processing the CDIP data, we can now investigate how

large of a difference FOWD’s running-window processing (as

described in section 2b) makes in practice, relative to the usual

fixed-window approach.

To this end, we divide the FOWD catalog for one particular

CDIP station (with ID 188p1, containing about 30 million

waves) into 30-min chunks. The last measurement in each of

these chunks (concerning the past 30-min sea state) then

represents what would have been obtained for all waves if

FOWD did not use running windows.

We can then quantify the influence of the running-window

approach by computing the root-mean-square (RMS) difference

between this last measurement of every chunk and all other data

points in it. Tomake it easier to compare the different parameters,

we divide each by a characteristic scale to obtain a normalized

RMS (Table 4).

The resulting distribution of the normalized RMS in each

chunk shows that, while deviations are typically below 10% of

the characteristic scale, they can reach up to 50% in extreme

cases (Fig. 4). As expected, some parameters (such as kurtosis

and maximum wave height) are much more prone to drift than

others (such as significant wave height and spectral energy).

However, this result is sensitive to which characteristic scale we

choose, so comparisons between parameters remain qualitative.

A particularly important quantity in this context is the

significant wave height. If the significant wave height is

underestimated with an error of only 5%, a wave with true

abnormality index AI5 2 is estimated as a wave with AI5 2.1,

which is less than one-half as likely to occur (assuming Rayleigh-

distributed waves).

We conclude that the running-window approach can lead

to significantly different results, apart from the more im-

portant effect of preventing look-aheads (as discussed in

section 2b). In other words, explicitly accounting for a drifting

sea state provides an opportunity to reduce bias by a nontrivial

amount—although we did not measure how much this ap-

proach influences final results or conclusions.

d. Shortcomings of buoy data

Although any dataset that provides surface elevation mea-

surements can be processed into a FOWD dataset, buoy

measurements remain a dominant data source due to their

relatively large availability (at least in comparison with radar

and laser measurements). Therefore, this section discusses some

TABLE 4. Characteristic scale used to normalize root-mean-square residual for each parameter (Fig. 4).

Parameter Typical range Resulting scale

sea_state_30m_bandwidth_peakedness 0–0.6 0.6

sea_state_30m_benjamin_feir_index_peakedness 0–0.6 0.6

sea_state_30m_crest_trough_correlation 0.2–1.0 0.8

sea_state_30m_kurtosis From 20.5 to 1.5 2.0

sea_state_30m_mean_period_direct 4–15 s 11 s

sea_state_30m_mean_period_spectral 4–15 s 11 s

sea_state_30m_peak_wave_period 4–20 s 16 s

sea_state_30m_peak_wavelength 0–600m 600m

sea_state_30m_rel_energy_in_frequency_interval_1 0–0.2 0.2

sea_state_30m_rel_energy_in_frequency_interval_2 0–1 1

sea_state_30m_rel_energy_in_frequency_interval_3 0–1 1

sea_state_30m_rel_energy_in_frequency_interval_4 0–0.4 0.4

sea_state_30m_rel_energy_in_frequency_interval_5 0–1 1

sea_state_30m_rel_maximum_wave_height 1.2–2.2 1

sea_state_30m_significant_wave_height_direct 0.5–8.0m 7.5m

sea_state_30m_significant_wave_height_spectral 0.5–8.0m 7.5m

sea_state_30m_skewness From 20.5 to 0.5 1

sea_state_30m_steepness 0–0.12 0.12
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of the known problems with buoy data, and how they carry over

to FOWD and its possible applications.

First and foremost, buoys tend to linearize surface eleva-

tions to some degree [see McAllister and van den Bremer

(2020, 2019) for a discussion]. This is especially problematic

in rough seas with high steepness, because buoys can be

dragged through a steep crest or move laterally around it and

underestimate the true wave height. Combined with the inherent

sampling variability of a point measurement (the two-dimensional

wave has to hit the buoy at the crest to be registered at full

height; see Benetazzo et al. 2015), wave estimates based on

buoy data tend to be too conservative (see also Casas-Prat and

Holthuijsen 2010).

This is inconvenient for studies with the goal to estimate

absolute rogue wave risk, since one needs to take additional

steps to correct for these biases, include other data sources, or

accept that the results represent a lower bound for rogue wave

risk. However, this is not a problem when estimating the rel-

ative importance of sea state risk factors, as buoys should be

similarly inaccurate across a wide range of different sea states

(after the most problematic conditions are filtered; see

section 4b—perhaps with the exception of very steep seas). We

therefore see no problem with using buoy data for the type of

study presented in section 5.

Another issue to keep in mind is selection bias. Buoys tend

to be placed in locations that are easy to reach and of special

interest for humans. This implies that coastal areas are

overrepresented, and therefore results derived from the

whole dataset will be less representative for open-ocean

conditions.

No reasonable amount of one-dimensional time series data

can tell us about truly exceptional events. In offshore engi-

neering contexts, an important quantity is the ‘‘10 000 year

wave,’’ which is the largest expected wave in a 10 000 yr period.

Events of this rarity cannot be estimated with this dataset

FIG. 4. In extreme cases, using running windows (instead of fixed chunks) leads to RMS

differences of up to 50% of the characteristic scale of a parameter (Table 4). Shown is the

distribution of normalized RMS difference between processing based on running windows

and fixed chunks for some parameters.

TABLE 5. Number of waves in the FOWD–CDIP dataset fulfilling

various criteria.

Waves with AI , 2 1 383 488 167

Waves with AI $ 2 82 058

Waves with AI $ 2.2 11 849

Waves with AI $ 2.5 564

Waves with AI $ 2 within 30 s 2455
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without additional work (such as further theoretical assump-

tions, or data augmentation via simulations).

5. Example application: Which sea state parameter is the
best predictor for rogue wave occurrence?

As an example of an application of FOWD, we look at the

connection between sea state and the occurrence of rogue

waves to find which sea state parameter is the best predictor for

rogue wave activity (where we find the largest change in rogue

wave probability when varying the parameter).

In this context, we define rogue waves as any wave whose

height exceeds 2 times the significant wave height, i.e., AI. 2.

For any given sea state with wave height distribution P(AI)

we would expect the next wave to be a rogue wave with

probability

p5

ð‘
2

P(AI) dAI. (29)

From linear superposition of random waves with narrow

spectral bandwidth (Longuet-Higgins 1952), we would expect

this criterion to be fulfilled for roughly 1 in 3000 waves. In the

filtered FOWD–CDIP dataset, this criterion is fulfilled for

about 100 000 of 1.5 billion total waves (i.e., 1 in 15 000),

with about 3% of all rogue waves occurring within seconds of

one another (Table 5).

This implies that themeasured incidence rate of roguewaves

across all sea states is lower by about a factor of 5 than is

predicted by linear theory. This is not uncommon for buoy data

(Casas-Prat and Holthuijsen 2010) and could to some degree

be due to the underestimation of extreme waves by buoys (as

discussed in section 4d). However, we suspect that this has

mostly physical causes. Effects like crest–trough correlations

, 1 (as we will see below) or wave breaking can severely limit

the formation of rogue waves and are not accounted for in

linear theory.

During the following sections, we will take a closer look

under which conditions rogue waves preferably occur. For this,

we use the combined data from all Hawaiian CDIP stations

(stations with IDs 098p1, 106p1, 146p1, 165p1, 187p1, 188p1,

198p1, 225p1, 233p1), containing about 200 million waves.

a. Confounding and roguish sea states

To get a feeling for the data, we investigate correlations

between some of the sea state parameters and have a look at

the probability density functions of sea states in which we find

rogues with AI . 2 and AI . 2.4.

FIG. 5. Linear (Pearson) correlation matrix of selected parameters. Almost all parameters

are strongly correlated with at least one other parameter, but exceptions exist (e.g., skewness,

kurtosis/maximum wave height, and wind sea directional spread).
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The correlation matrix of the sea state parameters (Fig. 5)

provides yet another important sanity check for FOWD,

since many parameters are correlated by definition (such

as BFI, which is computed based on steepness and spec-

tral bandwidth). Furthermore, it serves as an important

reminder that there are many nonobvious correlations, such

as the one between spectral bandwidth and mean period.

Any conclusion we draw about the influence of a parameter

on rogue wave activity thus has to take possible con-

founders into account.

FIG. 6. Most parameters show a clear difference between the probability distributions of all sea states and those

containing an extremewave, but some just showaweakdependence (e.g., directional spread, significantwave height, and

steepness). Shown are the probability density functions (PDFs) of various sea state parameters, estimated via histograms.

Each parameter includes PDFs for the sea states of all waves, waves with AI. 2, and waves with AI . 2.4.
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FIG. 7. Some sea state parameters are muchmore informative for rogue wave activity than others. Shown is the

dependence of the rogue wave probability on several sea state parameters for AI . 2 and AI . 2.4. Symbols

represent roguewave probability posteriormean; shading represents the 95%minimum credible interval. Dashed

lines indicate the values predicted by the Tayfun wave height distribution (Tayfun and Fedele 2007).
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TABLE A1. All quantities included in FOWD output files. Quantities marked with a dagger are further explained throughout section 2a.

Name in output dataset Description Unit Example value

Station metadata

meta_station_name Name of original measurement station — CDIP_098p1

meta_source_file_name File name of raw input data file — 098p1_d01.nc

meta_source_file_uuid UUID of raw input data file — CC54C8D5-7B1B-4170-9DBA-

EBFD91F26F14

meta_deploy_latitude Deploy lat of instrument 8N 21.4156

meta_deploy_longitude Deploy lon of instrument 8E 2157.678

meta_water_depth Water depth at deployment location m 100.0

meta_sampling_rate Measurement sampling frequency in time Hz 1.28

meta_frequency_band_lower Lower limit of frequency band Hz (0.0, 0.05, 0.1, 0.25, 0.08)

meta_frequency_band_upper Upper limit of frequency band Hz (0.05, 0.1, 0.25, 1.5, 0.5)

Wave-specific parameters

wave_id_local Incrementing wave ID for given station — 11 726

wave_start_time Wave start time — 1218:44.220 000 000 10 Aug 2000

wave_end_time Wave end time — 1218:50.470 000 000 10 Aug 2000

wave_zero_crossing_period Wave zero-crossing period relative to 30-

m sea surface elev

s 5.644 304 276

wave_zero_crossing_wavelengthy Wave zero-crossing wavelength relative

to 30-m sea surface elev

m 49.740 48

wave_raw_elevation Raw surface elev relative to 30-m sea

surface elev

m (0.200 261, 0.889 527, 0.509 184,

20.550 564, 20.690 152, 20.270 083,

20.200 052)

wave_crest_height Wave crest height relative to 30-m sea

surface elev

m 0.889 527

wave_trough_depth Wave trough depth relative to 30-m sea

surface elev

m 20.690 152

wave_height Absolute wave height relative to 30-m sea

surface elev

m 1.579 679

wave_ursell_number Ursell no. 1 0.003 908

wave_maximum_elevation_slope Max slope of surface elev in time m s21 0.921 658

Aggregated sea state parameters

sea_state_30m_start_time Sea state aggregation start time — 1148:45.000 999 936 10 Aug 2000

sea_state_30m_end_time Sea state aggregation end time — 1218:43.438 000 000 10 Aug 2000

sea_state_30m_significant_wave_height_

spectraly
Significant wave height estimated from

wave spectrum (Hm0)

m 1.798 395

sea_state_30m_significant_wave_height_

direct

Significant wave height estimated from

wave history (H1/3)

m 1.648 174

sea_state_30m_maximum_wave_height Max wave height estimated from wave

history

m 3.188 91

sea_state_30m_rel_maximum_wave_

height

Max wave height estimated from wave

history relative to spectral significant

wave height

1 1.773 198

sea_state_30m_mean_period_direct Mean zero-crossing period estimated

from wave history

s 5.133 130 549

sea_state_30m_mean_period_spectral Mean zero-crossing period estimated

from wave spectrum

s 5.034 029 007

sea_state_30m_skewness Skewness of sea surface elev 1 0.010 083

sea_state_30m_kurtosis Excess kurtosis of sea surface elev 1 20.076 898

sea_state_30m_valid_data_ratio Ratio of valid measurements to all

measurements

1 1.0

sea_state_30m_peak_wave_periody Dominant wave period s 6.841 089 249

sea_state_30m_peak_wavelengthy Dominant wavelength m 73.070 08

sea_state_30m_steepnessy Dominant wave steepness 1 0.054 674

sea_state_30m_bandwidth_peakednessy Spectral bandwidth estimated through

spectral peakedness (quality factor)

1 0.312 186

sea_state_30m_bandwidth_narrownessy Spectral bandwidth estimated through

spectral narrowness

1 0.435 69
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The probability density functions of roguish seas (Fig. 6)

indicate several potential controlling parameters for rogue

wave occurrence, where the distribution of seas containing a

rogue wave differs substantially from that of all waves (with,

e.g., skewness, spectral bandwidth, and maximum wave height

being promising candidates). This analysis, while intuitively

approachable, yields little quantitative insight into the relative

importance of each parameter, and it neglects the influence of

sample size effects. The following section addresses this

through a simple analytical Bayesian parameter estimation.

b. Estimation of rogue wave probabilities with uncertainties

Amajor challenge when dealing with rare events like rogue

waves is to determine whether there actually are enough data

points to make a statement. We will therefore quantify this

uncertainty through Bayesian credible intervals on the rogue

wave probability p. As the first step, we assume that the oc-

currence of n1 rogue waves and n2 nonrogue waves in a given

sea state is drawn randomly with some rogue wave probability

p. Then n1 follows a binomial distribution:

n1 ;Binom(n1 1n2,p). (30)

The goal of this analysis is to estimate p frommeasurements of

n1 and n2. For p, we encode prior information by assuming a

beta prior, given by

p
prior

;Beta(a
0
,b

0
), (31)

with parameters a0 and b0, which we choose as a0 5 1 and

b0 5 10 000, roughly representing the expected order of mag-

nitude O(p) ’ 1024 (this is just a weakly informative prior to

constrain p to the right order of magnitude—the exact values

have no influence on the conclusions of this analysis).

Applying Bayes’s theorem,

P(pjX)5
P(Xjp)P(p)

P(X)
, (32)

we find the posterior of the rogue wave probability as

p;Beta(n1 1a
0
,n2 1b

0
), (33)

that is, another beta distribution (since the chosen beta prior

for p is conjugate to the binomial likelihood of n1).

This posterior is simple to evaluate analytically. In particular,

we can use widely available library functions to compute the

minimum credible interval (highest posterior credible interval)

for p. This gives us the possibility to quantify our uncertainty in

p based on the number of available samples, expressed as, for

example, the 95% credible interval.

To finally investigate the influence of the sea state on the rogue

wave probability p, we split each sea state parameter into 15

equally sized bins. We assume that, within each bin, p is inde-

pendently and identically distributed (iid) with a distribution ac-

cording to (33), andwe evaluate themean and credible interval of

p independently for each bin. We also exclude bins that contain

less than 10 rogue wave events (i.e., where n1 , 10) to eliminate

overly uncertain estimates. As a result, we can study how p be-

haves as a function of each sea state parameter and quantify our

uncertainty based on how much data we have in each regime.

We stress that this uncertainty is based on the assumption

that p is iid. Beta distributed within each bin, which is clearly

not the case if we acknowledge that p depends on more than

TABLE A1. (Continued)

Name in output dataset Description Unit Example value

sea_state_30m_benjamin_feir_index_

peakednessy
Benjamin–Feir index estimated through

steepness and peakedness

1 0.164 307

sea_state_30m_benjamin_feir_index_

narrownessy
Benjamin–Feir index estimated through

steepness and narrowness

1 0.117 731

sea_state_30m_crest_trough_correlation Crest–trough correlation parameter r es-

timated from spectral density

1 0.608 416

sea_state_30m_energy_in_frequency_

intervaly
Total energy density contained in

frequency band

Jm22 (1.935 885, 106.749 48, 1620.2413, 301.649,

1926.3574)

sea_state_30m_rel_energy_in_

frequency_intervaly
Relative energy contained in

frequency band

1 (0.000 953, 0.052 571, 0.797 922, 0.148 553,

0.948 675)

Sea state parameters are repeated analogously for 10-min (_10m_) and dynamic (_dynamic_) window sizes

Directional sea state parameters

direction_sampling_time Time at which directional quantities are

sampled

— 1211:52.000 000 000 10 Aug 2000

direction_dominant_spread_in_

frequency_intervaly
Dominant directional spread in

frequency band

8 (57.965 824, 38.118 546, 31.545 62,

39.302 81, 33.078 98)

direction_dominant_direction_in_

frequency_intervaly
Dominant wave direction in

frequency band

8 (83.074, 136.024 32, 74.008 62, 77.266 02,

74.895 02)

direction_peak_wave_direction Peak wave direction relative to

normal-north

8 70.468 75

direction_directionality_indexy Directionality index R (squared ratio of

directional spread and spectral bandwidth)

1 0.924 404
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one parameter. Therefore, these uncertainties can only serve

as an indicator whether or not there are enough data to make a

statement about this marginalized version of the true, multi-

variate distribution of p. In other words, they indicate how

confident we can be in the best estimate of p for this dataset if

we can only measure one parameter at a time.

The results of this process show a clear, highly significant

dependence of the rogue wave probability on some sea state

parameters, and the lack of such a dependence on others

(Fig. 7). In particular, we find the following:

1) Surface elevation kurtosis, relative maximum wave height,

and skewness are the strongest predictors for rogue wave

risk. For relative maximum wave height, P(AI . 2) ranges

between 2.9 3 1025 and 1.0 3 1023. So if an up-to-date,

in situ surface elevation time series is available, these pa-

rameters are able to quantify rogue wave risk with a factor

of about 35 in variation.

2) Crest–trough correlation and spectral bandwidth (peaked-

ness) are the strongest spectral predictors, with P(AI . 2)

varying between 2.43 1025 and 1.43 1024 for crest–trough

correlation—that is, almost one order of magnitude in

variation from the spectrum alone.

3) The Tayfun wave height distribution (Tayfun 1990; Tayfun

and Fedele 2007) seems to be an excellent baseline for

rogue wave activity.

4) There is, at this level of detail, only a minor dependency of

rogue wave occurrence on directional spread, Benjamin–

Feir index, significant wave height, and steepness.

So, in this first analysis, it seems that bandwidth effects are

the dominant modifier of rogue wave risk, whereas nonlinear

effects (at least those governed by steepness and BFI) seem to

play a minor corrective role in comparison with that. However,

it is important to keep in mind that we are only looking at one

set of stations and only one sea state parameter at a time.

6. Conclusions

FOWD is a free ocean wave dataset that relates wave point

measurements to the conditions in which the wave occurred

and that is optimized for use in data-mining and machine-

learning applications. In the previous sections, we describe

which quantities are included in our wave catalog FOWD and

how they are computed, and which steps we take to ensure

quality and reproducibility (section 2). We describe the refer-

ence implementation and the steps we take to be able to pro-

cess massive amounts of data at the terabyte scale (section 3).

We summarize the processing of the CDIP buoy data catalog

and analyze the quality of the resulting catalog (section 4). We

apply additional filtering to remove problematic measure-

ments. By visual inspection, we find that the resulting dataset is

of high quality. Last, we study the occurrence probability of

rogue waves depending on the sea state in an example appli-

cation, where we have been able to demonstrate that certain

parameters are much better predictors than others (section 5).

We find that, based on analyzing only one sea state parameter

at a time, rogue wave risk can vary by at least one order of

magnitude. The estimated rogue wave probabilities are

consistent with those found in earlier studies based on obser-

vations and simulations (e.g., Fedele et al. 2016, 2017).

The strongest parameters in this analysis are surface ele-

vation skewness/kurtosis, and maximum relative wave height

of the past record. This is of little surprise when taking into

account how many rogue waves occur in rapid succession of

each other (Table 5), but the importance of kurtosis and

skewness could also be evidence for the role of second- and

third-order (weakly) nonlinear contributions (Mori and Janssen

2006; Gemmrich and Garrett 2011; Christou and Ewans

2014). The most important spectral parameters are spectral

bandwidth and crest–trough correlation, which is compatible

with the finding inCattrell et al. (2018) that spectral bandwidth is

important (although we disagree with the conclusion that rogue

waves cannot be predicted from characteristic parameters).

On the other hand, we were unable to detect any note-

worthy dependency of rogue wave risk on directional spread

[hypothesized, e.g., by Gramstad et al. (2018) andMcAllister

et al. (2019)], wave steepness (which is evidence against the

importance of weakly nonlinear corrections), or Benjamin–

Feir index (one of two parameters used by ECMWF’s freak

wave forecast; see Janssen and Bidlot 2009). This does of

course not prove that such dependencies do not exist, just that

it is not detectable in this limited dataset (of Hawaiian stations)

and by univariate analysis (i.e., considering one parameter at a

time).Amore sophisticated analysis is needed, which is precisely

what we want to enable with FOWD.

We believe that this work represents an important mo-

tivation and contribution to enable physical insight into

ocean waves through sophisticated data-driven methods.

Downstream studies can either process their own raw

data—because of the flexibility of the FOWD specification

and reference implementation—or make use of the already

processed CDIP data.

Extreme probabilistic events such as rogue waves are no-

toriously difficult to analyze statistically in a robust, meaning-

ful way. By lowering the bar of entry for non–wave experts, we

hope to enable new, powerful descriptive and predictive ap-

proaches to ocean wave phenomena.
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APPENDIX

Complete Overview of All FOWD Quantities

See Table A1 for an exhaustive list of all quantities included

in FOWD.
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