Linear Least Squares

Klaus Mosegaard

Niels Bohr Institute
Copenhagen University

2009

Outline

1 Linear Least Squares Problems
■ What is a least squares problem?

- The linear least squares problem

2 Existence and Uniqueness
■ The well-determined problem

- The overdetermined (overconstrained) problem
- A solution to the overdetermined problem
- The underdetermined problem
- A solution to the underdetermined problem
- The mixed-determined problem

■ An approximate solution to the mixed-determined problem
3 Example: The inverse geomagnetic problem
4 Solving overdetermined problems
5 Singular Value Decomposition (SVD)

- The mixed-determined problem (again)

What is a least squares problem?

Given an equation

$$
\begin{equation*}
f(\mathbf{x})=\mathbf{b} \tag{1}
\end{equation*}
$$

where the vector \mathbf{b} and the function f are known, and the vector \mathbf{x} is unknown.

Define the misfit:

$$
\begin{equation*}
E(\mathbf{x})=\|f(\mathbf{x})-\mathbf{b}\|^{2} \tag{2}
\end{equation*}
$$

The Least-Squares solution to (1) is then

$$
\begin{equation*}
\hat{\mathbf{x}}=\operatorname{Argmin} E(\mathbf{x}) \tag{3}
\end{equation*}
$$

The linear least squares problem

If the relation between \mathbf{x} and \mathbf{b} is linear :

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{4}
\end{equation*}
$$

the Linear least squares problem is to minimize

$$
\begin{equation*}
E(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2} . \tag{5}
\end{equation*}
$$

This can be done analytically, and a solution vector $\hat{\mathbf{x}}$ satisfies:

$$
\begin{equation*}
\forall j: \quad \frac{\partial E}{\partial \hat{x}_{j}}=0 \tag{6}
\end{equation*}
$$

Existence and Uniqueness

The overdetermined (overconstrained) problem

Figure: The overdetermined problem is characterized by a unique, but (usually) inexact solution.

A solution to the overdetermined problem

If the linear problem

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{7}
\end{equation*}
$$

is overdetermined, minimizing the misfit

$$
\begin{equation*}
E(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2} . \tag{8}
\end{equation*}
$$

through

$$
\begin{equation*}
\forall j: \quad \frac{\partial E}{\partial \hat{x}_{j}}=0 \tag{9}
\end{equation*}
$$

leads to the following formula for the least squares estimate:

$$
\begin{equation*}
\hat{\mathbf{x}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b} \tag{10}
\end{equation*}
$$

The underdetermined problem

Figure: The underdetermined problem is characterized by infinitely many exact solutions.

A solution to the underdetermined problem

If the linear problem

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{11}
\end{equation*}
$$

is underdetermined, minimizing the misfit

$$
\begin{equation*}
E(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2} . \tag{12}
\end{equation*}
$$

through

$$
\begin{equation*}
\forall j: \quad \frac{\partial E}{\partial \hat{x}_{j}}=0 \tag{13}
\end{equation*}
$$

leads to the following formula for the least squares estimate:

$$
\begin{equation*}
\hat{\mathbf{x}}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{b} \tag{14}
\end{equation*}
$$

The mixed-determined problem

Figure: The mixed-determined problem is characterized by infinitely many (usually) inexact solutions.

An approximate solution to the mixed-determined problem

If the linear problem

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{15}
\end{equation*}
$$

is mixed-determined, minimizing the modified misfit

$$
\begin{equation*}
E(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\epsilon^{2}\|\mathbf{x}\|^{2} . \tag{16}
\end{equation*}
$$

for suitable small ϵ leads to the following approximate formula for the least squares estimate:

$$
\begin{equation*}
\hat{\mathbf{x}}=\left(\mathbf{A}^{T} \mathbf{A}+\epsilon^{2} \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{b} \tag{17}
\end{equation*}
$$

This method is called Tikhonov Regularization.

Example: The inverse geomagnetic problem

Figure: Magnetization of the ocean floor.

Model of the ocean bottom

Sea surface

Figure: Model of the ocean bottom. The magnetization below the sea bottom is represented by a series of vertical, thin plates of constant magnetization.

Magnetic data

Figure: Observed vertical magnetic field profile perpendicular to the ocean ridge.

Relation between model parameters and data

If we assume that the magnetization of the ocean bottom depends only on the x-coordinate, the magnetic field d_{i} measured in x_{i} can be expressed as

$$
\begin{equation*}
d_{i}=\int_{-\infty}^{\infty} g_{i}(x) m(x) d x \tag{18}
\end{equation*}
$$

where $m(x)$ is the magnetization, and

$$
\begin{equation*}
g_{i}(x)=-\frac{\mu_{0}}{2 \pi} \frac{\left(x_{i}-x\right)^{2}-h^{2}}{\left[\left(x_{i}-x\right)^{2}+h^{2}\right]^{2}} \tag{19}
\end{equation*}
$$

is the magnetic field at x_{i} generated by an infinitesimally thin vertical "plate" of magnetized material, located at x.

Thin-plate fields

Figure: Magnetic fields from thin, vertical plates of magnetized material below the sea bottom at $x=-15 \mathrm{~km}$ and $x=15 \mathrm{~km}$

Model discretization 1

Consider a finite set of x-values: $x_{1}, x_{2}, \ldots, x_{M}$. Let us represent $m(x)$ by the vector:

$$
\begin{equation*}
\mathbf{m}=\left(m\left(x_{1}\right), m\left(x_{2}\right), \ldots, m\left(x_{M}\right)\right) \tag{20}
\end{equation*}
$$

This leads to a discretized expression:

$$
\begin{equation*}
g_{i}\left(x_{j}\right)=-\frac{\mu_{0}}{2 \pi} \frac{\left(x_{i}-x_{j}\right)^{2}-h^{2}}{\left[\left(x_{i}-x_{j}\right)^{2}+h^{2}\right]^{2}} \tag{21}
\end{equation*}
$$

Model discretization 2

We can now discretize the problem:

$$
\begin{align*}
d_{i} & =\int_{-\infty}^{\infty} g_{i}(x) m(x) d x \\
& \approx \sum_{k=1}^{M} g_{i}\left(x_{k}\right) m_{k} \Delta x \tag{22}
\end{align*}
$$

Putting $G_{i j}=g_{i}\left(x_{j}\right)$, we have

$$
\begin{equation*}
\mathrm{d}=\mathrm{Gm} \tag{23}
\end{equation*}
$$

which is a matrix equation relating data \mathbf{d} to model parameters \mathbf{m}.

A least-squares solution based on Tikhonov Regularization

Figure: Estimated (symmetric) magnetization $\hat{\mathbf{m}}$ of the ocean bottom. The regularization parameter ϵ is chosen such that the N data are barely fitted within their uncertainty: $\left\|\mathbf{d}_{o b s}-\mathbf{A} \hat{\mathbf{m}}\right\|^{2} \approx N \sigma^{2}$

Data residuals

Figure: Re-computed data Â̂m compared to observed data $\mathbf{d}_{\text {obs }}$.

Error propagation for overdetermined problems

If the linear problem

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{24}
\end{equation*}
$$

is (purely) overdetermined, the pseudoinverse of \mathbf{A} is defined as

$$
\begin{equation*}
\mathbf{A}^{+}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \tag{25}
\end{equation*}
$$

and the Least Squares solution is $\hat{\mathbf{x}}=\mathbf{A}^{+} \mathbf{b}$.
A small perturbation $\Delta \mathbf{b}$ of \mathbf{b} will now give rise to a perturbation of the solution:

$$
\begin{equation*}
\Delta \hat{\mathbf{x}}=\mathbf{A}^{+} \Delta \mathbf{b} \tag{26}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\|\Delta \hat{\mathbf{x}}\| \leq\left\|\mathbf{A}^{+}\right\|\|\Delta \mathbf{b}\| \tag{27}
\end{equation*}
$$

Error propagation for overdetermined problems

Let us compute the relative perturbation (error) of $\hat{\mathbf{x}}$:

$$
\begin{align*}
\frac{\|\Delta \hat{\mathbf{x}}\|}{\|\hat{\mathbf{x}}\|} & \leq\left\|\mathbf{A}^{+}\right\| \frac{\|\Delta \mathbf{b}\|}{\|\hat{\mathbf{x}}\|} \\
& =\operatorname{cond}(\mathbf{A}) \frac{\|\mathbf{b}\| \cdot\|\boldsymbol{\Delta} \mathbf{b}\|}{\|\mathbf{A}\| \cdot\|\hat{\mathbf{x}}\| \cdot\|\mathbf{b}\|} \\
& \leq \operatorname{cond}(\mathbf{A}) \frac{\|\mathbf{b}\| \cdot\|\Delta \mathbf{b}\|}{\|\mathbf{A} \hat{\mathbf{x}}\| \cdot\|\mathbf{b}\|} \tag{28}\\
& =\operatorname{cond}(\mathbf{A}) \frac{\mathbf{1}}{\cos (\theta)} \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}
\end{align*}
$$

where cond $(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{+}\right\|$is \mathbf{A}^{\prime} 's condition number, and θ is the angle between \mathbf{b} and $\mathbf{A} \hat{\mathbf{x}}$.

Solving overdetermined problems: QR-Factorization

QR factorization

- reduces a real $n \times m$ matrix \mathbf{A} with $n \geq m$ and full rank to a simple form.
- improves numerical stability by minimizing errors caused by machine roundoffs.

A suitably chosen orthogonal matrix \mathbf{Q} will triangularize \mathbf{A} :

$$
\begin{equation*}
\mathbf{A}=\mathbf{Q}\binom{\mathbf{R}}{\mathbf{O}} \tag{29}
\end{equation*}
$$

with the $n \times n$ right triangular matrix \mathbf{R}.

Solving overdetermined problems: QR-Factorization

The equation

$$
\begin{equation*}
\hat{\mathbf{x}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b} \tag{30}
\end{equation*}
$$

now becomes

$$
\begin{align*}
\mathbf{x} & =\left(\mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{Q} \mathbf{R}\right)^{-1} \mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{b} \\
& =\left(\mathbf{R}^{T} \mathbf{R}\right)^{-1} \mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{b} \tag{31}\\
& =\mathbf{R}^{-1} \mathbf{Q}^{T} \mathbf{b}
\end{align*}
$$

or,

$$
\begin{equation*}
\mathbf{R x}=\mathbf{Q}^{T} \mathbf{b} \tag{32}
\end{equation*}
$$

QR-Factorization using the Gram-Schmidt process

Let $\mathbf{A}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{M}\right)$ and

$$
\begin{align*}
& \mathbf{u}_{1}=\mathbf{a}_{1} \\
& \mathbf{u}_{2}=\mathbf{a}_{2}-\operatorname{proj}_{\mathbf{e}_{1}}\left(\mathbf{a}_{2}\right) \tag{33}\\
& \mathbf{u}_{3}=\mathbf{a}_{3}-\operatorname{proj}_{\mathbf{e}_{1}}\left(\mathbf{a}_{3}\right)-\operatorname{proj}_{\mathbf{e}_{2}}\left(\mathbf{a}_{3}\right)
\end{align*}
$$

where

$$
\begin{align*}
\mathbf{e}_{1} & =\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|} \\
\mathbf{e}_{2} & =\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|} \tag{34}\\
\mathbf{e}_{3} & =\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}
\end{align*}
$$

QR-Factorization using the Gram-Schmidt process

Now the factorization

$$
\mathbf{A}=\mathbf{Q R}=\left(\begin{array}{ll}
\mathbf{Q}_{1} & \mathbf{Q}_{2} \tag{35}
\end{array}\right)\binom{\mathbf{R}_{1}}{\mathbf{O}}=\mathbf{Q}_{1} \mathbf{R}_{1}
$$

is accomplished by

$$
\begin{equation*}
\mathbf{Q}_{1}=\left(\mathbf{e}_{1}, \ldots \mathbf{e}_{m}\right) \tag{36}
\end{equation*}
$$

and

$$
\mathbf{R}_{\mathbf{1}}=\left(\begin{array}{cccc}
\left\langle\mathbf{e}_{1}, \mathbf{a}_{1}\right\rangle & \left\langle\mathbf{e}_{1}, \mathbf{a}_{2}\right\rangle & \left\langle\mathbf{e}_{1}, \mathbf{a}_{3}\right\rangle & \ldots \tag{37}\\
\left\langle\mathbf{e}_{2}, \mathbf{a}_{1}\right\rangle & \left\langle\mathbf{e}_{2}, \mathbf{a}_{2}\right\rangle & \left\langle\mathbf{e}_{2}, \mathbf{a}_{3}\right\rangle & \ldots \\
\left\langle\mathbf{e}_{3}, \mathbf{a}_{1}\right\rangle & \left\langle\mathbf{e}_{3}, \mathbf{a}_{2}\right\rangle & \left\langle\mathbf{e}_{3}, \mathbf{a}_{3}\right\rangle & \ldots \\
\vdots & \vdots & \vdots &
\end{array}\right)
$$

Singular Value Decomposition (SVD)

The mixed-determined problem (again)

Figure: The mixed-determined problem is characterized by infinitely many (usually) inexact solutions.

LSingular Value Decomposition (SVD)
ᄂ The mixed-determined problem (again)

A coordinate free picture

Rotated coordinate systems in X and B spaces

Rotated coordinate systems in X and B spaces

Orthogonal matrix of coordinate vectors in X :

$$
\begin{equation*}
\mathbf{V}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right) \tag{38}
\end{equation*}
$$

Singular value decomposition

$$
\begin{align*}
\mathbf{A} & =\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \\
& =\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right\}\left\{\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T} \\
\mathbf{v}_{3}^{T}
\end{array}\right\} \tag{40}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq 0 \tag{41}
\end{equation*}
$$

The transformed problem

If we put

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{V}^{T} \mathbf{x} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{b}^{\prime}=\mathbf{U}^{T} \mathbf{b} \tag{43}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\mathbf{A x} & =\mathbf{b} \\
\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \mathbf{x} & =\mathbf{b} \\
\boldsymbol{\Sigma} \mathbf{V}^{T} \mathbf{x} & =\mathbf{U}^{T} \mathbf{b} \tag{44}\\
\boldsymbol{\Sigma} \mathbf{x}^{\prime} & =\mathbf{b}^{\prime}
\end{align*}
$$

Solution to the the transformed problem

The solution is now trivial. Assume that $\lambda_{1} \geq \lambda_{2}>\lambda_{3}=0$. Then

$$
\begin{align*}
& \lambda_{1} x^{\prime}{ }_{1}=b^{\prime}{ }_{1} \Rightarrow x^{\prime}{ }_{1}=\frac{b_{1}^{\prime}}{\lambda_{1}} \\
& \lambda_{2} x^{\prime}{ }_{2}=b^{\prime}{ }_{2} \quad \Rightarrow x^{\prime}{ }_{2}=\frac{b^{\prime}{ }_{2}}{\lambda_{2}} \tag{45}\\
& \lambda_{3} x^{\prime}{ }_{3}=b^{\prime}{ }_{3} \Rightarrow x^{\prime}{ }_{3} \text { can be chosen arbitrarily }
\end{align*}
$$

This shows that small singular values amplify noise:
If λ_{i} is small, a noisy b_{i}^{\prime} results in a very noisy $x^{\prime}{ }_{i}$!
and that zero singular values result in underdetermination:

$$
\text { If } \lambda_{i}=0, x^{\prime}{ }_{i} \text { is unconstrained ! }
$$

Returning to the untransformed problem

Once we have found x^{\prime}, we can find x through

$$
\begin{equation*}
\mathbf{x}=\mathbf{V} \mathbf{x}^{\prime} \tag{46}
\end{equation*}
$$

If we have chosen the unconstrained components of x^{\prime} to be 0 , we arrive at the least squares solution:

$$
\begin{align*}
\hat{\mathbf{x}} & =\mathbf{V}_{p} \boldsymbol{\Sigma}_{p}^{-1} \mathbf{U}_{p}^{T} \mathbf{b} \\
& =\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\left\{\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right\}^{-1}\left\{\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\mathbf{u}_{2}^{T}
\end{array}\right\} \tag{47}
\end{align*}
$$

Note that well-determined, ill-determined and undetermined components of \mathbf{x}^{\prime} mix in the expression for \mathbf{x} !

