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Probabilistic Approach to
Inverse Problems

1. Introduction

In ‘inverse problems’ data from indirect measurements are
used to estimate unknown parameters of physical systems.
Uncertain data (possibly vague) prior information on model
parameters, and a physical theory relating the model para-
meters to the observations are the fundamental elements of
any inverse problem. Using concepts from probability
theory, a consistent formulation of inverse problems can be
made, and, while the most general solution of the inverse
problem requires extensive use of Monte Carlo methods,
special hypotheses (e.g., Gaussian uncertainties) allow, in
some cases, an analytical solution to part of the problem
(e.g., using the method of least squares).

1.1 General Comments

Given a physical system, the ‘forward’ or ‘direct’ problem
consists, by definition, in using a physical theory to predict
the outcome of possible experiments. In classical physics this
problem has a unique solution. For instance, given a seismic
model of the whole Earth (elastic constants, attenuation, etc.
at every point inside the Earth) and given a model of a
seismic source, we can use current seismological theories to
predict which seismograms should be observed at given
locations at the Earth’s surface.

The ‘inverse problem’ arises when we do not have a good
model of the Earth, or a good model of the seismic source,
but we have a set of seismograms, and we wish to use these
observations to infer the internal Earth structure or a model
of the source (typically we try to infer both).

There are many reasons that make the inverse problem
underdetermined (nonunique). In the seismic example, two
different Earth models may predict the same seismograms,
the finite bandwidth of our data will never allow us to resolve
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very small features of the Earth model, and there are always
experimental uncertainties that allow different models to be
‘acceptable.’

The name ‘inverse problem’ is widely used. The authors of
this chapter only like this name moderately, as we see the
problem more as a problem of ‘conjunction of states of
information’ (theoretical, experimental, and prior informa-
tion). In fact, the equations used below have a range of
applicability well beyond ‘inverse problems’: they can be
used, for instance, to predict the values of observations in a
realistic situation where the parameters describing the Earth
model are not ‘given’ but only known approximately.

We take here a probabilistic point of view. The axioms
of probability theory apply to different situations. One is
the traditional statistical analysis of random phenomena,
another one is the description of (more or less) subjective
states of information on a system. For instance, estimation of
the uncertainties attached to any measurement usually
involves both uses of probability theory: Some uncertainties
contributing to the total uncertainty are estimated using
statistics, while some other uncertainties are estimated
using informed scientific judgment about the quality of an
instrument, about effects not explicitly taken into account,
etc. The International Organization for Standardization (ISO)
in Guide to the Expression of Uncertainty in Measurement
(1993), recommends that the uncertainties evaluated by
statistical methods are named ‘type A’ uncertainties, and
those evaluated by other means (for instance, using Bayesian
arguments) be named ‘type B’ uncertainties. It also re-
commends that former classifications, for instance into
‘random’ and ‘systematic uncertainties,” should be avoided.
In the present text, we accept ISO’s basic point of view, and
extend it by downplaying the role assigned by ISO to the
particular Gaussian model for uncertainties (see Section 4.3)
and by not assuming that the uncertainties are ‘small.’
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In fact, we like to think of an ‘inverse’ problem as merely
a ‘measurement.’ A measurement that can be quite
complex, but the basic principles and the basic equations to
be used are the same for a relatively complex ‘inverse
problem’ as for a relatively simple ‘measurement.’

We do not normally use, in this text, the term ‘random
variable,” as we assume that we have probability distribu-
tions over ‘physical quantities.” This is a small shift in
terminology that we hope will not disorient the reader.

An important theme of this paper is invariant formulation
of inverse problems, in the sense that solutions obtained
using different, equivalent, sets of parameters should be
consistent, i.e., probability densities obtained as the solution
of an inverse problem, using two different set of parameters,
should be related through the well-known rule of multi-
plication by the Jacobian of the transformation.

This chapter is organized as follows. After a brief historical
review of inverse problem theory, with special emphasis on
seismology, we give a short introduction to probability theory.
In addition to being a tutorial, this introduction also aims at
fixing a serious problem of classical probability, namely the
noninvariant definition of conditional probability. This problem,
which materializes in the so-called Borel paradox, has profound
consequences for inverse problem theory.

A probabilistic formulation of inverse theory for general
inverse problems (usually called ‘nonlinear inverse prob-
lems’) is not complete without the use of Monte Carlo
methods. Section 3 is an introduction to the most versatile of
these methods, the Metropolis sampler. Apart from being
versatile, it also turns out to be the most natural method for
implementing our probabilistic approach.

In Sections 4, 5, and 6 time has come for applying probability
theory and Monte Carlo methods to inverse problems. All the
steps of a careful probabilistic formulations are described,
including parametrization, prior information over the para-
meters, and experimental uncertainties. The hitherto overlooked
problem of uncertain physical laws (‘ forward relations’) is given
special attention in this text, and it is shown how this problem
is profoundly linked to the resolution of the Borel paradox.

Section 7 treats the special case of the mildly nonlinear
inverse problems, where deterministic (non-Monte Carlo)
methods can be employed. In this section, invariant forms of
classical inversion formulas are given.

1.2 Brief Historical Review

For a long time scientists have estimated parameters using
optimization techniques. Laplace explicitly stated the least
absolute values criterion. This, and the least-squares criterion
were later popularized by Gauss (1809). While Laplace and
Gauss were mainly interested in overdetermined problems,
Hadamard (1902, 1932) introduced the notion of an
‘ill-posed problem,’” which can be viewed in many cases as
an underdetermined problem.
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The late 1960s and early 1970s were a golden age for the
theory of inverse problems. In this period the first uses of
Monte Carlo theory to obtain Earth models were made by
Keilis-Borok and Yanovskaya (1967) and by Press (1968).
At about the same time, Backus and Gilbert, and Backus
alone, in the years 1967—1970, made original contributions
to the theory of inverse problems, focusing on the problem of
obtaining an unknown function from discrete data. Although
the resulting mathematical theory is elegant, its initial pre-
dominance over the more ‘brute force’ (but more powerful)
Monte Carlo theory was only possible due to the quite limited
capacities of the computers at that time. It is our feeling that
Monte Carlo methods will play a more important role in the
future (and this is the reason why we put emphasis on these
methods in this chapter). An investigation of the connection
between analog models, discrete models, and Monte Carlo
models can be found in a paper by Kennett and Nolet (1978).

Important developments of inverse theory in the fertile
period around 1970 were also made by Wiggins (1969), with
his method of suppressing ‘small eigenvalues,” and by
Franklin (1970) by introducing the right mathematical set-
ting for the Gaussian, functional (i.e., infinite dimensional)
inverse problem (see also Lehtinen et al., 1989). Other
important papers from the period are those of Gilbert
(1971) and Wiggins (1972).

A reference that may interest some readers is Parzen et al.
(1998) , where the probabilistic approach of Akaike is described.

To the ‘regularizing techniques’ of Tikhonov (1963),
Levenberg (1944), and Marquardt (1970), we prefer, in this
chapter, the approach where the a priori information is used
explicitly.

For seismologists, the first bona fide solution of an inverse
problem was the estimation of the hypocenter coordinates of
an earthquake using the ‘Geiger method’ (Geiger, 1910),
which present-day computers have made practical. In fact,
seismologists have been the originators of the theory of
inverse problems (for data interpretation), and this is because
the problem of understanding the structure of the Earth’s
interior using only surface data is a difficult one.

3-D tomography of the Earth, using travel times of seismic
waves, was developed by Keiiti Aki and his coworkers in
a couple of well known papers (Aki and Lee, 1976; Aki,
Christofferson and Husebye 1977). Minster and Jordan
(1978) applied the theory of inverse problems to the re-
construction of the tectonic plate motions, introducing the
concept of ‘data importance.” Later, tomographic studies
have provided spectacular images of the Earth’s interior.
Interesting papers on these inversions are by van der Hilst
et al. (1997) and Su et al. (1992).

One of the major current challenges in seismic inversion is
the nonlinearity of wave field inversions. This is accentuated
by the fact that major experiments in the future most likely
will allow us to sample the whole seismic wave field. For
low frequencies, wave field inversion is linear. Dahlen (1976)



Probabilistic Approach to Inverse Problems

investigated the influence of lateral heterogeneity on the free
oscillations. He showed that the inverse problem of estimating
lateral heterogeneity of even degree from multiplet variance
and skewance is linear. At the time this was published, data
accuracy and unknown ellipticity splitting parameters hindered
its application to real data, but later developments, including
the works of Woodhouse and Dahlen (1978) on discontinuous
Earth models, led to present-day successful inversions of low-
frequency seismograms. In this connection the works of
Woodhouse , Dziewonski, and others spring to mind.” Later, the
first attempts to go to higher frequencies and nonlinear
inversion were made by Nolet et al. (1986), and Nolet (1990).

Purely probabilistic formulations of inverse theory saw the
light around 1970 (see, for instance, Kimeldorf and Wahba,
1970). In an interesting paper, Rietsch (1977) made non-
trivial use of the notion of a ‘noninformative’ prior dis-
tribution for positive parameters. Jackson (1979) explicitly
introduced prior information in the context of linear inverse
problems, an approach that was generalized by Tarantola and
Valette (1982a,b) to nonlinear problems.

There are three monographs in the area of inverse prob-
lems (from the viewpoint of data interpretation). In Tarantola
(1987), the general, probabilistic formulation for nonlinear
inverse problems is proposed. The small book by Menke (1984)
covers several viewpoints on discrete, linear, and nonlinear
inverse problems, and is easy to read. Finally, Parker (1994)
exposes his view of the general theory of linear problems.

Recently, the interest in Monte Carlo methods, for the
solution of inverse problems, has been increasing. Mosegaard
and Tarantola (1995) proposed a generalization of the
Metropolis algorithm (Metropolis ez al., 1953) for analysis
of general inverse problems, introducing explicitly prior
probability distributions, and they applied the theory to a
synthetic numerical example. Monte Carlo analysis was
recently applied to real data inverse problems by Mosegaard
et al. (1997), Dahl-Jensen et al. (1998), Mosegaard and
Rygaard-Hjalsted (1999), and Khan et al. (2000).

2. Elements of Probability

Probability theory is essential to our formulation of inverse
theory. This chapter therefore contains a review of important
elements of probability theory, with special emphasis on
results that are important for the analysis of inverse
problems. Of particular importance is our explicit introduc-
tion of distance and volume in data and model spaces. This
has profound consequences for the notion of conditional
probability density, which plays an important role in prob-
abilistic inverse theory.

Also, we replace the concept of conditional probability
by the more general notion of ‘conjunction’ of probabilities,
this allowing us to address the more general problem where
not only the data, but also the physical laws, are uncertain.
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2.1 Volume

Let us consider an abstract space S, where a point X is repre-
sented by some coordinates {xl, 2, .. .} , and let A be some
region (subspace) of S. The measure associating a volume
V(A) to any region A of S will be denoted the volume measure

V) = [ o). (1)

where the function v(x) is the volume density, and where
we write dx =dz' dx? ... The volume element is then®

dV (x) =v(x)dx, (2)

and we may write V (A) = [, dV (x) . A manifold is called
a metric manifold if there is a definition of distance between
points, such that the distance ds between the point of coor-
dinates {z'} and the point of coordinates {z’+ dz'} can be
expressed as*

ds* = g;; (x)da’ da 7 | (3)

i.e., if the notion of distance is ‘of the L, type.’> The matrix
whose entries are g;; is the metric matrix, and an important
result of differential geometry and integration theory is that
the volume density of the space, v(x) , equals the square root
of the determinant of the metric:

v(x) = y/det g(x) . (4)

Example 1. In the Euclidean 3D space, using spherical
coordinates, the distance element is ds*>=dr®>+r>df>+
7% sin 6 dgoz, from which it follows that the metric
matrix is

9rr  Gro  Gro 1 0 0
gor gew 9oy | = |0 1 0 . (5
Jor 9ot Yoo 0 0 r2sin’6

The volume density equals the metric determinant

v(r, 0, p) = y/det g(r, 0, ¢) =12 sin@ and therefore the
volume element is dV(r,0,¢)=v(r,9,¢)drdd dp=
r2 sin @ dr d9 de.

2.2 Probability

Assume that we have defined over the space, not only the
volume V(A) of a region A of the space, but also its prob-
ability P(A), which is assumed to satisfy the Kolmogorov
axioms (Kolmogorov, 1933). This probability is assumed to
be descriptible in terms of a probability density f (x) through
the expression

Hm=Aﬁf®- (6)

It is well known that, in a change of coordinates over the
space, a probability density changes its value: it is multiplied
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by the Jacobian of the transformation (this is the Jacobian
rule). Normally, the probability of the whole space is nor-
malized to one. If it is not normalizable, we do not say that
we have a probability, but a ‘measure.” We can state here the
following postulate.

Postulate 1. Given a space X over which a volume mea-
sure V() is defined. Any other measure (normalizable or
not) M(-) considered over X is absolutely continuous
with respect to V(-), i.e., the measure M(A) of any
region A C X with vanishing volume must be zero:

V(A)=0 = M(A)=0.

2.3 Homogeneous Probability Distributions

In some parameter spaces, there is an obvious definition
of distance between points, and therefore of volume. For
instance, in the 3D Euclidean space the distance between
two points is just the Euclidean distance (which is invariant
under translations and rotations). Should we choose to
parametrize the position of a point by its Cartesian coordi-
nates {x, y, z} , the volume element in the space would be
dV(z,y, z) =dx dy dz , while if we choose to use geogra-
phical coordinates, the volume element would be
dV(r,0,¢) = r*sin@ dr dd dp .

Definition. The homogeneous probability distribution is the
probability distribution that assigns to each region of the
space a probability proportional to the volume of the region.

Then, which probability density represents such a homo-
geneous probability distribution? Let us give the answer in
three steps.

e If we use Cartesian coordinates {z, y, z} , as we have
dV(z,y, z) = dx dy dz, the probability density repre-
senting the homogeneous probability distribution is con-
stant: f(z,y,2)=k.

e If we use geographical coordinates {r,6, ¢} , as we
have dV(r, 0, p)=r’sinfdrdfdp , the probability
density representing the homogeneous probability dis-
tribution is g (r, 0, @) =kr?sinf .

e Finally, if we use an arbitrary system of coordinates
{u, v, w} , in which the volume element of the space
is dV(u,v,w)=v(u, v, w) dudvdw , the homoge-
neous probability distribution is represented by the
probability density A (u, v, w) = kv (u, v, w) .

This is obviously true, since if we calculate the probability
of a region A of the space, with volume V(A), we get a
number proportional to V(A).

From these observations we can arrive at conclusions that
are of general validity. First, the homogeneous probability
distribution over some space is represented by a constant
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probability density only if the space is flat (in which
case rectilinear systems of coordinates exist) and if we use
Cartesian (or rectilinear) coordinates. The other conclusions
can be stated as rules:

Rule 1. The probability density representing the homogeneous
probability distribution is easily obtained if the expression of the

volume element dV(uy,us,...)=v(u,us,...)du;duy ...
of the space is known, as it is then given by
h(uy,us, ...)=kv(uy,us,...), where k is a proportionality

constant (that may have physical dimensions).

Rule 2. If there is a metric g;;(uy, us,...) in the space,
then the volume element is given by dV (uy, ua,...) =
Vdet g (ug, up,...)dusduy -+ -, i.e.,we have v(u,, u,,...)=
\/det g (uy, uy,...). The probability density representing
the homogeneous probability distribution is, then,
h(uy, ug,...) =ky/det g(uy, uz,...).

Rule 3. If the expression of the probability density repre-
senting the homogeneous probability distribution is known in
one system of coordinates, then it is known in any other
system of coordinates, through the Jacobian rule.

Indeed, in the expression above , g (7, 6, @) =Fkr’sinf , we
recognize the Jacobian between the geographical and the
Cartesian coordinates (where the probability density
is constant).

For short, when we say the homogeneous probability
density we mean the probability density representing the
homogeneous probability distribution. One should remem-
ber that, in general, the homogeneous probability density
is not constant.

Let us now examine ‘positive parameters,” like a
temperature, a period, or a seismic wave propagation velo-
city. One of the properties of the parameters we have in mind
is that they occur in pairs of mutually reciprocal parameters:

Period T=1/v ; Frequency v=1/T
Resistivity p=1/0c ; Conductivity o=1/p
Temperature  T=1/(kf); Thermodynamic
parameter B=1/(kT)
Mass density p=1// ;  Lightness /=1/p
Compressibility y=1/k ; Bulk modulus (uncompres-
sibility) k=1/v

Wave velocity c=1/n ;  Wave slowness n=1/c.

When working with physical theories, one may freely choose
one of these parameters or its reciprocal.

Sometimes these pairs of equivalent parameters come from
a definition, like when we define frequency v as a function of
the period 7', by v=1/T. Sometimes these parameters arise
when analyzing an idealized physical system. For instance,
Hooke’s law, relating stress oy ; to strain ¢, ; can be expressed
as 0;; = ¢; jk/EW , thus introducing the stiffness tensor ¢; ./,
or as g;; = dijk"/ ok, , thus introducing the compliance tensor
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d; i, , the inverse of the stiffness tensor. Then the respective
eigenvalues of these two tensors belong to the class of scalars
analyzed here.

Let us take, as an example, the pair conductivity—
resistivity (which may be thermal, electric, etc.). Assume we
have two samples in the laboratory S; and S, whose resis-
tivities are respectively p; and p,. Correspondingly, their
conductivities are 01 =1/p; and o, =1/p,. How should we
define the ‘distance’ between the ‘electrical properties’ of the
two samples? As we have | p, —p;| # |02 — 01|, choosing
one of the two expressions as the ‘distance’ would be arbi-
trary. Consider the following definition of ‘distance’ between
the two samples:
log P2

P1

D(Sy, S2) =

(o))
:‘log—
g1

: (7)

This definition (i) treats symmetrically the two equivalent
parameters p and o and, more importantly, (ii) has an inva-
riance of scale (what matters is how many ‘octaves’ we have
between the two values, not the plain difference between the
values). In fact, it is the only definition of distance between
the two samples S| and S, that has an invariance of scale
and is additive (i.e., D(S1, S2)+ D(S3, S3)=D(S1,S53)).

Associated to the distance D(zy, x,) = |log(z,/x,)]| is
the distance element (differential form of the distance)

_dz

dL(x) .

(®)
This being a ‘one-dimensional volume,” we can now apply
Rule 1 above to get the expression of the homogeneous
probability density for such a positive parameter:

flz)=—". )

Defining the reciprocal parameter y=1/z and using the
Jacobian rule, we arrive at the homogeneous probability
density for y:

(10)

These two probability densities have the same form: the two
reciprocal parameters are treated symmetrically. Introducing
the logarithmic parameters

x
z" =log—; y' =log L | (11)
Lo Yo
where x( and y, are arbitrary positive constants, and using
the Jacobian rule, we arrive at the homogeneous probability
densities:

f@)=k;  gW)=k.

This shows that the logarithm of a positive parameter (of the
type considered above) is a ‘Cartesian’ parameter. In fact, it
is the consideration of Egs. (12), together with the Jacobian

(12)
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rule, that allows full understanding of the (homogeneous)
probability densities (9) and (10).

The association of the probability density f(u)=k/u with
positive parameters was first made by Jeffreys (1939). To
honor him, we propose to use the term Jeffreys parameters
for all the parameters of the type considered above. The 1/
probability density was advocated by Jaynes (1968), and a
nontrivial use of it was made by Rietsch (1977) in the context
of inverse problems.

Rule 4. The homogeneous probability density for a Jeffreys
quantity wis f(u)=klu .

Rule 5. The homogeneous probability density for a
‘Cartesian parameter’ u (like the logarithm of a Jeffreys
parameter, an actual Cartesian coordinate in an Euclidean
space, or the Newtonian time coordinate) is f(u)=k . The
homogeneous probability density for an angle describing the
position of a point in a circle is also constant.

If a parameter u is a Jeffreys parameter with the homo-
geneous probability density f(uw)=k/u, then its inverse,
its square, and, in general, any power of the parameter is
also a Jeffreys parameter, as it can easily be seen using the
Jacobian rule.

Rule 6. Any power of a Jeffreys quantity (including its
inverse) is a Jeffreys quantity.

It is important to recognize when we do not face a Jeffreys
parameter. Among the many parameters used in the literature
to describe an isotropic linear elastic medium we find param-
eters like the Lamé’s coefficients ) and p , the bulk modulus & ,
the Poisson ratio o, etc. A simple inspection of the theoretical
range of variation of these parameters shows that the first
Lamé parameter A and the Poisson ratio o may take negative
values, so they are certainly not Jeffreys parameters. In con-
trast, Hooke’s law o, =¢; 5/ ek’ defining a linearity between
stress o, ; and strain ¢;; , defines the positive definite stiffness
tensor c; i, or, if we write &, ;=d, 1./ JM, defines its inverse,
the compliance tensor d, j;,. The two reciprocal tensors ¢; .,
and d,;;, are ‘Jeffreys tensors.” This is a notion whose
development is beyond the scope of this paper, but we can
give the following rule.

Rule 7. The eigenvalues of a Jeffreys tensor are Jeffreys
quantities.6

As the two (different) eigenvalues of the stiffness tensor
Cijre are A\, =3k (with multiplicity 1) and X, =2p (with
multiplicity 5), we see that the incompressibility modulus s
and the shear modulus y are Jeffreys parameters’ (as are any
parameters proportional to them, or any powers of them,
including the inverses). If, for some reason, instead of
working with x and p , we wish to work with other elastic
parameters, for instance, the Young modulus Y and the
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Poisson ratio o, or the two elastic wave velocities, then the
homogeneous probability distribution must be found using
the Jacobian of the transformation (see Appendix H).

Some probability densities have conspicuous ‘dispersion
parameters,’ like the o’s in the normal probability density

f(x) = kexp (— %) , in the log-normal probability

g(X)=%exp (— %) orintheFisher probability density

(Fisher, 1953) 1 (¥, ¢) = k sin 6 exp (cos §/0*). A consistent
probability model requires that when the dispersion para-
meter o tends to infinity, the probability density tends to
the homogeneous probability distribution. For instance, in
the three examples just given, f(z) — k, g(X) — k/X |
and h (0, p) — ksinf , which are the respective homo-
geneous probability densities for a Cartesian quantity,
a Jeffreys quantity, and the geographical coordinates on the
surface of the sphere. We can state the following rule.

Rule 8. If a probability density has some ‘dispersion para-
meters,’ then, in the limit where the dispersion parameters
tend to infinity, the probability density must tend to the
homogeneous one.

As an example, using the normal probability density

f(z) = kexp (—%
consistent. Note that it would assign a finite probability
to negative values of a positive parameter that, by defini-
tion, is positive. More technically, this would violate our
Postulate 1. Using the log-normal probability density for a
Jeffreys parameter is consistent.

There is a problem of terminology in the Bayesian litera-
ture. The homogeneous probability distribution is a very
special distribution. When the problem of selecting a ‘prior’
probability distribution arises in the absence of any infor-
mation, except the fundamental symmetries of the problem,
one may select as prior probability distribution the homo-
geneous distribution. But enthusiastic Bayesians do not call
it ‘homogeneous,” but ‘noninformative.” We cannot re-
commend using this terminology. The homogeneous prob-
ability distribution is as informative as any other distribution,
it is just the homogeneous one (see Appendix D).

In general, each time we consider an abstract parameter
space, each point being represented by some parameters
x={z',2>... 2"} , we will start by solving the (sometimes
nontrivial) problem of defining a distance between points
that respects the necessary symmetries of the problem. Only
exceptionally this distance will be a quadratic expression
of the parameters (coordinates) being used (i.e., only
exceptionally our parameters will correspond to ‘Cartesian
coordinates’ in the space). From this distance, a volume
element dV(x)=wv(x)dx will be deduced, from where the
expression f(x)=kwv(x) of the homogeneous probability
density will follow. Sometimes, we can directly define the
volume element, without the need of a distance. We

) , for a Jeffreys parameter is not
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emphasize the need of defining a distance—or a volume
element—in the parameter space, from which the notion
of homogeneity will follow. With this point of view, we
slightly depart from the original work by Jeffreys and Jaynes.

2.4 Conjunction of Probabilities

We shall here consider two probability distributions Pand @) .
We say that a probability R is a product of the two given
probabilities, and is denoted (PA Q) if

e PNQ=QANP,;

e for any subset A, (PAQ)(A) #0 = P(A) #0 and
Q(A) #0;

e if M denotes the homogeneous probability distribution,
then PAM=P.

The realization of these conditions leading to the simplest
results can easily be expressed using probability densities (see
Appendix G for details). If the two probabilities P and @
are represented by the two probability densities p (x) and
q(x) , respectively, and if the homogeneous probability
density is represented by p(x) , then the probability PA Q
is represented by a probability density, denoted (p A q) (x) ,
that is given by
(PAg)(x) = : (13)

where k is a normalization constant.®

The two left columns of Figure 1 represent these prob-
ability densities.

Qe
’ -
H(x) q(x)
P(-/%) (PAQ)(-)
p(x) i ,
_P(L D)
AL P#) p(x/B) (PAQ)(X)

p(x/B) =k p(x) H(x) (PAQ)(x) =k p(x)q(x)

wx)

FIGURE 1 The two left columns of the figure illustrate the defi-
nition of conditional probability (see text for details). The right of
the figure explains that the definition of the AND operation is a gen-
eralization of the notion of conditional probability. While a condi-
tional probability combines a probability distribution P(-) with an
‘event’ 4, the AND operation combines two probability distributions
P(-) and Q(-) defined over the same space. See text for a detailed
explanation.
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Example 2. On the surface of the Earth, using geographical
coordinates (latitude ¥ and longitude ), the homogeneous
probability distribution is represented by the probability
density (9, ) :ﬁcos ¥. An estimation of the position of
a floating object at the surface of the sea by an airplane
navigator gives a probability distribution for the position of
the object corresponding to the probability density p (U, p),
and an independent, simultaneous estimation of the position
by another airplane navigator gives a probability distribu-
tion corresponding to the probability density q (9, ¢). How
do we ‘combine’ the two probability densities p (9, ) and
q(9,p) to obtain a ‘resulting’ probability density? The
answer is given by the conjunction of the two probability
densities:

(0, ) q(V, ) '

(pAa) (9, ) =k HEE LA (14)

We emphasize here the following:

Example 2 is at the basis of the paradigm that we use
below to solve inverse problems.

More generally, the conjunction of the probability densities

fi(x), f2(x)...is
hx)=(fi A fa A fz)(x) -

fi(x) f2(x) f3(x)
p(x) p(x) p(x)

(15)
=k

(x)

For a formalization of the notion of conjunction of
probabilities, the reader is invited to read Appendix G.
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2.5 Conditional Probability Density

Given a probability distribution over a space X , represented
by the probability density f(x) , and given a subspace B of
X of lower dimension, can we, in a consistent way, infer
a probability distribution over B , represented by a prob-
ability density f(x|B) (to be named the conditional prob-
ability density ‘given B’)? The answer is: Using only the
elements given, NO, THIS IS NOT POSSIBLE .

The usual way to induce a probability distribution on a
subspace of lower dimension is to assign a ‘thickness’ to the
subspace B, to apply the general definition of conditional
probability (this time to a region of X', not to a subspace of
it) and to take the limit when the ‘thickness’ tends to zero.
But, as suggested in Figure 2, there are infinitely many ways
to take this limit, each defining a different ‘conditional
probability density’ on B. Among the infinitely many ways to
define a conditional probability density, there is one that
is based on the notion of distance between points in the
space, and therefore corresponds to an intrinsic definition
(see Fig. 2).

Assume that the space U/ has p dimensions, the space
V has ¢ dimensions, and define in the (p+ g¢)-dimen-
sional space X = (U, V) a p-dimensional subspace by the
p relations

vy =v1 (U, Uz, ..., Up)
vy = vy (ug, ug, -+, Up)

5 P s Up (]6)
Vg =g (U1, U2, ..., Up)

4

FIGURE 2 An original 2D probability density, and two possible ways (among many) of defining a
region of the space whose limit is a given curve. At the top is the ‘vertical’ limit, while at the bottom is
the normal (or orthogonal) limit. Each possible limit defines a different ‘induced’ or ‘conditional’ prob-
ability density. Only the orthogonal limit gives an intrinsic definition (i.e., a definition invariant under any
change of variables). It is, therefore, the only one examined in this work.
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The restriction of a probability distribution represented by
the probability density f(x)= f(u,v) into the subspace
defined by the constraint v=v (u) , can be defined with all
generality when it is assumed that we have a metric
defined over the (p + ¢)-dimensional space X = (U, V) . Let
us limit here to the special circumstance (useful for a
vast majority of inverse problemsg) where there the
(p+ g)-dimensional space X is built as the Cartesian
product of U/ and V (then we write, as usual, X =U x V) .
In this case, there is a metric g, over U/ , with associated
volume element dV,, (u) = \/det g, du , there is a metric g,
over V, with associated volume element dV,(v)=
y/det g dv , and the global volume element is simply
dV(u,v)=dV, (u)dV,(v) .

The restriction of the probability distribution represented
by the probability density f(u, v) on the subspace v=v (u)
(i.e., the conditional probability density given v=v (u) ) is a
probability distribution on the submanifold v=v (u) . We
could choose ad-hoc coordinates over this manifold, but as
there is a one-to-one correspondence between the coordinates
u and the points on the manifold, the conditional probability
density can be expressed using the coordinates u . The
restriction of f(u,v) over the submanifold v=v (u) defines
the probability density (see Appendix B for the more
general case)

f’u|1)(u) (ll|V = V(u))

\/det (g, + VTg,UV)

y/det g, \/det g,

where k is a normalizing constant, and where V=V (u) is
the matrix of partial derivatives (see Appendix M for a
simple explicit calculation of such partial derivatives)

(17)

=k f(u,v(u))

‘v-v(u)

‘/1 1 Vi 2 ‘/lp Ou;  Oup Ou,
Vo Vo ‘/21" Ou;  Oup Quy,
. . . = (18)
Vg Vo -V, oo oy oy
a e w du  du du,

Example 3. If the hypersurface v=v (u) is defined by a
constant value of v | say v=vyq , then Eq. (17) reduces to

f(ll, VO)

fu|w(u|v VO) k f(uv VO) fudu f(ll, VO) : (19)

Elementary definitions of conditional probability density
are not based on this notion of distance-based uniform con-
vergence, but use other, ill-defined limits. This is a mistake
that, unfortunately, pollutes many scientific works. See
Appendix P, in particular, for a discussion on the ‘Borel
paradox.’
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Equation (17) defines the conditional f, |, (u|v=v(u)).
Should the relation v=v(u) be invertible, it would
correspond to a change of variables. It is then possible to
show that the alternative conditional f,|,,) (V|u=u(v)) is
related to f, |, (u|v=v(u)) through the Jacobian rule.
This is a property that elementary definitions of conditional
probability do not share.

2.6 Marginal Probability Density

In the special circumstance described above, where we have
a Cartesian product of two spaces, X =U x V, given a
‘joint’ probability density f(u,v), it is possible to give an
intrinsic sense to the definitions

folw) = [avf@y) s A= [ dufay) . @)
v u

These two densities are called marginal probability

densities. Their intuitive interpretation is clear, as the

‘projection’ of the joint probability density respectively over

U and over V.

2.7 Independence and Bayes Theorem
Dropping the index 0 in Eq. (19) and using the second of
Egs. (20) gives

f(u,v)

o (V) ’

f
or, equivalently, f(u,v)= f,, (u|v) f,(v) . As we can
also define f,|u (v|u) , we have the two equations

fu\b (lllV) =

(1)

f(ll,V) = fu\v(u|v) f’v(v)

(22)
f(ll,V) = fv\u (V|ll) Ju (u) )
that can be read as follows: ‘When we work in a space that
is the Cartesian product U x V of two subspaces, a joint
probability density can always be expressed as the product of
a conditional times a marginal.’
From these last equations there follows the expression

f’u\’u (U‘V) _ fv\u (‘J’;vlzz,)fu (u) ’

known as the Bayes theorem, and generally used as the
starting point for solving inverse problems. We do not think
this is a useful setting, and we prefer here not to use the
Bayes theorem (or, more precisely, not to use the intuitive
paradigm usually associated with it).

It also follows from Egs. (22) that the two conditions

(23)

fu|v(u|v): fu(u) ; fv\u(v|u):f'u(v) (24)
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are equivalent. It is then said that u and v are independent
parameters (with respect to the probability density f(u, v)) .
The term ‘independent’ is easy to understand, as the condi-
tional of any of the two (vector) variables, given the other
variable equals the (unconditional) marginal of the variable.
Then, one clearly has

f(ll,V) = fu(u) f’U(V)

i.e., for independent variables, the joint probability density
can be simply expressed as the product of the two marginals.

(25)

3. Monte Carlo Methods

When a probability distribution has been defined, we face the
problem of how to ‘use’ it. The definition of ‘central
estimators’ (such as the mean or the median) and ‘estimators
of dispersion’ (such as the covariance matrix) lacks gen-
erality as it is quite easy to find examples (such as multi-
modal distributions in highly-dimensional spaces) where
these estimators fail to have any interesting meaning.

When a probability distribution has been defined over a
space of low dimension (say, from one to four dimensions)
we can directly represent the associated probability density.
This is trivial in one or two dimensions. It is easy in three
dimensions, and some tricks may allow us to represent a
four-dimensional probability distribution, but clearly this
approach cannot be generalized to the high dimensional
case.

Let us explain the only approach that seems practical, with
help of Figure 3. At the left of the figure, there is an explicit
representation of a 2D probability distribution (by means of
the associated probability density or the associated (2D)
volumetric probability). In the middle, some random points
have been generated (using the Monte Carlo method about to
be described). It is clear that, if we make a histogram with
these points, in the limit of a sufficiently large number of
points we recover the representation at the left. Disregarding
the histogram possibility, we can concentrate on the indivi-
dual points. In the 2D example of the figure we have actual
points in a plane. If the problem is multidimensional, each
‘point’ may correspond to some abstract notion. For instance,
for a geophysicist a ‘point’ may be a given model of the
Earth. This model may be represented in some way, for
instance, by a color plot. Then a collection of ‘points’ is a
collection of such pictures. Our experience shows that, given
a collection of randomly generated ‘models,” the human
eye—brain system is extremely good at apprehending the
basic characteristics of the underlying probability distribu-
tion, including possible multimodalities, correlations, etc.

When such a (hopefully large) collection of random
models is available, we can also answer quite interesting
questions. For instance, a geologist might ask: at which depth
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FIGURE 3 An explicit representation of a 2D probability dis-
tribution and the sampling of it, using Monte Carlo methods. While
the representation at the top left cannot be generalized to high
dimensions, the examination of a collection of points can be done in
arbitrary dimensions. Practically, Monte Carlo generation of points is
done through a ‘random walk’ where a ‘new point’ is generated in the
vicinity of the previous point.

is that subsurface structure? To answer this, we can make a
histogram of the depth of the given geological structure over
the collection of random models, and the histogram is the
answer to the question. What is the probability of having a
low-velocity zone around a given depth? The ratio of the
number of models presenting such a low-velocity zone over
the total number of models in the collection gives the answer
(if the collection of models is large enough).

This is essentially what we propose: looking at a large
number of randomly generated models in order to intuitively
apprehend the basic properties of the probability distribution,
followed by calculation of the probabilities of all interesting
‘events.’

Practically, as we will see, the random sampling is not
made by generating points independently of each other.
Rather, as suggested in the last image of Figure 3, it is done
through a ‘random walk’ where a ‘new point’ is generated in
the vicinity of the previous point.

Monte Carlo methods have a random generator at their
core. At present, Monte Carlo methods are typically imple-
mented on digital computers, and are based on pseudo
random generation of numbers.'® As we shall see, any con-
ceivable operation on probability densities (e.g., computing
marginals and conditionals, integration, conjunction (the
AND operation), etc.) has its counterpart in an operation on/
by their corresponding Monte Carlo algorithms.

Inverse problems are often formulated in high-dimensional
spaces. In this case a certain class of Monte Carlo algorithms,
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the so-called importance sampling algorithms, come to the
rescue, allowing us to sample the space with a sampling
density proportional to the given probability density. In this
case excessive (and useless) sampling of low-probability
areas of the space is avoided. This is not only important, but
in fact vital in high-dimensional spaces.

Another advantage of the importance sampling Monte
Carlo algorithms is that we need not have a closed-form
mathematical expression for the probability density that we
want to sample. Only an algorithm that allows us to evaluate
it at a given point in the space is needed. This has con-
siderable practical advantage in analysis of inverse problems
where computer-intensive evaluation of, for example,
misfit functions plays an important role in calculation of
certain probability densities.

Given a probability density that we wish to sample, and
a class of Monte Carlo algorithms that samples this density,
which one of the algorithms should we choose? Practically,
the problem here is to find the most efficient of these algo-
rithms. This is an interesting and difficult problem for which
we will not go into detail here. We will, later in this chapter,
limit ourselves to only two general methods that are recom-
mendable in many practical situations.

3.1 Random Walks

To escape the dimensionality problem, any sampling of
a probability density for which point values are available
only upon request has to be based on a random walk, i.e., in
a generation of successive points with the constraint that point
x ;1 sampled in iteration (i + 1) is in the vicinity of the point
x; sampled in iteration ¢ . The simplest of the random walks
are generated by the so-called Markov Chain Monte Carlo
(MCMC) algorithms, where the point x;,; depends on the
point X; , but not on previous points. We will concentrate on
these algorithms here.

If random rules have been defined to select points such that
the probability of selecting a point in the infinitesimal ‘box’
dr|---dxyis p(x)dz;---dxy, then the points selected in
this way are called samples of the probability density p (x) .
Depending on the rules defined, successive samples
i, J, k,... may be dependent or independent.

3.2 The Metropolis Rule

The most common Monte Carlo sampling methods are the
Metropolis sampler (described below) and the Gibbs sam-
pler (Geman and Geman, 1984). As we believe that the
Gibbs sampler is only superior to the Metropolis sampler in
low-dimensional problems, we restrict ourselves here to the
presentation of the latter.

Consider the following situation. Some random rules
define a random walk that samples the probability density
f(x) . At a given step, the random walker is at point x ; , and
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the application of the rules would lead to a transition to
point x; . By construction, when all such ‘proposed tran-
sitions” x; < X; are always accepted, the random walker
will sample the probability density f(x) . Instead of always
accepting the proposed transition X;<«X; , we reject it
sometimes by using the following rule to decide if it is
allowed to move to x; or if it must stay at X :

o If g(x;)/p(x;)>g(x;)/p(x;) , then accept the pro-
posed transition to X; .

o If g(x;)/p(x;) <g(x;)/pn(x;) , then decide randomly to
move to X; , or to stay at x; , with the following prob-
ability of accepting the move to x; :

p o 9xi)/p(xi)

= 0 () (26)

Then we have the following theorem.

Theorem 1. The random walker samples the conjunction
h (x) of the probability densities f(x) and g(x)

o) F() g(x)
ORI @7)

(see Appendix O for a demonstration).

h(x) =k f(x)

It should be noted here that this algorithm nowhere
requires the probability densities to be normalized. This is of
vital importance in practice, since it allows sampling of
probability densities whose values are known only in points
already sampled by the algorithm. Obviously, such prob-
ability densities cannot be normalized. Also , the fact that our
theory also allows unnormalizable probability densities
will not cause any trouble in the application of the above
algorithm.

The algorithm above is reminiscent (see Appendix O) of
the Metropolis algorithm (Metropolis et al., 1953), origin-
ally designed to sample the Gibbs—Boltzmann distribution.'’
Accordingly, we will refer to the above acceptance rule as
the Metropolis rule.

3.3 The Cascaded Metropolis Rule

As above, assume that some random rules define a random
walk that samples the probability density f; (x) . At a given
step, the random walker is at point X .

(1) Apply the rules that unthwarted would generate
samples distributed according to f; (x) , to propose a
new point X; .

(2) If fa(x))/p(x:) = f2(x;)/p(x;) , go to point 3; if
fa(xi)/p(x;) < fa(x;)/p(x;) , then decide ran-
domly to go to point 3 or to go back to point 1, with
the following probability of going to point 3:

P=(f2(xq)/p(x:))/(f2 (X)) ] (x;)) -
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(3) If f3(x;)/p(x;)> fa(x;)/p(x;) , go to point 4; if
J3(x9)/p(x;) < f3(x;)/pm(x;) , then decide ran-
domly to go to point 4 or to go back to point 1, with
the following probability of going to point 4:

P=(f3(xi)/p(x))/(f3(x;)/p(x;)) -

(n) It fo(x;)/p(x;) > fn(x;)/p(x;), then accept the
proposed transition to x; ; if f,, (x;)/p(X;) < fn(x;)/
p(x;) , then decide randomly to move to X; , or to stay
at x; , with the following probability of accepting the

move to X;: P=( f, (x;)/n (x:))/ (fr (X)/16(X;)) .

Then we have the following theorem.

Theorem 2. The random walker samples the conjunction
h (X) of the probability densities fi (X), f2(X),..., fn(X):

L) | f)

B T TEY

(28)

(see the supplementary materials to this chapter on the
attached Handbook CD for a demonstration).

3.4 Initiating a Random Walk

Consider the problem of obtaining samples of a probability
density h (x) defined as the conjunction of some probability

densitites f1(x), f2(x), f3(x)...,

fr(x) f(x)
p(x) p(x) 7

h(x) =k fi(x) (29)

and let us examine three common situations.

We start with a random walk that samples f; (x) (opti-
mal situation): This corresponds to the basic algorithm
where we know how to produce a random walk that sam-
ples fi(x) , and we only need to modify it, taking into
account the values f5(x)/p(x), f3(x)/p(x)..., using
the cascaded Metropolis rule, to obtain a random walk
that samples h (x) .

We start with a random walk that samples the homo-
geneous probability density 1 (x): We can write Eq. (29) as

h(x) =k (((N(X) f1(X)> fz(X)) ) )
w(x) ) px)

The expression corresponds to the case where we are not able

to start with a random walk that samples f; (x) , but we have

a random walk that samples the homogeneous probability

density p(x) . Then, with respect to the example just

mentioned, there is one extra step to be added, taking into
account the values of f; (x)/u(x) .

(30)
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We start with an arbitrary random walk (worst situa-
tion): In the situation where we are not able to directly define
a random walk that samples the homogeneous probability
distribution, but only one that samples some arbitrary (but
known) probability distribution ¢ (x) , we can write Eq. (29)

in the form

(x)/) w(x)/) p(x)
Then, with respect to the example just mentioned, there is
one more extra step to be added, taking into account the
values of p(x)/¢(x). Note that the closer v (x) is be to
w(x), the more efficient will be the first modification of the
random walk.

3.5 Convergence Issues

When has a random walk visited enough points in the space
so that a probability density has been sufficiently sampled?
This is a complex issue, and it is easy to overlook its
importance. There is no general rule: Each problem has its
own ‘physics,” and the experience of the ‘implementer’ is
crucial here.

Many methods that work for low dimension completely
fail when the number of dimensions is high. Typically, a
random walk select a random direction and, then, a random
step along that direction. The notion of ‘direction’ in a
high-dimensional space is far from the intuitive one we get in
the familar three-dimensional space. Any serious discussion
on this issue must be problem-dependent, so we do not even
attempt one here.

Obviously, a necessary condition for adequate sampling is
that any ‘output’ from the algorithm must ‘look stationary.’

4. Probabilistic Formulation of
Inverse Problems

A so-called ‘inverse problem’ arises when a usually complex
measurement is made, and information on unknown param-
eters of the physical system is sought. Any measurement is
indirect (we may weigh a mass by observing the displace-
ment of the cursor of a balance), and therefore a possibly
nontrivial analysis of uncertainties must be done. Any guide
describing good experimental practice (see, for instance the
ISO’s Guide to the Expression of Uncertainty in Measure-
ment (ISO, 1993) or the shorter description by Taylor and
Kuyatt, 1994) acknowledges that a measurement involves, at
least, two different sources of uncertainties: those estimated
using statistical methods, and those estimated using sub-
jective, common-sense estimations. Both are described using
the axioms of probability theory, and this chapter clearly
takes the probabilistic point of view for developing inverse
theory.
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4.1 Model Parameters and
Observable Parameters

Although the separation of all the variables of a problem into
two groups, ‘directly observable parameters’ (or ‘data’) and
‘model parameters’, may sometimes be artificial, we take
this point of view here, since it allows us to propose a simple
setting for a wide class of problems.

We may have in mind a given physical system, like the
whole Earth or a small crystal under our microscope. The
system (or a given state of the system) may be described
by assigning values to a given set of parameters
m={m' m? ...,m™}  which we will name the model
parameters.

Let us assume that we make observations on this system.
Although we are interested in the parameters m, they may
not be directly observable, so we make indirect measure-
ments such as obtaining seismograms at the Earth’s surface
for analyzing the Earth’s interior, or making spectroscopic
measurements for analyzing the chemical properties of a
crystal. The set of (directly) observable parameters (or, by
abuse of language, the set of data parameters) will be
represented by d=(d',d?,...,d""} .

We assume that we have a physical theory that can be
used to solve the forward problem, i.e., that given an
arbitrary model m, it allows us to predict the theoretical
data values d that an ideal measurement should produce (if
m were the actual system). The generally nonlinear function
that associates with any model m the theoretical data values
d may be represented by a notation such as
d'=fi(m',m? ..., m");,  i=1,2,...

, ND, (32)

or, for short,

d=f(m). (33)

It is in fact this expression that separates the whole set
of our parameters into the subsets d and m , although
sometimes there is no difference in nature between the
parameters in d and the parameters in m . For instance, in
the classical inverse problem of estimating the hypo-
center coordinates of an earthquake, we may put in d the
arrival times of the seismic waves at seismic observatories,
and we need to put in m, besides the hypocentral coor-
dinates, the coordinates defining the location of the seismo-
meters—as these are parameters that are needed to compute
the travel times—although we estimate arrival times of
waves and coordinates of the seismic observatories using
similar types of measurements.

4.2 Prior Information on Model Parameters

In a typical geophysical problem, the model parameters
contain geometrical parameters (positions and sizes of geo-
logical bodies) and physical parameters (values of the mass
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density, of the elastic parameters, the temperature, the
porosity, etc.).

The prior information on these parameters is all the
information we possess independently of the particular
measurements that will be considered as ‘data’ (to be
described below). This prior probability distribution is gen-
erally quite complex, as the model space may be high-
dimensional, and the parameters may have nonstandard
probability densities.

To this generally complex probability distribution over
the model space corresponds a probability density that we
denote p,, (m) .

If an explicit expression for the probability density
pm(m) is known, it can be used in analytical develop-
ments. But such an explicit expression is, by no means,
necessary. Using Monte Carlo methods, all that is needed
is a set of probabilistic rules that allows us to generate
samples distributed according to p,,(m) in the model
space (Mosegaard and Tarantola, 1995).

Example 4. Appendix E presents an example of prior
information for the case of an Earth model consisting of a
stack of horizontal layers with variable thickness and uni-
form mass density.

4.3 Measurements and Experimental
Uncertainties

Observation of geophysical phenomena is represented by a
set of parameters d that we usually call data. These para-
meters result from prior measurement operations, and they
are typically seismic vibrations on the instrument site, arrival
times of seismic phases, gravity or electromagnetic fields. As
in any measurement, the data are determined with an asso-
ciated uncertainty, described by a probability density over
the data parameter space, that we denote here py(d). This
density describes not only marginals on individual datum
values, but also possible cross-relations in data uncertainties.

Although the instrumental errors are an important source
of data uncertainties, in geophysical measurements there are
other sources of uncertainty. The errors associated with the
positioning of the instruments, the environmental noise, and
the human factor (like for picking arrival times) are also
relevant sources of uncertainty.

Example 5. Nonanalytic Probability Density. Assume that
we wish to measure the time t of occurrence of some phy-
sical event. It is often assumed that the result of a mea-
surement corresponds to something like

t:t():l:a'. (34)

An obvious question is the exact meaning of the o . Has
the experimenter in mind that she or he is absolutely certain
that the actual arrival time satisfies the strict conditions
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FIGURE 4 What has an experimenter in mind when she or he describes the result of a measurement by something like r=ry+ 0 ?

to—o<t<tog+o, or has she or he in mind something like
a Gaussian probability, or some other probability distribu-
tion (see Fig. 4)? We accept, following ISO’s recommenda-
tions (1993) that the result of any measurement has a
probabilistic interpretation, with some sources of uncer-
tainty being analyzed using statistical methods (‘type A’
uncertainties), and other sources of uncertainty being
evaluated by other means (for instance, using Bayesian
arguments) (‘type B’ uncertainties). But, contrary to ISO
suggestions, we do not assume that the Gaussian model of
uncertainties should play any central role. In an extreme
example, we may well have measurements whose prob-
abilistic description may correspond to a multimodal prob-
ability density. Figure 5 shows a typical example for a
seismologist: the measurement on a seismogram of the
arrival time of a certain seismic wave, in the case one
hesitates in the phase identification or in the identification
of noise and signal. In this case the probability density for
the arrival of the seismic phase does not have an explicit
expression like f(t)=kexp(—(t—to)*/(20%)) , but is a
numerically defined function.

Example 6. The Gaussian model for uncertainties. The
simplest probabilistic model that can be used to describe
experimental uncertainties is the Gaussian model

Pd (d) = kexp (—%(d—dobs)T CB] (d_dobs)> . (35)

It is here assumed that we have some ‘observed data
values’ d g with uncertainties described by the covariance
matrix Cp. If the uncertainties are uncorrelated,

SR )

1

pa(d) =k exp

where the o' are the ‘standard deviations.’

Example 7. The generalized Gaussian model for uncer-
tainties. An alternative to the Gaussian model is to use the
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FIGURE 5 A seismologist tries to measure the arrival time of a
seismic wave at a seismic station, by ‘reading’ the seismogram at the
top of the figure. The seismologist may find quite likely that the
arrival time of the wave is between times #3 and #,, and believe that
what is before #3 is just noise. But if there is a significant probability
that the signal between ¢; and 7, is not noise but the actual arrival of
the wave, then the seismologist should define a bimodal probability
density, as the one suggested at the bottom of the figure. Typically,
the actual form of each peak of the probability density is not crucial
(here, box-car functions are chosen), but the position of the peaks is
important. Rather than assigning a zero probability density to the
zones outside the two intervals, it is safer (more ‘robust’) to attribute
some small ‘background’ value, as we may never exclude some
unexpected source of error.
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Laplacian (double exponential) model for uncertainties,

pd( —k:exp( Z|d_dobs>.

While the Gaussian model leads to least-squares-related
methods, this Laplacian model leads to absolute-values
methods (see Section 4.5.2), well known for producing

(37)

robust’? results. More generally, there is the L, model of
uncertainties
d — dZ P
p(d) = Ik exp (——Z 1"~ dys|” ) (38)
(see Fig. 6).

4.4 Joint ‘‘ Prior ”’ Probability Distribution
in the (M, D) Space

We have just seen that the prior information on model
parameters can be described by a probability density in the
model space, p,,(m) , and that the result of measurements
can be described by a probability density in the data space
pa(d) . As by ‘prior’ information on model parameters we
mean information obtained independently from the mea-
surements (it often represents information we had before
the measurements were made), we can use the notion of
independency of variables of Section 2.6 to define a joint
probability density in the X = (M, D) space as the product
of the two ‘marginals’
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Although we have introduced p,,,(m) and p,;(d) separately,
and we have suggested building a probability distribution
in the (M, D) space by the multiplication (39), we may
have a more general situation where the information we
have on m and on d is not independent. So, in what follows,
let us assume that we have some information in the X =
(M, D) space, represented by the ‘joint’ probability
density

:p(m,d) )

and let us consider Eq. (39) as just a special case.

Let us in the rest of this chapter denote by u(x) the
probability density representing the homogeneous prob-
ability distribution, as introduced in Section 2.2. We may
remember here the Rule 8, stating that the limit of a con-
sistent probability density must be the homogeneous one, so
we may formally write

p(x) (40)

lim p(x)
infinite dispersions

(x) = (41)

When the partition (39) holds, then, typically (see Rule 8),

— (m, d) = 1, (m) () - (2)

1 (x)
4.5 Physical Laws as Mathematical Functions
4.5.1 Physical Laws

Physics analyzes the correlations existing between physical
parameters. In standard mathematical physics, these correla-
tions are represented by ‘equalities’ between physical

p(x) =p(m,d) = pp(m)ps(d) . (39) parameters (as when we write F =ma to relate the force
0.5 0.5 0.5
0.4 0.4 0.4
0.3 / \ 0.3 / \ 0.3
0.2 0.2 0.2
0.1 0.1 0.1 / \
0 ’// \\ 0 | N 0
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0 0 } \ 0
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FIGURE 6 Generalized Gaussian for values of the parameter p=1, v/2, 2, 4, 8, and oo .
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F applied to a particle, the mass m of the particle and
the acceleration a). In the context of inverse problems,
this corresponds to assuming that we have a function from
the ‘parameter space’ to the ‘data space’ that we may
represent as

d=f(m). (43)
We do not mean that the relation is necessarily explicit.
Given m we may need to solve a complex system of
equations in order to get d, but this nevertheless defines
a functionm —d=f (m) .

At this point, given the probability density p (m,d) and
given the relation d =f (m), we can define the associated
conditional probability density py,|4(m)(m|d =f(m)) .
We could here use the more general definition of con-
ditional probability density of Appendix B, but let us
simplify the text by using a simplifying assumption: that
the total parameter space (M, D) is just the Cartesian
product M x D of the model parameter space M times
the space of directly observable parameters (or ‘data space’)
D. Then, rather than a general metric in the total space,
we have a metric g, over the model parameter space
M and a metric g, over the data space, and the total
metric is just the Cartesian product of the two metrics. In
particular, then, the total volume element in the space,
dV(m,d) is just the product of the two volume elements
in the model parameter space and the data space:
dV(m,d) =dV,,(m)dV;(D) . Most inverse problems
satisfy this assumption.'? In this setting, the formulas of
Section 2.4 are valid.

4.5.2 Inverse Problems

In the (M, D) = M x D space, we have the probability
density p(m, d) and we have the hypersurface defined by
the relation d = f (m) . The natural way to ‘compose’ these
two kinds of information is by defining the conditional
probability density induced by p (m, d) on the hypersurface
d="f(m),

om(m) = P mld(m) (m|d =f(m)) , (44)
this gives (see Eq. (17))
()=, ) Yo )
m (M) = m, f (m .
7 P y/detg, ./detg, d=f(m)
(45)

where F =F (m) is the matrix of partial derivatives, with
components F;, =0 f,/0m, , where g, is the metric in the
model parameter space M and where g, is the metric in
the data space D .
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Example 8. Quite often, p(m, d) = p,,(m) py(d). Then,
Eq. (45) can be written
pa(d) \/det(gm +F'g,F)
onim)=kon (W~ Setg, . Jders,,
(46)

Example 9. If g, (m) = constant and gq4(d) = constant, and

the nonlinearities are weak (F(m)=constant), then
Eq. (46) reduces to
Pd d
O-m(m) =k pm(m) ( ) 5 (47)

pa(d) d=f(m)

where we have used pi4(d) =k \/detg,(d) (see Rule 2).

Example 10. We examine here the simplification that we
arrive at when assuming that the ‘input’ probability densities
are Gaussian:

1 P
pm(m) =k exXp <_§ (m - mprior)r C]\[I (m - mprior))
(48)

1

pa(d) =k exp ( 2(d—d0bs)t (op (d—dobs)) .

(49)

In this circumstance, quite often, it is the covariance
operators Cyy and Cp that are used to define the metrics over
the spaces M and D . Then, g, =C,; and g, =Cp' .
Grouping some of the constant factors in the factor k
Eq. (45) becomes here

1 -
(m) =k exp | <3 ((m = mpsr) €3 (m )

T (F(m) — dm) Cp (F(m) — d))}

Vdet(C3f +F7 (m) €' F(m))
X
\/det C/

(the constant factor 4/ det CXII has been left for subsequent

simplifications). Defining the misfit

(50)

S(m) = —2log Lna((:n) ,

(51)
where og is an arbitrary value of o, (m) | gives, up to an

additive constant,

S(m) =5 (m) — 55 (m) , (52)
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where S| (m) is the usual least-squares misfit function

Sl (m) = (m - mprior)t C¥[1 (m - mprior)

JF(f(m)_dobS)tCBI(f(m)_dobS) (53)
and where '*
S>(m) =log det (I+CyF'(m) Cy' F(m)). (54)

Example 11. If, in the context of Example 10, we have "’
CMFtCl;1 F <1, we can use the low order approxima-
tion for S, (m) , that is '°

S, (m) = trace CjyF' (m)C,' F(m) . (55)

Example 12. If in the context of Example 10 we assume
that the nonlinearities are weak, then the matrix of partial
derivatives F is approximately constant, and Eq. (50)
simplifies to

1
o (m) =k exp —z((m— mprior)t C;} (m — m prior )

#(E(m) o) €5 (F(m) ~ ) |
(56

and the function S,(m) is just a constant.

Example 13. If the ‘relation solving the forward problem’
d=f(m) happens to be a linear relation, d = Fm, then
one gets the standard equations for linear problems (see
Appendix F).

Example 14. We examine here the simplifications that we
arrive at when assuming that the ‘input’ probability densities
are Laplacian:

prm(m) =k exp <_Z|mamp|> (57)

a «

_ |dL - df)bs ‘
pd<d>—kexp< .
Equation (45) becomes here
m® = |
. — I . prior
O (M) exp [ (E{L p
|f7(m) — d;bs‘

+ Ez p U(m) , (59)
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where W (m) is a complex term containing , in particular , the
matrix of partial derivatives F . If this term is approximately
constant (weak nonlinearities, constant metrics), then

‘ma - mgrior|

e e (]

oy lrm - dabslﬂ |

The formulas in the examples above give expressions that
contain analytic parts (like the square roots containing the
matrix of partial derivatives F) . What we write as d =f (m)
may sometimes correspond to an explicit expression; some-
times it may correspond to the solution of an implicit equa-
tion.'” Should d=f(m) be an explicit expression, and
should the ‘prior probability densities’ p,, (m) and py(d)
(or the joint p (m,d)) also be given by explicit expressions
(as when we have Gaussian probability densities), then the
formulas of this section would give explicit expressions for
the posterior probability density o, (m) .

If the relation d=f(m) is a linear relation, then the
expression giving o,,(m) can sometimes be simplified
easily (as with the linear Gaussian case to be examined
below). More often than not the relation d=f(m) is a
complex nonlinear relation, and the expression we are left
with for o, (m) is explicit, but complex.

Once the probability density o,,(m) has been defined,
there are different ways of ‘using’ it. If the ‘model space’ M
has a small number of dimensions (say between one and
four) the values of o,,(m) can be computed at every point
of a grid and a graphical representation of o, (m) can
be attempted. A visual inspection of such a representation
is usually worth a thousand ‘estimators’ (central estimators
or estimators of dispersion). But, of course, if the values
of o,,(m) are known at all points where o,,(m) has a sig-
nificant value, these estimators can also be computed.

If the ‘model space’ M has a large number of dimensions
(say from five to many millions or billions), then an
exhaustive exploration of the space is not possible, and we
must turn to Monte Carlo sampling methods to extract
information from o, (m). We discuss the application of
Monte Carlo methods to inverse problems, and optimization
techniques, in Section 6 and 7, respectively.

(60)

4.6 Physical Laws as Probabilistic Correlations
4.6.1 Physical Laws

We return here to the general case where it is not assumed
that the total space (M, D) is the Cartesian product of two
spaces.

In Section 4.5 we have examined the situation where
the physical correlation between the parameters of the
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problem are expressed using an exact, analytic expression
d=g(m) . In this case, the notion of conditional probability
density has been used to combine the ‘physical theory’
with the ‘data’ and the ‘a priori information’ on model
parameters.

But, we have seen that in order to properly define
the notion of conditional probability density, it has been
necessary to introduce a metric over the space, and to take a
limit using the metric of the space. This is equivalent to put
some ‘thickness’ around the theoretical relation d =g (m) ,
and to take the limit when the thickness tends to zero.

But actual theories have uncertainties, and, for more
generality, it is better to explicitly introduce these uncer-
tainties. Assume, then, that the physical correlations between
the model parameters m and the data parameters d are not
represented by an analytical expression like d =f (m) but by
a probability density

9 (m, d) . (61)

Example: Realistic ‘Uncertainty Bars’ around a Func-
tional Relation. In the approximation of a constant gravity
field, with acceleration g, the position at time ¢ of an apple
in free fall is r(¢) = ro +vot +1gt* , where ro and v, are,
respectively, the position and velocity of the object at time
t=0 . More simply, if the movement is 1D ,

1
z(t):xo+vot+§gt2. (62)

Of course, for many reasons this equation can never be
exact: air friction, wind effects, inhomogeneity of the gravity
field, effects of the Earth rotation, forces from the Sun and
the Moon (not to mention Pluto), relativity (special and
general), and so on.

It is not a trivial task, given very careful experimental
conditions, to estimate the size of the leading uncertainty.
Although one might think of an equation x =z (¢) as a line,
infinitely thin, there will always be sources of uncertainty
(at least due to the unknown limits of validity of general
relativity): looking at the line with a magnifying glass
should reveal a fuzzy object of finite thickness. As a simple
example, let us examine here the mathematical object we
arrive at when assuming that the leading sources of uncer-
tainty in the relation = = z (¢) are the uncertainties in the
initial position and velocity of the falling apple. Let us
assume that:

e the initial position of the apple is random, with a
Gaussian distribution centered at z( , and with standard
deviation o, ;

e the initial velocity of the apple is random, with a
Gaussian distribution centered at vy , and with standard

deviation o,,.
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Then it can be shown that at a given time ¢, the possible
positions of the apple are random, with probability density

1
V2m\/o2 + o2t?
2
1(x— ot +21 gt?
><exp<——<x (ot vol+;g ))> (63)

2 2.2
2 oi+tort

0 (x]r) =

This is obviously a conditional probability density for = ,
given t . Should we have any reason to choose some marginal
probability density 9, (¢) , then, the ‘law’ for the fall of the
apple would be

9 (x, t) =0 (z|t) V(L) .

See Appendix C for more details.

(64)

4.6.2 Inverse Problems

We have seen that the result of measurements can be repre-
sented by a probability density p;(d) in the data space.
We have also seen that the a priori information on the
model parameters can be represented by another probability
density p,,(m) in the model space. When we talk about
‘measurements’ and about ‘a priori information on
model parameters,” we usually mean that we have a
joint probability density in the (M, D) space, that is
p(m, d) = p,, (m)py(d) . Let us consider the more general
situation where for the whole set of parameters (M, D) we
have some information that can be represented by a joint
probability density p(m,d) . Having well in mind the
interpretation of this information, let us use the simple term
‘experimental information’ for it:

p(m, d)

We have also seen that we have information coming
from physical theories, that predict correlations between the
parameters, and it has been argued that a probabilistic
description of these correlations is well adapted to the reso-
lution of inverse problems.'® Let 9 (m, d) be the probability
density representing this ‘theoretical information’:

(experimental information) . (65)

¥ (m, d) (theoretical information) . (66)

A quite fundamental assumption is that in all the spaces we
consider, there is a notion of volume that allows us to give
meaning to the notion of a ‘homogeneous probability dis-
tribution” over the space. The corresponding probability
density is not constant, but is proportional to the volume

element of the space (see Section 2.2):

w(m, d) (homogeneous probability distribution) .  (67)
Finally, we have seen examples suggesting that the con-
junction of the experimental information with the theoretical

information corresponds exactly to the AND operation defined
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over the probability densities, to obtain the ‘conjunction of
information,’ as represented by the probability density

(m, d) 9 (m, d)
p(m, d)

(conjunction of information) ,

o(m, d)=k 2

(68)

with marginal probability densities

orm(m):/pdda(m7 d); crd(d):/Mde(m, d).

(69)

Example 15. We may assume that the physical correlations
between the parameters m and d are of the form

¥ (m, d) =9 pp (djm) Iy (m) | (70)
this expressing that a ‘physical theory’ gives, on the one
hand, the conditional probability for d , given m , and, on
the other hand, the marginal probability density for m . See
Appendix C for more details.

Example 16. Many applications concern the special situa-
tion where we have

p(m, d) = p,(m)py(d) .
(71)

p(m, d) = g, (m) pg(d) ;

In this case, Eqs. (68) and (69) give

_ j, pm(m) pa(d) ¥ (m, d)
oo (m) = k0 [ aa 72)
If Eq. (70) holds, then
. B ¥y, (M) pa(d) Uppy (d[m)
() =K pn () ) /Ddd @) 7

Finally, if the simplification ¥p;(m) = p,,,(m) arises (see
Appendix C for an illustration), then

d) 0 (djm)

_ pa
o () —k;pm(m)/Ddd ey (74)

Example 17. In the context of the previous example , assume
that observational uncertainties are Gaussian:

pa(d) = kexp (—%(d —dgn)' Cp'(d - dobs)> . (75)

Note that the limit for infinite variances gives the homo-
geneous probability density pq.(d) =k. Furthermore,
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assume that uncertainties in the physical law are also
Gaussian:

9 (d|m) = kexp <—;(d —f(m))' C;'(d —f(m))) . (76)

Here ‘the physical theory says’ that the data values must
be ‘close’ to the ‘computed values’ f(m), with a notion
of closeness defined by the ‘theoretical covariance
matrix’ Cp. As demonstrated in Tarantola (1987, p. 158), the
integral in Eq. (74) can be analytically evaluated, and gives

pa(d) ¥ (d/m)
/Ddd pa(d)

= kexp (—%(f(m)—dobs)t(CD—k Cr) ' (f(m) —dobs)> .

(77)

This shows that when using the Gaussian probabilistic
model, observational and theoretical uncertainties combine
through addition of the respective covariance operators
(a nontrivial result).

Example 18. In the ‘Galilean law’ example developed in
Section 4.61, we described the correlation between the
position x and the time t of a free falling object through
a probability density ¥ (x,t) . This law says that falling
objects describe, approximately, a space—time parabola.
Assume that in a particular experiment the falling object
explodes at some point of its space—time trajectory. A plain
measurement of the coordinates (x,t) of the event gives the
probability density p(x,t) . By ‘plain measurement’ we
mean here that we have used a measurement technique that is
not taking into account the particular parabolic character of
the fall (i.e., the measurement is designed to work identically
for any sort of trajectory). The conjunction of the physical
law O (z,t) and the experimental result p(x,t) , using
expression (68), gives

(z, )0 (z, t)

oz, t) =k’ e (78)

where, as the coordinates (x,t) are ‘Cartesian,’
w(xz,t)=k.Taking the explicit expression given for ¥ (z,t)
in Egs. (63) and (64), with 9, (t)=Fk ,

1

V2my\/o2+ o2 t?

2
1(z— (zo+vot+13gt?))
X exp <_2 02+ o2t2 , (79)

9 (z, t) =
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FIGURE 7 This figure has been made with the numerical values mentioned in Figure 17 (see Appendix C) with,
in addition, xy,ps=5.0m, 3, =4.0m, t,,s =2.0sec and 3, =0.75 sec.

and assuming the Gaussian form'® for p(x,t)

p (@, t) = pe(x) pi(t)
B 1 (2 — Zops)” 1 (t — tobs)”
= kexp <225b> exp (22;)

we obtain the combined probability density

(t = tons)”

k 1 {(x— Zobs)
«/a%-ﬁ-a%tzexp( 2( =%
+(x(xo+vot+%gt2))2>>

2 242
oz+o;t

oz, t) =

(81)

Figure 7 illustrates the three probability densities ¥ (x,t),
p(z,t) , and o(x,t) . See Appendix C for a more detailed
examination of this problem.

5. Solving Inverse Problems (1):
Examination of the Probability
Density

The next two sections deal with Monte Carlo and optimiza-
tion methods. The implementation of these methods takes
some programming effort that is not required when we face
problems with fewer degrees of freedom (say, between one
and five).

When we have a small number of parameters we should
directly ‘plot’ the probability density.

In Appendix K the problem of estimation of a seismic
hypocenter is treated, and it is shown there that the exam-
ination of the probability density for the location of the
hypocenter offers a much better possibility for analysis than
any other method.

6. Solving Inverse Problems (Il):
Monte Carlo Methods

6.1 Basic Equations

The starting point could be the explicit expression (Eq. (46))
for 0, (m) given in Section 4.5.2:

om(m) =kp,(m)L(m). (82)
where
) \/det (g, (m)+ F” (m) g, (d) F (m))
- \Vdetg,(d) V/detg,, (m) a-tm)
(83)

In this expression the matrix of partial derivatives F=F (m) ,
with components D;,=0f;/0m, , appears. The ‘slope’
F enters here because the steeper the slope for a given m,
the greater the accumulation of points we will have with this
particular m . This is because we use explicitly the analytic
expression d =f (m) . One should realize that using the more
general approach based on Eq. (68) of Section 4.6.2, the
effect is automatically accounted for, and there is no need to
explicitly consider the partial derivatives.

Equation (82) has the standard form of a conjunction of
two probability densities, and is therefore ready to be inte-
grated in a Metropolis algorithm. But one should note that,
contrary to many ‘nonlinear’ formulations of inverse
problems, the partial derivatives F are needed even if we use
a Monte Carlo method.

In some weakly nonlinear problems, we have
F’(m) g,(d) F(m) < g, (m) , and then Eq. (83) becomes

(d ; (84)

d=f(m)

=

where we have used 4 (d) = k/det g,;(d) (see Rule 2).
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This expression is also ready for use in the Metropolis
algorithm. In this way, sampling of the prior p,, (m) is
modified into a sampling of the posterior o, (m) , and the
Metropolis Rule uses the ‘likelihood function’ L (m) to
calculate acceptance probabilities.

6.2 Sampling the Homogeneous Probability
Distribution

If we do not have an algorithm that samples the prior prob-
ability density directly, the first step in a Monte Carlo ana-
lysis of an inverse problem is to design a random walk that
samples the model space according to the homogeneous
probability distribution ., (m) . In some cases this is easy,
but in other cases only an algorithm (a primeval random
walk) that samples an arbitrary (possibly constant) prob-
ability density ¢ (m) # p,, (m) is available. Then the
Metropolis rule can be used to modify ¢ (m) into p,,(m)
(see Section 3.4). This way of generating samples from
L (m) is efficient if ¢ (m) is close to y,,(m) , otherwise it
may be very inefficient.

Once p (m) can be sampled, the Metropolis Rule allows
us to modify this sampling into an algorithm that samples
the prior.

6.3 Sampling the Prior Probability Distribution

The first step in the Monte Carlo analysis is to temporarily
‘switch off ’ the comparison between computed and observed
data, thereby generating samples of the prior probability
density. This allows us to verify statistically that the algo-
rithm is working correctly, and it allows us to understand the
prior information we are using. We will refer to a large
collection of models representing the prior probability dis-
tribution as the ‘prior movie’ (in a computer screen, when
the models are displayed one after the other, we have a
‘movie’). The more models present in this movie, the more
accurate the representation of the prior probability density.

6.4 Sampling the Posterior Probability
Distribution

If we now switch on the comparison between computed and
observed data using, e.g., the Metropolis rule for the actual
Eq. (82), the random walk sampling the prior distribution is
modified into a walk sampling the posterior distribution.

Since data rarely put strong constraints on the Earth, the
‘posterior movie’ typically shows that many different models
are possible. But even though the models in the posterior
movie may be quite different, all of them predict data that,
within experimental uncertainties, are models with high
likelihood. In other words, we must accept that data alone
cannot have a preferred model.
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The posterior movie allows us to perform a proper reso-
lution analysis that helps us to choose between different
interpretations of a given data set. Using the movie we can
answer complicated questions about the correlations between
several model parameters. To answer such questions, we can
view the posterior movie and try to discover structure that is
well resolved by data. Such structure will appear as
‘persistent’ in the posterior movie.

The ‘movie’ can be used to answer quite complicated
questions. For instance, to answer the question ‘Which is the
probability that the Earth has this special characteristic,
but not having this other special characteristic?’ we can just
count the number n of models (samples) satisfying the
criterion, and the probability is P=n/m , where m is the
total number of samples.

Once this ‘movie’ is generated, it is, of course, pos-
sible to represent the 1D or 2D marginal probability
densities for all or for some selected parameters: it is
enough to concentrate one’s attention on those selected
parameters in each of the samples generated. Those mar-
ginal probability densities may have some pathologies (like
being multimodal, or having infinite dispersions), but those
are the general characteristics of the joint probability den-
sity. Our numerical experience shows that these marginals
are, quite often, ‘stable’ objects, in the sense that they can
be accurately determined with only a small number of
samples.

If the marginals are, essentially, beautiful bell-shaped
distributions, then, one may proceed to merely computing
mean values and standard deviations (or median values and
mean deviations), using each of the samples and the ele-
mentary statistical formulas.

Another, more traditional , way of investigating resolution
is to calculate covariances and higher-order moments. For
this we need to evaluate integrals of the form

Ry = /A dm f(m) o,, (m) (85)

where f(m) is a given function of the model parameters and
A is an event in the model space M containing the models we
are interested in. For instance,

A = {m |a given range of parameters in m is cyclic} .

(86)

In the special case when A= M is the entire model
space, and f(m)=m, , the R in Eq. (85) equals the mean
(m;) of the ith model parameter m; . If f(m)=
(m;—(m;))(m;—(m;)) , Ry becomes the covariance be-
tween the ¢th and jth model parameters. Typically, in the
general inverse problem we cannot evaluate the integral in
Eq. (85) analytically because we have no analytical expres-

sion for o (m) . However, from the samples of the posterior
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movie my,...,m, we can approximate [?; by the simple
average
R : Fom) . (87
~ m;) .
7™ total number of models

{ilm;e A}

7. Solving Inverse Problems (lll):
Deterministic Methods

As we have seen, the solution of an inverse problem essen-
tially consists of a probability distribution over the space of
all possible models of the physical system under study. In
general , this ‘model space’ is high-dimensional, and the only
general way to explore it is by using the Monte Carlo
methods developed in Section 3.

If the probability distributions are ‘bell-shaped’ (i.e., if
they look like a Gaussian or like a generalized Gaussian),
then one may simplify the problem by calculating only the
point around which the probability is maximum, with an
approximate estimation of the variances and covariances.
This is the problem addressed in this section. Among the
many methods available to obtain the point at which a
scalar function reaches its maximum value (relaxation
methods, linear programming techniques, etc.) we limit
our scope here to the methods using the gradient of the
function, which we assume can be computed analytically, or
at least, numerically. For more general methods, the reader
may have a look at Fletcher (1980, 1981), Powell (1981),
Scales (1985), Tarantola (1987) or Scales et al. (1992).

7.1 Maximum Likelihood Point

Let us consider a space X , with a volume element dV
defined. If the coordinates x={z', z° ..., z"} are chosen
over the space, the volume element has an expression
dV(x)=wv(x)dx , and each probability distribution over X
can be represented by a probability density f(x) . For any
fixed small volume AV we can search for the point Xy
such that the probability d P of the small volume, when
centered around Xy , attains a maximum. In the limit
AV —0 this defines the maximum likelihood point. The
maximum likelihood point may be unique (if the probability
distribution is unimodal), may be degenerate (if the prob-
ability distribution is ‘chevron-shaped’), or may be multiple
(as when we have the sum of a few bell-shaped functions).

The maximum likelihood point is not the point at which
the probability density is maximum. Our definition implies
that a maximum must be attained by the ratio between the
probability density and the function v (x) defining the volume
element:*°

f(x

(x

~—

Xx=xvp <= F(x)= (maximum) . (88)

<

~—
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As the homogeneous probability density is u(x)=kv (x)
(see Rule 2), we can equivalently define the maximum
likelihood point by the condition

f(x)

p(x)

The point at which a probability density has its max-
imum is, in general, not Xy;. In fact, the maximum of a
probability density does not correspond to an intrinsic defi-
nition of a point: a change of coordinates x—y = 1) (x)
would change the probability density f(x) into the prob-
ability density ¢g(y) (obtained using the Jacobian rule), but
the point of the space at which f(x) is maximum is not the
same as the point of the space where g(y) is maximum
(unless the change of variables is linear). This contrasts with
the maximum likelihood point, as defined by Eq. (89), which
is an intrinsically defined point: no matter which coordinates
we use in the computation we always obtain the same point
of the space.

= (maximum) . (89)

X = XML

7.2 Misfit

One of the goals here is to develop gradient-based methods
for obtaining the maximum of F(x)= f(x)/u(x) . As a
quite general rule, gradient-based methods perform quite
poorly for (bell-shaped) probability distributions, as when
one is far from the maximum the probability densities tend to
be quite flat, and it is difficult to get, reliably, the direction of
steepest ascent. Taking a logarithm transforms a bell-shaped
distribution into a paraboloid-shaped distribution on which
gradient methods work well.

The logarithmic volumetric probability, or misfit, is
defined as S (x)= —log (F(x)/Fy) , where p' and Fj are
two constants, and is given by

(90)

The problem of maximization of the (typically) bell-shaped
function f(x)/u(x) has been transformed into the problem
of minimization of the (typically) paraboloid-shaped func-
tion S (x):

< S(x) (minimum) . (91)
Example 19. The conjunction o(x) of two probability
densities p (x) and ¥ (x) was defined (Eq. (13)) as

X = XML

_p(x)9(x)
Then,
S(x) = 5,(x) + Sy(x) (93)
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where

U (x)
p(x)

p(x) .
p(x)’

Example 20. In the context of Gaussian distributions we
have found the probability density (see Example 12)

S,(x) =—log

Sa(x) = — log

(94)

1 _
Om (m) =k exp _5 ((m - mprior)t C]\[I (m - mprior)

+(f(m) — dobS)t CBI (f(m) — dobS)) (95)

The limit of this distribution for infinite variances is a con-
stant, so in this case pp,(m) =%k . The misfit function
$(m) = —10g (0 (m) /i, (m)) is then given by

2S5(m)=(m— mprior)t CK} (m — myior)

+ (fF(m) — dops) C5' (F(m) — dgpy) - (96)
The reader should remember that this misfit function is valid
only for weakly nonlinear problems (see Examples 10 and
12). The maximum likelihood model here is the one that
minimizes the sum of squares (96). This corresponds to the
least-squares criterion.

7.3 Gradient and Direction of Steepest Ascent

One must not consider as synonymous the notions of
‘gradient’ and ‘direction of steepest ascent.” Consider, for
instance, an adimensional misfit function®' S (P, T) over a
pressure P and a temperature 7. Any sensible definition of
the gradient of S will lead to an expression like

grad S = (97)

and this by no means can be regarded as a ‘direction’ in the
(P, T) space (for instance, the components of this ‘vector’
does not have the dimensions of pressure and temperature,
but of inverse pressure and inverse temperature).

Mathematically speaking, the gradient of a function
S(x) at a point Xq is the linear function that is tangent to
S(x) at xo. This definition of gradient is consistent with the
more elementary one, based on the use of the first-order
expansion

S(xo + 6%) = S(xo) + Pg X+ --- (98)

Here y, is called the gradient of S(x) at point x¢. It is
clear that S(xo) + )70T 6x is a linear function, and that it is
tangent to S(x) at Xo, so the two definitions are in fact
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equivalent. Explicitly, the components of the gradient at
point X, are

- oS
(¥0), = )

(Xo) - (99)

Everybody is well trained in computing the gradient of a
function (event if the interpretation of the result as a direc-
tion in the original space is wrong). How can we pass from
the gradient to the direction of steepest ascent (a bona fide
direction in the original space)? In fact, the gradient (at a
given point) of a function defined over a given space &) is an
element of the dual of the space. To obtain a direction in £
we must pass from the dual to the primal space. As usual, it is
the metric of the space that maps the dual of the space into
the space itself. So if g is the metric of the space where S(x)
is defined, and if ¥ is the gradient of S at a given point, the
direction of steepest ascent is

—1

y=g'v. (100)

The direction of steepest ascent must be interpreted as
follows: if we are at a point x of the space, we can consider a
very small hypersphere around x,. The direction of steepest
ascent points toward the point of the sphere at which S(x)
attains its maximum value.

Example 21. In the context of least squares, we consider
a misfit function S(m) and a covariance matrix Cy; . If p is
the gradient of S | at a point Xq , and if we use Cy to define
distances in the space, the direction of steepest ascent is

Yo=Cu )A’o . (101)

7.4 The Steepest Descent Method

Consider that we have a probability distribution defined over
an n-dimensional space X . Having chosen the coordinates
x={z', ... ,x"} over the space, the probability dis-
tribution is represented by the probability density f(x)
whose homogeneous limit (in the sense developed in Section
2.2)is u(x). We wish to calculate the coordinates Xy, of the

maximum likelihood point. By definition (Eq. (89)),

=X Fx) maximum
X=XML < 1 (x) ( ) (102)
that is,
X=xvr <= S(x) (minimum), (103)
where S(x) is the misfit [Eq. (90)]
e )
S(x) =—k log R (104)
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Let us denote by ¥ (x;) the gradient of S(x) at point X, , i.e.
(Eq. (99)),

~ G}

(Y0), =7 (x0) -

= (105)

We have seen above that y(x) should not be interpreted as
a direction in the space X but as a direction in the dual space.
The gradient can be converted into a direction using a metric
g(x) over X. In simple situations the metric g will be the one
used to define the volume element of the space, i.e., we will
have p(x)=kv(x) =k /det g(x) , but this is not a
necessity, and iterative algorithms may be accelerated by
astute introduction of ad-hoc metrics.

Given, then, the gradient ¥ (x;) (at some particular point
Xj) to any possible choice of metric g(x) we can define
the direction of steepest ascent associated with the metric g ,

by (Eq. (101))

y(xp) =g ' (xi) P (xi) - (106)
The algorithm of steepest descent is an iterative algorithm
passing from point X, to point X ; by making a ‘small jump’
along the local direction of steepest descent,
Xke1 = Xp — €£ 8y Vi s (107)
where €, is an ad-hoc (real, positive) value adjusted to force
the algorithm to converge rapidly (if &, is chosen too small,
the convergence may be too slow; it is chosen too large, the
algorithm may even diverge).

Many elementary presentations of the steepest descent
algorithm just forget to include the metric g, in expression
(107). These algorithms are not consistent. Even the physical
dimensionality of the equation is not assured. ‘Numerical’
problems in computer implementations of steepest descent
algorithms can often be traced to the fact that the metric has
been neglected.

Example 22. In the context of Example 20, where the misfit
function S (m) is given by

) = (f(m)

+ (m - mprior)t CJ_\[l (m - mprior) s

2S(m —done)" Cpp' (F(m) — dops)

(108)
the gradient y, whose components are y, = 0S/0m® | is
given by the expression

~

y(m) =F'(m)Cp' (f(m) — daps) + Cj7 (m — mMprior)

(109)
where F is the matrix of partial derivatives
) afi
e = . 110
om« (110)

259

An example of computation of partial derivatives is given in
Appendix M.

Example 23. In the context of Example 22 the model space
M has an obvious metric , namely , that defined by the inverse
of the ‘a priori’ covariance operator g = CK}. Using this
metric and the gradient given by Eq. (109), the steepest
descent algorithm (107) becomes

my; = Mg — € (CM F/i CBI (fk - dobs) + (mk - mprior)) )
(111)

where Fi,.=F (my,) and f;,=f (my,) . The real positive quan-
tities €, can be fixed after some trial and error by accurate
linear search, or by using a linearized approximation.

Example 24. In the context of Example 22 the model
space M has a less obvious metric, namely, that defined by
the Nilz\{erse of the ‘posterior’ covariance operator,
g=0Cy 2 Using this metric and the gradient given by
Eq. (109), the steepest descent algorithm (107) becomes

_ -1 _
Mot =my — e (FLCp' Fu+ Chf ) (FCp' (fi — dos)

“FC;UI (mk_mprior)) 5 (112)
where Fi,=F (my,) and f;,=f (my,) . The real positive quan-
tities €, can be fixed, after some trial and error, by accurate
linear search, or by using a linearized approximation that
simply gives® e, ~ 1.

The algorithm (112) is usually called a ‘quasi-Newton
algorithm.’ This name is not well chosen: a Newton method
applied to minimization of a misfit function S(m) would be
a method using the second derivatives of S(m), and thus

aZfl
dmeomP
estimated) when using this algorithm. It is just a steepest
descent algorithm with a nontrivial definition of the metric in
the working space. In this sense it belongs to the wider class
of ‘variable metric methods,’ not discussed in this article.

the derivatives H 5= that are not computed (or not

7.5 Estimating Posterior Uncertainties

In the Gaussian context, the Gaussian probability density that
is tangent to o, (m) has its center at the point given by the
iterative algorithm

m; . =my; —e,(Cy Ff Cp' (F1. — dops) + (my — Mprior))
(113)

(Eq. (111)) or, equivalently, by the iterative algorithm

_ 1\ _
my. | ka—€k;(F£CD1Fk+CMI) (F;icpl(fk_dobs)
+C]7\[1 (mk - mprior)) (114)
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(Eq. (112)). The covariance of the tangent Gaussian is
Cu~ (FLCyFu+Cyl ), (115)

where F, refers to the value of the matrix of partial deri-
vatives at the convergence point.

7.6 Some Comments on the Use of
Deterministic Methods

7.6.1 Linear , Weakly Nonlinear and
Nonlinear Problems

There are different degrees of nonlinearity. Figure 8 illus-
trates four domains of nonlinearity, calling for different
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FIGURE 8 A simple example where we are interested in predicting
the gravitational field g generated by a 2D distribution of mass.

Linear problem

Linearizable problem

d_dprior= Go(m- mprior)

Weakly nonlinear problem

Nonlinear problem

FIGURE 9 Illustration of the four domains of nonlinearity, calling for different optimization
algorithms. The model space is symbolically represented by the abscissa, and the data space is
represented by the ordinate. The gray oval represents the combination of prior information on
the model parameters and information from the observed data. What is important is not an
intrinsic nonlinearity of the function relating model parameters to data, but how linear the
function is inside the domain of significant probability.
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optimization algorithms. In this figure the abscissa symboli-
cally represents the model space, and the ordinate represents
the data space. The gray oval represents the combination of
prior information on the model parameters, and information
from the observed data.”® It is the probability density
p(d, m) = pg(d)p,, (m) seen elsewhere.

To fix ideas, the oval suggests here a Gaussian probability,
but our distinction between problems according to their
nonlinearity will not depend fundamentally on this.

First, there are strictly linear problems. For instance, in
the example illustrated by Figure 8 the gravitational field g
depends linearly on the masses inside the blocks.*®

Strictly linear problems are illustrated at the top left of
Figure 9. The linear relationship between data and model
parameters, d =G m , is represented by a straight line. The
prior probability density p (d,m) ‘induces’ on this straight
line the posterior probability density>’ o (d,m) whose
‘projection’ over the model space gives the posterior prob-
ability density over the model parameter space, o,,(m) .
Should the prior probability densities be Gaussian, then the
posterior probability distribution would also be Gaussian:
this is the simplest situation.

Quasi-linear problems are illustrated at the bottom left of
Figure 9. If the relationship linking the observable data d to
the model parameters m |,

d=g(m), (116)
is approximately linear inside the domain of significant prior
probability (i.e., inside the gray oval of the figure), then the
posterior distribution is just as simple as the prior distribu-
tion. For instance, if the prior is Gaussian the posterior is
also Gaussian.

In this case also, the problem can be reduced to the
computation of the mean and the covariance of the Gaussian.
Typically, one begins at some ‘starting model’ m( (typi-
cally, one takes for mg the ‘a priori model’ mprior),28
linearizing the function d =g (m) around my, and one looks
for a model m; ‘better than my.’

Iterating such an algorithm, one tends to the model m,,
at which the ‘quasi-Gaussian’ o, (m) is maximum. The lin-
earizations made in order to arrive to m,, are so far
not an approximation: the point m, is perfectly defined,
independently of any linearization and any method used to
find it. But once the convergence to this point has been
obtained, a linearization of the function d =g (m) around
this point,

d—g(my) =G(m—my) , (117)

allows to obtain a good approximation to the posterior
uncertainties. For instance, if the prior distribution is Gaus-
sian this will give the covariance of the ‘tangent Gaussian.’

Between linear and quasi-linear problems there are the
‘linearizable problems.’” The scheme at the top right of
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Figure 9 shows the case where the linearization of the
function d =g (m) around the prior model,

d- g(mprior) = Gprior(m - mprior) ) (118)
gives a function that, inside the domain of significant prob-
ability, is very similar to the true (nonlinear) function.

In this case, there is no practical difference between this
problem and the strictly linear problem, and the iterative
procedure necessary for quasi-linear problems is here
superfluous.

It remains to analyze the true nonlinear problems that,
using a pleonasm, are sometimes called strongly nonlinear
problems. They are illustrated at the bottom right of Figure 9.

In this case, even if the prior distribution is simple, the
posterior distribution can be quite complicated. For instance,
it can be multimodal. These problems are in general quite
complex to solve, and only a Monte Carlo analysis, as
described in the previous chapter, is feasible.

If full Monte Carlo methods cannot be used, because they
are too expensive, then one can mix a random part (for ins-
tance, to choose the starting point) and a deterministic part.
The optimization methods applicable to quasi-linear problems
can, for instance, allow us to go from the randomly chosen
starting point to the ‘nearest’ optimal point. Repeating these
computations for different starting points, one can arrive at
a good idea of the posterior distribution in the model space.

7.6.2 The Maximum Likelihood Model

The most likely model is, by definition, that at which the
volumetric probability (see Appendix A) oz (m) attains its
maximum. As oz (m) is maximum when S (m) is minimum,
we see that the most likely model is also the ‘best model’
obtained when using a ‘least-squares criterion.” Should we
have used the double exponential model for all the

1.0

0.8

0.6

0.4

0.2

-40 -20 0 20 40
FIGURE 10 One of the circumstances where the ‘maximum like-
lihood model’ may not be very interesting is when it corresponds to a
narrow maximum with small total probability, as the peak in the left
part of this probability distribution.
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FIGURE 11 At the right, three random realizations of a Gaussian random function with zero mean
and (approximately) exponential correlation function. The most likely function, i.e., the center of the
Gaussian, is shown at the top left. We see that the most likely function is not a representative of the

probability distribution.

uncertainties, then the most likely model would be defined
by a ‘least absolute values’ criterion.

There are many circumstances where the most likely
model is not an interesting model. One trivial example is
when the volumetric probability has a ‘narrow maximum, ’
with small total probability (see Fig. 10). A much less trivial
situation arises when the number of parameters is very large,
as for instance when we deal with a random function (that,
strictly speaking, corresponds to an infinite number of
random variables). Figure 11, for instance, shows a few
realizations of a Gaussian function with zero mean and an
(approximately) exponential correlation. The most likely
function is the center of the Gaussian, i.e., the null function
shown at the top left. But this is not a representative sample
of the probability distribution, as any realization of the
probability distribution will have, with a probability very
close to one, the ‘oscillating’ characteristics of the three
samples shown at the right.

8. Conclusions

Probability theory is well adapted to the formulation of
inverse problems, although its formulation must be rendered
intrinsic (introducing explicitly the definition of distances in
the working spaces, by redefining the notion of conditional
probability density, and by introducing the notion of con-
junction of states of information). The Metropolis algorithm
is well adapted to the solution of inverse problems, as its
inherent structure allows us to sequentially combine prior

information, theoretical information, etc., and allows us to
take advantage of the ‘movie philosophy.” When a general
Monte Carlo approach cannot be afforded, one can use
simplified optimization techniques (like least squares).
However, this usually requires strong simplifications that can
only be made at the cost of realism.
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Notes

1. For instance, we could fit our observations with a heterogeneous
but isotropic Earth model or, alternatively, with a homogeneous
but anisotropic Earth.

2. Preliminary Earth Reference Model (PREM), Dziewonski and
Anderson, PEPI, 1981. Inversion for Centroid Moment Tensor
(CMT), Dziewonski, Chou and Woodhouse, JGR, 1982. First
global tomographic model, Dziewonski, JGR, 1984.

3. The capacity element associated to the vector elements dry,
dry,...dr, is defined as dr = ¢;; 1 dr’{' drg drfl', where ¢;; 1
is the Levi-Civita capacity (whose components take the values
{0, £ 1}). If the metric tensor of the space is g(x), then 7;;_j =
V/detge;;. is a true tensor, as it is the product of a density \/detg
by a capacity ¢;;. ;. Then, the volume element, defined as
dV =mij pdridr}...drk = \/detgdr, is a (true) scalar.

4. This is a property that is valid for any coordinate system that can
be chosen over the space.

5. As a counterexample, the distance defined as ds = |dx| + |dy]| is
not of the L, type (it is Ly).

6. This solves the complete problem for isotropic tensors only. It is
beyond the scope of this text to propose rules valid for general
anisotropic tensors: the necessary mathematics have not yet been
developed.
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7. The definition of the elastic constants was made before the
tensorial structure of the theory was understood. Seismologists
today should not use, at a theoretical level, parameters like the first
Lamé coefficient A or the Poisson ratio. Instead they should use x
and p (and their inverses). In fact, our suggestion in this IASPEI
volume is to use the true eigenvalues of the stiffness tensor,
Ax =3k, and )\, = 2p, which we propose to call the eigen-bulk-
modulus and the eigen-shear-modulus, respectively.

8. Assume that p(x) and ¢(x) are normalized by [, dxp(x) =1 and
Jy dxq(x) = 1. Then, irrespective of the normalizability of 1(x)
(as explained above, p(x) and ¢(x) are assumed to be absolutely
continuous with respect to the homogeneous distribution),
(p A q)(x) is normalizable, and its normalized expression is
(9 A g)(x) = p(x) ¢(x)/nx)

Sy dxp(x) g(x)/ pu(x)

9. As a counter example, working at the surface of the sphere with
geographical coordinates (u, v) = (u, v) = (9, ¢) this condition
is not fulfilled, as g, = sin @ is a function of ¥: the surface of the
sphere is not the Cartesian product of two 1D spaces.

10. That is, series of numbers that appear random if tested with any

reasonable statistical test.

11. To see this, put

exp(—E()/T)
Jexp(—E(x)/T)dx
the point x, and T is a ‘temperature’. The summation in the
denominator is over the entire space. In this way, our acceptance
rule becomes the classical Metropolis rule: point x; is always
accepted if E(x;) < E(x;) , but if E(x;) > E(x;) , it is only
accepted with probability pi® = exp(—(E(x;) — E(x;))/T) .

12. A numerical method is called robust if it is not sensitive to a
small number of large errors.

13. It would be violated, for instance, if we use the pair of elastic
parameters longitudinal wave velocity — shear wave velocity, as
the volume element in the space of elastic wave velocities does
not factorize (see Appendix H).

14. We use here the properties log+vA = % logA , and
det AB = det BA

15. Typically, this may happen because the derivatives F are small or
because the variances in C); are large.

16. We first use logdetA = tracelog A, and then the series
expansion of the logarithm of an operator, log(I+ A) =
A— % A ...

17. Practically, it may correspond to the output of some ‘black box’
solving the ‘forward problem’.

18. Remember that, even if we wish to use a simple method based on
the notion of conditional probability density, an analytic
expression like d = f(m) needs some ‘thickness’ before going
to the limit defining the conditional probability density. This
limit crucially depends on the ‘thickness’, i.e., on the type of
uncertainties the theory contains.

19. Note that taking the limit of ¥(z,t) or of p(z,t) for infinite
variances we obtain u(z,t), as we should.

20. The ratio F'(x) = f(x) v(x) is what we refer to as the volumetric
probability associated to the probability density f(x). See
Appendix A.

21. We take this example because typical misfit functions are
adimensional (have no physical dimensions) but the argument
has general validity.

f(X) =1, IU'(X) =1,

, where F(x) is an ‘energy’ associated to

and g(x) =
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22.

23.

24.

25.

26.

As shown in Tarantola (1987), if y, is the direction of
steepest ascent at point my, i.e., v, = Cyr F,f, CBI (fr — dops) +
(my, — mprior), then, a local linearized approximation for
the optimal ¢, gives

_ Sie-1
€k = lkCM ]}’k ]
}’;-(FZ Cp Fi+Cy/) v

The ‘best estimator’ of Cy; is

Cu ~ (FiC'F+Cy) (119)

See, e.g., Tarantola (1987).

While a sensible estimation of the optimal values of the real
positive quantities €y, is crucial for the algorithm 111, they can in
many usual circumstances be dropped from the algorithm 113.
The gray oval is the product of the probability density over
the model space, representing the prior information, and the
probability density over the data space representing the
experimental results.

The gravitational field at point X, generated by a distribution of
volumetric mass p(x) is given by

g(xo) = / dv(y) ——

%o — x|

p(x) -

When the volumetric mass is constant inside some predefined
(2D) volumes, as suggested in Figure 8, this gives

g(xo) = > Y GMP(xg) mAP
A B

217.
28.
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This is a strictly linear equation between data (the gravitational
field at a given observation point) and the model parameters (the
masses inside the volumes). Note that if instead of choosing as
model parameters the total masses inside some predefined
volumes one chooses the geometrical parameters defining the
sizes of the volumes, then the gravity field is not a linear function
of the parameters. More details can be found in Tarantola and
Valette (1982b, page 229).

Using the ‘orthogonal-limit’ method described in Section 2.4.
The term ‘a priori model’ is an abuse of language. The correct
term is ‘mean a priori model’.

Editor’s Note

Appendixes A—P are placed on the attached Handbook CD,
under the directory \ 16Mosegaard. An introduction to prob-
ability concepts is given in Chapter 82, Statistical Principles
for Seismologists, by Vere-Jones and Ogata. See also
Chapter 52, Probing the Earth’s Interior with Seismic
Tomography, by Curtis and Snieder.








