Computer Assignment - Part 1

Linear inversion through Tikhonov regularization

A vertical fault separates two areas of the subsurface. The first area is a homogeneous quarter space (to the left of the fault in Figure 1) with everywhere the same density $\rho=2600 \mathrm{~kg} / \mathrm{m}^{3}$. On the other side of the fault the density varies with depth z (positive downwards). Points where the gravity is measured are indicated by triangles in Figure 1.

Figure 1: Outline of a vertical fault model.

The right column in the files "gravdata-n.txt" $(n=1,2,3, \ldots)$ contains the horizontal gravity gradient (in units of s^{-2}) measured at 18 points along a linear, horizontal profile, starting at the fault, on which it is perpendicular. The left column contains the corresponding x-coordinates in units of km for the 18 observation points. It is assumed that the vertical fault is located at $x=0 \mathrm{~km}$.

If $\Delta \rho(z)$ is the vertical density variation in the quarter space on the right, minus the constant density in the quarter space on the left, the horizontal gravity gradient, as a function of x, is theoretically given by

$$
d_{j}=\frac{\partial g}{\partial x}\left(x_{j}\right)=\int_{0}^{\infty} \frac{2 G z}{x_{j}^{2}+z^{2}} \Delta \rho(z) d z
$$

where G is the Gravity constant and x_{j} is the horizontal coordinate of the j 'th observation, measured from the fault plane.

The inverse problem

We wish to estimate $\Delta \rho(z)$ from observations of the horizontal gravity gradient along the x-axis. The first step of the analysis is a discretization of the problem.

- Perform such a discretization by representing the subsurface to the right of the fault by 100 horizontal layers of thickness 1 km each. The 100 layers are resting on an infinite
quarter space of density $2600 \mathrm{~kg} / \mathrm{m}^{3}$ everywhere. It can be shown that the contribution to data from a homogeneous "half layer" (one of the layers in the layer series to the right of the fault, after the discretization) is

$$
G \Delta \rho \log \left(\frac{z_{\text {base }}^{2}+x^{2}}{z_{\text {top }}^{2}+x^{2}}\right)
$$

where $z_{\text {top }}$ is the depth to the top of the homogeneous half layer, $z_{\text {base }}$ is the depth to the base of the layer, $\Delta \rho$ is the density contrast (to the material to the left of the half layer), and x is the horizontal distance to the edge of the half layer.

- Show that the problem is linear (and hence can be written $\mathbf{d}=\mathbf{G m}$).
- Is the solution to this problem unique? Why/why not?
- Data is measured with an uncertainty of $\pm 1.0 \cdot 10^{-9} s^{-2}$. Find a solution to the problem using Tikhonov Regularization. The solution should be physically acceptable, give the best possible resolution of the model, and at the same time fit the data "within its uncertainties".
- Describe the resolution of the inverse operator used.
- Compute the corresponding uncertainty of the solution.

