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Abstract

Probabilistic formulation of inverse problems leads to the
definition of a probability distribution in the model space.
This probability distribution combines a priori informa-
tion with new information obtained by measuring some
observable parameters (data). As, in the general case, the
theory linking data with model parameters is nonlinear,
the a posteriori probability in the model space may not be
easy to describe (it may be multimodal, some moments
may not be defined, etc.). When analyzing an inverse
problem, obtaining a maximum likelihood model is usu-
ally not sufficient, as we normally also wish to have infor-
mation on the resolution power of the data. In the general
case we may have a large number of model parameters,
and an inspection of the marginal probability densities
of interest may be impractical, or even useless. But it
is possible to pseudorandomly generate a large collection
of models according to the posterior probability distri-
bution and to analyze and display the models in such a
way that information on the relative likelihoods of model
properties is conveyed to the spectator. This can be ac-
complished by means of an efficient Monte Carlo method,
even in cases where no explicit formula for the a priori
distribution is available. The most well known impor-
tance sampling method, the Metropolis algorithm, can
be generalized, and this gives a method that allows anal-
ysis of (possibly highly nonlinear) inverse problems with
complex a priori information and data with an arbitrary
noise distribution.

Introduction

Inverse problem theory is the mathematical theory de-
scribing how information about a parameterized physical
system can be derived from observational data, theoret-
ical relationships between model parameters and data,
and prior information. Inverse problem theory is largely
developed in geophysics, where the inquiry is how to in-

fer information about the Earth’s interior from physical
measurements at the surface. Examples are estimation of
subsurface rock density, magnetization, and conductivity
from surface measurements of gravity or electromagnetic
fields. An important class of complex inverse problems
is found in seismology, where recorded seismic waves at
the Earth’s surface or in boreholes are used to compute
estimates of mechanical subsurface parameters.

In what follows, any given set of values representing a
physical system, we call a model. Every model m can be
considered as a point in the model spaceM. We will de-
fine different probability densities overM. For instance, a
probability density ρ(m) will represent our a priori infor-
mation on models, and another probability density, σ(m)
will represent our a posteriori information, deduced from
ρ(m) and from the degree of fit between data predicted
from models and actually observed data. In fact, we will
use the expression σ(m) = kρ(m)L(m) [see Tarantola,
1987], where L(m), the likelihood function, is a measure
of the degree of fit between data predicted from the model
m and the observed data (k is an appropriate normaliza-
tion constant). Typically, this is done through the in-
troduction of a misfit function S(m), connected to L(m)
through an expression like L(m) = k exp(−S(m)).

In seismology, the misfit function usually measures the
degree of misfit between observed and computed seismo-
grams as a function of the subsurface model parameters.
It usually has many secondary minima. In terms of the
probability density in the model space, we deal typically
with a (possibly degenerate) global maximum, represent-
ing the most likely solution, and a large number of sec-
ondary maxima, representing other possible solutions. In
such cases, a local search for the maximum likelihood
solution using, for instance, a gradient method, is very
likely to get trapped in secondary maxima. This problem
is avoided when using a global search method. A global
search is not confined to uphill (or downhill) moves in
the model space and is therefore less influenced by the
presence of local optima. Some global methods are not
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influenced at all.
The simplest of the global search methods is the ex-

haustive search. A systematic exploration of the (dis-
cretized) model space is performed, and all models within
the considered model subspace are visited. Although this
method may be ideal for problems with low dimensional-
ity (i.e., with few parameters), the task is computationally
unfeasible when problems with many model parameters
are considered.

When analyzing highly nonlinear inverse problems of
high dimensionality, it is therefore necessary to severely
restrict the number of misfit calculations, as compared
to the exhaustive search. One way to do this is to use a
Monte Carlo search, which consists of a (possibly guided)
random walk in the model space. A Monte Carlo search
extensively samples the model space, avoids entrapment
in local likelihood maxima, and therefore provides a useful
way to attack such highly nonlinear inverse problems.

In resolution studies, the advantages of Monte Carlo
methods become even more significant. Resolution anal-
ysis carried out by means of local methods gives erro-
neous results due to the inherent assumption that only
one minimum for the misfit function exists. However, a
Monte Carlo method can take advantage of the fact that
all local likelihood maxima will be sampled, provided a
sufficient number of iterations are performed.

Early geophysical examples of solution of inverse prob-
lems by means of Monte Carlo methods, are given by
Keilis-Borok and Yanovskaya [1967] and Press [1968,
1971]. Press made the first attempts at randomly explor-
ing the space of possible Earth models consistent with
seismological data. More recent examples are given by
Rothman [1985, 1986], who nicely solved a strongly non-
linear optimization problem arising in seismic reflection
surveys, and Landa et al. [1989], Mosegaard and Vester-
gaard [1991], Koren et al., [1991], and Cary and Chapman
[1988], who all used Monte Carlo methods within the diffi-
cult context of seismic waveform fitting. Cary and Chap-
man and Koren et al. described the potential of Monte
Carlo methods, not only for solving a model optimization
problem but also for performing an analysis of resolution
in the inverse problem.

The idea behind the Monte Carlo method is old, but its
actual application to the solution of scientific problems is
closely connected to the advent of modern electronic com-
puters. J. von Neumann, S. Ulam and E. Fermi used the
method in nuclear reaction studies, and the name “the
Monte Carlo method” (an allusion to the famous casino)
was first used by Metropolis and Ulam [1949]. Four years
later, Metropolis et al. [1953] introduced an algorithm,
now known as the Metropolis algorithm, that was able
to (asymptotically) sample a space according to a Gibbs-
Boltzmann distribution. This algorithm was a biased ran-
dom walk whose individual steps (iterations) were based

on very simple probabilistic rules.
It is not difficult to design random walks that sample

the posterior probability density σ(m). However, in cases
where σ(m) has narrow maxima. these maxima (which
are the most interesting features of σ(m)) will be very
sparsely sampled (if sampled at all). In such cases, sam-
pling of the model space can be improved by importance
sampling, that is, by sampling the model space with a
probability density as close to σ(m) as possible. Cary and
Chapman [1988] used the Monte Carlo method to deter-
mine σ(m) for the refraction seismic waveform inversion
problem, where the travel times were used as data, as well
as waveforms, and the model parameters were the depths
as a function of velocity. They improved the sampling
of the model space by using a method described by Wig-
gins [1969, 1972] in which the model space was sampled
according to the prior distribution ρ(m). This approach
is superior to a uniform sampling by crude Monte Carlo.
However, the peaks of the prior distribution are typically
much less pronounced than the peaks of the posterior dis-
tribution. Moreover, the peaks of the two distributions
may not even coincide. It would therefore be preferable
to draw sample models from the model space according
to a probability distribution which is close to the poste-
rior distribution σ(m), the idea being to use a probability
distribution that tends to σ(m) as iterations proceed.

Geman and Geman [1984] discussed an application of
simulated annealing to Bayesian image restoration. For
their particular inverse problem, a two-dimensional de-
convolution problem, they derived an expression for the
posterior distribution from (1) the prior distribution, (2)
a model of the convolutional two-dimensional image blur-
ring mechanism, and (3) the parameters of the Gaussian
noise model. By identifying this posterior distribution
with a Gibbs-Boltzmann distribution, they performed a
maximum a posteriori estimation in the model space, us-
ing a simulated annealing algorithm. In their paper, they
mention the possibility of using the simulated annealing
algorithm, not only for maximum a posteriori estimation
but also to sample the model space according to the pos-
terior distribution. However, they did not pursue this
possibility further, nor did they describe how to extend
this idea to inverse problems in general.

Marroquin et al. [1987] adopted an approach similar
to that of Geman and Geman. However, they used the
Metropolis algorithm to generate the posterior distribu-
tion, from which they computed model estimates. One
of the problems raised by these authors was that their
Bayesian approach requires an explicit formula for the a
priori distribution.

Recent examples of using Bayes theorem and the
Metropolis algorithm for generating a posteriori proba-
bilities for an inverse problem are given by Pedersen and
Knudsen [1990] and Koren et al. [1991].
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In the present paper we will describe a method for ran-
dom sampling of solutions to an inverse problem. The
solutions are sampled at a rate proportional to their a
posteriori probabilities, that is, models consistent with a
priori information as well as observations are picked most
often, whereas models that are in incompatible with ei-
ther a priori information or observations (or both) are
rarely sampled.

In brief our sampling algorithm can be described as
consisting of two components. The first component gen-
erates a priori models, that is, models sampled with a
frequency distribution equal to the a priori probability
distribution in the model space. This is accomplished
by means of a random walk, a kind of “Brownian mo-
tion” in the model space. The second component accepts
or rejects attempted moves of the a priori random walk
with probabilities that depend on the models ability to
reproduce observations. Output from the combined algo-
rithm consists of a collection of models that passed the
test performed in the second component. This collection
of models is shown to have a frequency distribution that
is (asymptotically) proportional to the a posteriori prob-
ability distribution in the model space.

It is an important property of our method that in con-
trast to usual Bayesian inverse calculations, the a priori
distribution need not be given by an explicit formula. In
fact, the first component of our algorithm may consist
of a large number of mutually dependent sub-processes,
each of which generates part of the a priori models.

The definition of which models are accessible from a
given model is an essential ingredient of the method, from
a practical point of view. We will “jump” from a model to
a neighboring model. But, what is a neighbor? The the-
ory to be developed below is independent of the particular
choice of model perturbations to be considered, but, as il-
lustrated below, a bad definition of model neighborhood
may lead to extremely inefficient algorithms.

Probabilistic Formulation of In-
verse Problems

Parameters Taking Continuous Values

The “forward problem” is the problem of predicting (cal-
culating) the “data values” dcal = {d1

cal, d
2
cal, . . .} that we

should observe when making measurements on a certain
system. Let the system be described (parameterized) by
a parameter set m = {m1,m2, . . .}. One generally writes
as

dcal = g(m) (1)

the generally nonlinear, mapping from the model spaceM
into the data space D that solves the forward problem.

In its crudest formulation, the “inverse problem” con-
sists of the following question: An actual measurement of
the data vector d gave the value dobs = {d1

obs, d
2
obs, . . .}.

Which is the actual value of the model parameter vector
m?

This problem may well be underdetermined, due to lack
of significant data or due to experimental uncertainties.
It can also be overdetermined, if we repeat similar mea-
surements. Usually, it is both. A better question would
have been: What information can we infer on the actual
value of the model parameter vector m?

The “Bayesian approach” to inverse problems, de-
scribes the “a priori information” we may have on the
model vector, by a probability density ρ(m). Then, it
combines this information with the information provided
by the measurement of the data vector and with the infor-
mation provided by the physical theory, as described for
instance by equation (2), in order to define a probability
density σ(m) representing the “a posteriori information”.
This a posteriori probability density describes all the in-
formation we have. It may well be multimodal, not have
a mathematical expectation, have infinite variances, or
some other pathologies, but it constitutes the complete
solution to the inverse problem.

Whatever the particular approach to the problem may
be [e.g., Backus, 1970a,b,c; Tarantola and Valette, 1982a;
Tarantola, 1987], we end up with a solution of the form

σ(m) = k ρ(m)L(m), (2)

where k is an appropriate normalization constant. The
a posteriori probability density σ(m) equals the a pri-
ori probability density ρ(m) times a “likelihood function”
L(m) which, crudely speaking, measures the fit between
observed data and data predicted from the model m (see
an example below).

As an example, when we describe experimental results
by a vector of observed values dobs with Gaussian experi-
mental uncertainties described by a covariance matrix C,
then

L(m) = k exp
[
1
2
(
g(m)− dobs

)t
C−1

(
g(m)− dobs

)]
.

(3)
If, instead, we describe experimental uncertainties using a
Laplacian function, where di

obs are the “observed values”
and σi are the estimated uncertainties, then

L(m) = k exp

[
−
∑

i

|gi(m)− di
obs|

σi

]
. (4)

As a last example (to be used below), if the measured data
values di

obs are contaminated by statistically independent,
random errors εi given by a double Gaussian probability
density function,

f(ε) = k

[
a exp

(
− ε2

2σ2
1

)
+ b exp

(
− ε2

2σ2
2

)]
, (5)
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then

L(m) = k
∏

i

[
a exp

(
− (gi(m)− di

obs)
2

2σ2
1

)
+b exp

(
− (gi(m)− di

obs)
2

2σ2
2

)]
.

(6)

These three examples are very simplistic. While in this
paper we show the way to introduce realistic a priori in-
formation in the model space, we do not attempt to ad-
vance in the difficult topic of realistically describing data
uncertainties.

Discretization of Parameters

So far, the theory has been developed for parameters that
although finite in number may take continuous values.
Then, at any point mi we can define a probability density
f(mi), but not a probability, which can only be defined
for a region of the space:

P (m ∈ A) =
∫
dm1

∫
dm2 · · ·︸ ︷︷ ︸

A

f(m). (7)

Here, m1,m2 . . . denote the different components of the
vector m .

For numerical computations, we discretize the space by
defining a grid of points, where each point represents a
surrounding region ∆m1∆m2 . . . , small enough for the
probability densities under consideration to be almost
constant inside it. Then, when we say “the probability
of the point mi” we mean “the probability of the region
∆m1∆m2 . . . surrounding the point mi”. In the limit of
an infinitely dense grid and assuming a continuous f(m) ,
“the probability of the point mi ” tends to

fi = f
(
mi

)
∆m1∆m2 . . . . (8)

The discrete version of equation (2) is then

σi =
ρiL(mi)∑
j ρjL(mj)

, (9)

where
σi = σ(mi)∆m1 ∆m2 . . . , (10)

and
ρi = ρ(mi)∆m1 ∆m2 . . . . (11)

For simplicity, we will rather write

σi =
ρi Li∑
j ρj Lj

, (12)

where we use the notation

Li = L
(
mi

)
(13)

(note that ∆m1 ∆m2 . . . does not enter into the definition
of Li).

Once the probability (12) has been defined, we could
design a method to sample directly the posterior proba-
bility σi (and, in fact, the methods below could be used
that way). But any efficient method will proceed by first
sampling the prior probability ρi . It will then modify this
sampling procedure in such a way that the probability σi

is eventually sampled. This, after all, only corresponds to
the Bayesian viewpoint on probabilities: one never creates
a probability ex nihilo but rather modifies some prior into
a posterior.

Monte Carlo Sampling of Probabilities

Essentially, the sampling problem can be stated as fol-
lows: given a set of points in a space, with a probability
pi attached to every point i , how can we define random
rules to select points such that the probability of selecting
point i is pi ?

Terminology

Consider a random process that selects points in the
model space. If the probability of selecting point i is pi ,
then the points selected by the process are called “sam-
ples” of the probability distribution {pi} . Depending on
the random process, successive samples i, j, k, . . . may be
dependent or independent, in the sense that the proba-
bility of sampling k may or may not depend on the fact
that i and j have just been sampled.

An important class of efficient Monte Carlo (i.e., ran-
dom) sampling methods is the random walks. The possi-
ble paths of a random walk define a graph in the model
space (see Figure 1). All models in the discrete model
space are nodes of the graph, and the edges of the graph
define the possible steps of the random walk. The graph
defines the “neighborhood” of a model as the set of all
models directly connected to it. Sampling is then made
by defining a random walk on the graph: one defines the
probability Pij for the random walker to go to point i if
it currently is at the neighboring point j . Pij is called
the “transition probability”. (As, at each step, the ran-
dom walker must go somewhere, including the possibility
of staying at the same point, Pij satisfies

∑
i Pij = 1 .)

For the sake of mathematical simplicity, we shall always
assume that a graph connects any point with itself: stay-
ing at the point is considered as a “transition” (a“step”),
and the current point, having been reselected, contributes
with one more sample.

Consider a random walk, defined by the transition
probabilities {Pij} , and assume that the model where
it is initiated is only known probabilistically: there is a
probability qi that the random walk is initiated at point
i . Then, when the number of steps tends to infinity, the
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probability that the random walker is at point i will con-
verge to some other probability pi [Feller, 1970]. We say
that {pi} is an “equilibrium probability distribution” of

Figure 1: Part of a graph in the model space. The graph
defines the possible steps of a random walk in the space.
The random walk obeys some probabilistic rules that al-
low it to jump from one model to a connected model in
each step. The random walker will, asymptotically, have
some probability, say pi , to be at point i at a given step.
The neighborhood of a given model is defined as the mod-
els to which a random walker can go in one step, if it starts
at the given model. Thus a neighborhood is defined solely
through the graph and does not need to be a metric con-
cept.

{Pij} . (Then, {pi} is an eigenvector with eigenvalue 1
of {Pij} :

∑
j Pijpj = pi .) If the random walk always

equilibrates at the same probability {pi} , independent of
the initial probability {qi} , then there is only one equilib-
rium probability {pi} . (Then, {pi} is a unique eigenvec-
tor of {Pij} .) This is the case if the graph is “connected”,
that is, if it is possible to go from any point to any other
point in the graph (in a sufficient number of steps) [Feller,
1970].

Many random walks can be defined that have a given
probability distribution {pi} as their equilibrium proba-
bility. Some random walks converge more rapidly than
others to their equilibrium probability. Successive mod-
els i, j, k, . . . obtained with a random walk will, of course,
not be independent unless we only consider models sepa-
rated by a sufficient number of steps. Instead of letting pi

represent the probability that a (single) random walker is
at point i (in which case

∑
i pi = 1), we can let pi be the

number of “particles” at point i . Then,
∑

i pi represents
the total number of particles. None of the results pre-
sented below will depend on the way {pi} is normalized.

If, at some moment, the probability for the random
walker to be at a point j is pj and the transition probabil-
ities are Pij , then fij = Pijpj represents the probability
that the next transition will be from j to i while Pij is the
conditional probability of going to point i if the random
walker is at j , fij is the unconditional probability that

the next step will be a transition to i from j .
When pi is interpreted as the number of particles at

point i , fij is called the “flow”, as it can be interpreted
as the number of particles going to point i from point j in
a single step. (The flow corresponding to an equilibrated
random walk has the property that the number of parti-
cles pi at point i is constant in time. Thus that a random
walk has equilibrated at a distribution {pi} means that in
each step, the total flow into a given point is equal to the
total flow out from the point. Since each of the pi parti-
cles at point i must move in each step (possibly to point
i itself), the flow has the property that the total flow out
from point i and hence the total flow into the point must
equal pi :

∑
j fij =

∑
k fki = pi .) The concept of flow

is important for designing rules that sample probabilities
(see Appendix A).

Näıve Walks

Consider an arbitrary (connected) graph, as the one sug-
gested in Figure 1, and denote by ni the number of neigh-
bors of point i (including the point i itself). Consider also
a random walker that performs a “näıve random walk”.
That is, when he is at some point j , he moves to one of
j’s neighbors, say neighbor i , chosen uniformly at ran-
dom (with equal probability). It is easy to prove (see Ap-
pendix B) that the random walk, so defined equilibrates
at the probability distribution given by pi = ni/

∑
j nj ,

i.e., with all points having a probability proportional to
their number of neighbors.

Uniform Walks

Consider now a random walker that when he is at some
point j , first chooses, uniformly at random, one of j’s
neighbors, say neighbor i , and then uses the following
rule to decide if he moves to i or if he stays at j :

1. If ni ≤ nj (i.e., if the “new” point has less neighbors
than the “old” point (or the same number), then al-
ways move to i .

2. If ni > nj (i.e., if the “new” point has more neighbors
than the “old” point), then make a random decision
to move to i , or to stay at j , with the probability
nj/ni of moving to i .

It is easy to prove (see Appendix B) that the random
walk so defined equilibrates at the uniform probability,
i.e., with all points having the same probability. This
method of uniform sampling was first derived by Wiggins
[1969].

The theory developed so far is valid for general, dis-
crete (and finite) spaces, where the notion of metric is
not necessarily introduced. In the special case of met-
ric, Euclidean spaces, it is possible to choose Cartesian
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coordinates, and to define the points in the space, where
the random walk will be made, as a standard Cartesian
grid of points. Let us, for instance, choose a graph as the
one indicated in Figure 2. Then, away from the bound-
aries, the rule above degenerates into a (uniform) random
choice of one of the 2N + 1 neighbors that any point has
(including itself) in a space of dimension N . It can be
shown (see Appendix B) that the walks so defined pro-
duce symmetric flows.

Modification of Random Walks

Assume that some random rules are given that define a
random walk having {ρi} as its equilibrium probability
(uniform or not). How can the rules be modified so that
the new random walk equilibrates at the probability.

σi =
ρiLi∑
j ρjLj

? (14)

Consider the following situation. Some random rules
define a random walk that samples the prior probability
{ρi} . At each step, the random walker is at point j , and

Figure 2: Part of a Cartesian graph in an Euclidean space.
In this case, the definition of rules that sample points with
the uniform probability is trivial.

an application of the rules would lead to a transition to
point i . If that “proposed transition” i ← j was always
accepted, then the random walker would sample the prior
probability {ρi} . Let us, however, instead of always ac-
cepting the proposed transition i← j , sometimes thwart
it by using the following rule to decide if he is allowed to
move to i or if he is forced to stay at j :

1. If Li ≥ Lj (i.e., if the “new” point has higher (or
equal) likelihood than the “old” point), then accept
the proposed transition to i .

2. If Li < Lj (i.e., if the “new” point has lower like-
lihood than the “old” point), then make a random
decision to move to i , or to stay at j , with the prob-
ability Li/Lj of moving to i .

Then it can be proved (see Appendix C) that the ran-
dom walker will sample the posterior probability defined
by equation (14). This modification rule, reminiscent of
the Metropolis algorithm, is not the only one possible (see
Appendix C).

To see that our algorithm degenerates into the
Metropolis algorithm [Metropolis et al., 1953] when used
to sample the Gibbs-Boltzmann distribution, put qj =
exp(−Ej/T )/

∑
i exp(−Ei/T ) , where Ej is an “energy”

associated to the j-th point in the space and T is a “tem-
perature”. The summation in the denominator is over the
entire space. In this way, our acceptance rule becomes
the classical Metropolis rule: point i is always accepted
if Ei ≤ Ej , but if Ei > Ej , it is only accepted with
probability pacc

ij = exp(−(Ei − Ej)/T ) . Accordingly, we
will refer to the above acceptance rule as the “Metropolis
rule”.

As an example, let us consider the case of independent,
identically distributed Gaussian uncertainties. Then the
likelihood function describing the experimental uncertain-
ties (equation (3)) degenerates into

L(m) = k exp
(
−S(m)

s2

)
, (15)

where

S(m) =
1
2

N∑
i=1

(
gi(m)− di

obs

)2 (16)

is the misfit function, m is a model vector, d is a data
vector, g(m) is the forward modeling function, and s2 is
the total “noise” variance. In this example, s2 is the same
for all N data values. The acceptance probability for a
perturbed model becomes in this case

P accept =

{
1 if S(mnew) ≤ S(mold)
exp(−∆S

s2 ) if S(mnew) > S(mold)
, (17)

where
∆S = S

(
mnew

)
− S

(
mold

)
. (18)

This means that the perturbation is accepted if the per-
turbed model improves the data fit, and has a probability
of being accepted of P accept = exp(−∆S/s2) if it degrades
the data fit. From (17) we see that in the case of uniform
a priori distribution, our algorithm becomes identical to
the traditional Metropolis algorithm by identifying the
misfit function S with the thermodynamic energy E and
by identifying the noise variance s2 with (k times) the
thermodynamic temperature T .

Starting a Random Walk

We have just shown how a random walk sampling some
prior probability {ρi} can be modified by the Metropo-
lis rule to sample the posterior probability {σi} . This
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procedure is very suitable for solution of inverse prob-
lems. Usually, we will define some probabilistic rules that,
when applied directly, would generate models m1,m2, . . .
that, by definition, would be samples of the prior prob-
ability {ρi} . The application of the Metropolis rule de-
fined above will modify this random walk in the model
space so that it produces samples of the posterior proba-
bility {σi} instead.

The fact that we have a random walk that samples
the prior does not imply that we have an expression that
allows us to calculate the value of the prior probability
ρi of any model mi . The numerical example below gives
an example of this. Of course, using the random walk
that samples the prior and making the histograms of the
models selected would be a numerical way of obtaining
the value of the prior probability ρi for every model mi ,
but this is not a question that normally arises.

Using random rules that, if unmodified, generate sam-
ples of the prior and using the Metropolis rule to modify
this random walk in order to sample the posterior corre-
sponds to the Bayesian way of modifying a prior proba-
bility into a posterior. This approach will usually lead to
efficient random walks, since the algorithm only explores
the (usually) very limited subset of models that are con-
sistent with our a priori information.

It often happens that we have data of different nature,
as for instance in geophysics, when we have gravity, mag-
netic, or seismic data. Then, typically, data uncertain-
ties are independent, and the total likelihood of a model,
L(m) , can be expressed as a product of partial likeli-
hoods: L(m) = L1(m)L2(m) . . . , one for each data type.
Using the Metropolis rule directly to the total likelihood
L(m) would force us to solve the full forward problem
(usually the most time-consuming part of the algorithm)
to every model proposed by the prior random walk. In-
stead, we can use the Metropolis rule in cascade: If the
random walk sampling the prior is modified first by con-
sidering the partial likelihood; L1(m) , then we define a
random walk that samples the product of the prior prob-
ability density ρ(m) and L1(m) . In turn, this random
walk can be modified by considering the partial likelihood
L2(m) , and so on, until the posterior probability den-
sity that takes into account the total data set is sampled.
Practically this means that, once a model is proposed by
the rules sampling the prior, the forward problem is solved
for the first data subset. The proposed model may then
be accepted or rejected. If it is rejected by the Metropo-
lis rule (typically when there is a large misfit between the
synthetic data and the observed data for this first data
subset), then there is no need to solve the forward prob-
lem for the other data subsets, and the rules sampling the
prior have to propose a new model. More generally: Each
time the Metropolis rule rejects a model at some stage of
the algorithm, we go back to the lower level and propose a

new model. When the solution of the forward modeling is
inexpensive for certain data subsets, using this “cascade
rule” may render the algorithm much more efficient than
using the Metropolis rule to the total data set.

If, for some reason, we are not able to directly design
a random walk that samples the prior, but we have an
expression that gives the value of the prior probability
ρi for any model mi (an example is given by expression
(19) below), we can, for instance, start a random walk
that samples the model space with uniform probability
(see the section on uniform walks). Using the Metropolis
rules given above but replacing the likelihood values Li

by the prior probabilities ρi , we will obviously produce
a random walk that samples the prior (the product of a
constant times ρi equals ρi). Then, in cascade, we can
use the Metropolis rule, with the likelihood values Li , to
modify this random walk into a random walk that samples
the posterior probability σi = const ρiLi .

A second option is to modify directly a uniform random
walk (using the Metropolis rule above but with the prod-
uct ρiLi instead of Li) into a walk that directly samples
the posterior, but this results, generally, in an inefficient
random walk.

Multistep Iterations

An algorithm will converge to a unique equilibrium distri-
bution if the graph that describes the move of a random
walker in a single iteration is connected [Feller, 1970]. Of-
ten, it is convenient to split up an iteration in a number of
steps, having its own graph and its own transition prob-
abilities. A typical example is a random walk on a set of
discrete points in an N -dimensional Euclidean space, as
the one suggested in Figure 2. In this case the points are
located in a regular grid having N mutually perpendic-
ular axes, and one is typically interested in dividing an
iteration of the random walk into N steps, where the nth
move of the random walker is in a direction parallel to
the nth axis.

The question is now: if we want to form an iteration
consisting of a series of steps, can we give a sufficient con-
dition to be satisfied by each step such that the complete
iteration has the desired convergence properties? It is
easy to see that if the individual steps in an iteration all
have the same distribution {pi} as an equilibrium distri-
bution (not necessarily unique), then the complete iter-
ation also has {pi} as an equilibrium distribution. (The
transition probability matrix for a complete iteration is
equal to the product of the transition probability matri-
ces for the individual steps. Since the vector of equilib-
rium probabilities is an eigenvector with eigenvalue 1 for
each of the step transition probability matrices, it is also
an eigenvector with eigenvalue 1, and hence the equilib-
rium distribution, for the transition probability matrix
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for the complete iteration.) If this distribution is to be
the unique equilibrium distribution for the complete iter-
ation, then the graph of the complete iteration must be
connected. That is, it must be possible to go from any
point to any other point by performing iterations consist-
ing of the specified steps.

If the steps of an iteration satisfy these sufficient con-
ditions, there is also another way of defining an iteration
with the desired, unique equilibrium distribution. Instead
of performing an iteration as a series of steps, it is possible
to define the iteration as consisting of one of the steps,
chosen randomly (with any distribution having nonzero
probabilities) among the possible steps (see Appendix D).
Of course, a step of an iteration can, in the same way,
be built from substeps and in this way acquire the same
(not necessarily unique) equilibrium distribution as the
substeps.

Sampling the a Priori Probability
Density

We have previously assumed that we were able to sample
the a priori probability density ρ(m) . Let us see how this
can be achieved.

There are two ways of defining the a priori probability
distribution:

1. By defining a (pseudo) random process (i.e., a set,
of pseudo random rules) whose output is models as-
sumed to represent pseudo random realizations of
ρ(m)

2. By explicitly giving a formula for the a priori proba-
bility density ρ(m) .

Let us see an example of each.

First Example

From nearby wells we may have found that in a certain
area of locally horizontal stratification, the distribution
of layer thicknesses is approximately an exponential dis-
tribution, and the mass densities in the layers follow a
log-normal distribution. Hence we can decide to generate
one dimensional Earth models for mass density by the
following random walk in the model space:

In each iteration:

1. Select a layer uniformly at random.

2. Choose a new value for the layer thickness according
to the exponential distribution.

3. Choose a value for the mass density inside the layer,
according to the log-normal distribution.

If we decide to discretize the model at constant ∆z in-
tervals, m = {ρ(z1), ρ(z2), . . .} will have some probability
distribution (representing our a priori knowledge) for the
parameters {ρ(z1), ρ(z2), . . .} which we may not need to
characterize explicitly.

In this example, the pseudo random procedure pro-
duces, by its very definition, samples m1,m2, . . . of the
a priori probability density ρ(m) . These samples will be
the input to the Metropolis decision rule. We recommend
in particular this way of handling the a priori information,
as it allows arbitrarily complex a priori information to en-
ter the solution to an inverse problem. For an example of
this procedure, see the section on numerical example.

Second Example

We may choose the probability density

ρ(m) = k exp

(
−
∑
α

|mα −mα
prior|

σα

)
, (19)

where mα represent components of the vector m .
In this example, where we only have an expression for

ρ(m) , we have to generate samples from this distribution.
This can be done in many different ways. One way is to
start with a näıve walk, as described above, and then use
the Metropolis rule to modify it, in order to sample ρ(m) .

Sampling the a Posteriori
Probability Density

In the previous section we described how to perform
a random walk in the model space producing samples
m1,m2,m3, . . . of the a priori probability ρ(m) . In
order to obtain samples of the a posteriori probability
σ(m) = kρ(m)L(m) we simply need to use the results
given in the section on modification of random walks: if
mj is the “current point” and if the random walk sam-
pling the prior would move from point mj to point mi

(and whatever the used rules may be), accept the move
if L(mi) ≥ L(mj) , and decide randomly to accept or
reject the move if L(mi) < L(mj) , with a probability
P = L(mi)/L(mj) of accepting the move.

Numerical Example

We now illustrate the theory developed in this paper with
the inversion of gravity data. This is a classical example
for testing any theory of inversion, and similar examples
are given by Dorman [1975], Parker [1977] and Jackson
[1979].

As the relationship between mass density and gravity
data is strictly linear, one may wonder why we should il-
lustrate a Monte Carlo method, with its inherent ability
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to solve nonlinear problems, with the gravity inversion
example. The reason is that our major concern is not the
possibility of solving nonlinear problems, but the possi-
bility of using, in standard geophysical inverse problems,
realistic a priori information in the model space and real-
istic description of data uncertainties. This is what forces
us to leave the comfortable realm of least squares and re-
lated methods and to develop the notions described here.
It should be noted that the complex a priori knowledge
used in this example renders the a posteriori distribution
non-Gaussian.

The Problem

We consider a subsurface with a vertical fault, extending
from the surface to infinite depth, as depicted in Figure 3.
At the left of the fault the medium is homogeneous, while

Figure 3: The geological model considered in our numer-
ical example.

at the right of the fault the medium is depth dependent
and characterized by a vertical profile of mass density
ρ(z) .

The contrasts of mass density across the vertical fault
produce a gravity anomaly at the surface. Let us assume
that we have observed the horizontal gradient of the ver-
tical component of the gravity at 20 equispaced points to
the right of the fault, the first point being located 2 km
from the fault, and the last point being located 40 km
from the fault. The forward problem of computing the
data values di = d(xi) from the density contrast function
is solved by

d(x) =
∂g

∂x
(x) = 2G

∫ ∞

0

dz
z∆ρ(z)
z2 + x2

, (20)

where x is the horizontal distance from the fault, z is
the depth, g(x) is the vertical component of the gravity,
∆ρ(z) is the horizontal density contrast across the fault
at depth z , and G is the gravitational constant.

The a Priori Information

Let us assume that in addition to the “hard” model con-
straints described above, we have the following a priori
knowledge about the subsurface structure: The density
of the rock to the left of the vertical fault is known to
be 2570 kg/m3. To the right of the fault is a stack of
(half) layers, and we have the a priori information that
the thicknesses `i of the layers are distributed according
to the exponential probability density

f(`) =
1
`0

exp
(
− `

`0

)
, (21)

where `0 , the mean layer thickness, has the value `0 = 4
km.

Independently of the thickness of the layers, the mass
density for each layer follows an empirical probability den-
sity, displayed in Figure 4. To simplify the calculation,
the stack of layers is assumed to have a total thickness of
100 km, resting on a homogeneous basement having the
same mass density as the half space at the left of the fault
(2570 kg/m3), and the top layer is truncated (eroded) at
the surface.
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Figure 4: The a priori probability density function for
the mass density inside each layer. The a priori probabil-
ity density function for the thickness of each layer is an
exponential function.

True Model, Experimental Uncertainties,
and Observed Data Values

The measured data is assumed to be the response of a
“true model” (Figure 5). The exact data corresponding to
the true model are shown in Figure 6. The measured data
values are assumed to be contaminated by statistically
independent, random errors εi modeled by the sum of
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two Gaussian probability density functions,

f(ε) =
a√

2πσ1

exp
(
− ε2

2σ2
1

)
+

(1− a)√
2πσ2

exp
(
− ε2

2σ2
2

)
,

(22)

where we have chosen the constants σ1 = 0.25 10−9s−2 ,
σ2 = 1.25 10−9s−2 , and a = 0.25 (see Figure 7).

The simulated observations, which are formed by sum-
ming the “true” data and the simulated noise, are dis-
played in Figure 6. Then, the likelihood function L(m) ,
measuring the degree of fit between synthetic and ob-
served data is the one given by equation (6).

The Sampling Algorithm

The prior random walk. Let us now describe how our
algorithm works. First, we define the graph in the model
space that will guide our random walk. To ensure ef-
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Figure 5: The true model used to generate synthetic data.
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Figure 6: Synthetic data (solid line) used for the inver-
sion, generated from the “true model” of Figure 5, and
the “observed data” (points with error bars), equal to the
“true data” plus some noise.

ficiency of the algorithm, it is important that very few
of the possible steps in the model space lead to a radical
change in the synthetic data generated from these models.

A simple way of sampling the a priori probability in
the model space would be to use a random walk that gen-
erates successive models totally independently. To gen-
erate a new model, we could, for instance, pseudo- ran-
domly generate layer thicknesses `1, `2, . . . from bottom
to top, according to the exponential distribution given by
equation (21), until they add up to the 100 km of total
thickness (“eroding”, if necessary, the top layer). Then
we could pseudorandomly generate, inside each layer, the
corresponding value for the mass density, according to
the empirical distribution displayed in Figure 4. However
this would produce a radical change in the synthetic data
in each step of the random walk, and therefore it would
be a very inefficient algorithm. The reason is that if the
current model is one having a high posterior probability,
a radical change would most likely lead to one of the very
abundant models having a low posterior probability and
would therefore be rejected by the algorithm.

Another way to produce samples of the a priori prob-
ability in the model space could be the following: Given
a sample of the prior (i.e., given a model), we could pro-
duce another sample by, for instance, randomly choosing
a layer and replacing its thickness by a new thickness

800

600

400

200

0

x
1
0
6

-4 -2 0 2 4

x10
-9

Figure 7: The arbitrary function used to model data un-
certainties, as a sum of two Gaussians.

drawn from the exponential distribution given by equa-
tion (21) or by replacing its mass density by a new mass
density drawn from the empirical distribution displayed
in Figure 4.

It is obvious that iterating this procedure, we would
always produce models whose layer thicknesses and mass
densities are distributed properly; i.e., we would produce
samples of the prior probability in the model space. Suc-
cessive models will be “close” in some sense, but our nu-
merical experimentation has shown that they are still too
far apart: when testing models produced by this prior
random walk by the likelihood function L(m) (see be-
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low), the probability of being accepted as samples of the
a posteriori probability is extremely low. The reason is
that when perturbing one layer thickness, all the layers
above are shifted (remember that we go from bottom to
top), and this strongly changes the synthetic data.

Therefore we decided to define the neighbors of a model
as the models we can get, not by changing the thickness
of a layer but by creating or destroying a new interface
in the model (in a way described below). Then, all the
other layers remain intact, and we only make a small per-
turbation in the synthetic data.

More precisely, the neighbors of a model are the mod-
els we can get by performing one of the following three
perturbations:

(1) changing the mass density in one layer,

(2) adding a new layer boundary and assigning mass den-
sities to the layers above and below it, or

(3) removing one layer boundary and assigning a mass
density to the new compound layer.

To complete the description of our algorithm, we will now
specify the random rules used by the random walk on the
graph.

In each iteration it is first decided which kind of model
perturbation step should be performed next. Performing
a “pure” layer density perturbation has the same proba-
bility (0.5) as performing a layer boundary perturbation
(removing or adding a boundary).

In case of a step involving a pure layer mass density
perturbation, a layer is selected uniformly at random and
a (new) density is chosen for that layer according to the
density histogram of Figure 4.

In case of a layer boundary perturbation step we face
the problem of adding or removing layer boundaries in
such a way that if the step was iterated alone, it would
leave the (a priori) distribution of models unchanged. In
particular, the exponential layer thickness distribution
(1/`0) exp(−`/`0) should be maintained. There is a sim-
ple solution to this problem: we exploit the fact that (ap-
proximately) exponentially distributed layer thicknesses
can be obtained by assuming that the probability that a
layer interface is present at a given depth (sample point)
is equal to (40m/`0) = 0.01 and independent of the pres-
ence of other layer interfaces.

A layer boundary perturbation step therefore works as
follows. First, we select one of the 2500 discrete points of
the current mass density function, uniformly at random.
We then randomly decide if there should exist a layer
boundary at that point or not. The probability for the
point to be a layer boundary is 0.01.

In case this operation creates a new layer boundary, we
generate a mass density for the layers above and below the
new layer boundary according to the a priori probability
distribution shown in Figure 4.

In case this operation removes a layer boundary, we
generate a mass density for the new compound layer (con-
sisting of the layers above and below the removed layer
boundary) according to the a priori probability distribu-
tion.

This exactly corresponds to the a priori information we
wanted to input to our problem: the random walk in the
model space so defined is sampling the probability density
describing our a priori information.

The posterior random walk. Let us now describe
how the above prior random walk is modified into a new
random walk, sampling the posterior distribution.

Every time a model perturbation is attempted by the
prior random walk, the gravity response is computed from
the perturbed layer sequence m pert by summing up the
contributions from the layers in the interval between 0
km depth and 100 km depth. The contribution from a
homogeneous half layer is given by

G∆ρ log
(
D2 + x2

d2 + x2

)
(23)

where d is the depth to the top of the homogeneous half
layer, D is the depth to the bottom of the half layer, ∆ρ
is the layer density, and x is the horizontal distance to
the edge of the half layer.

From the computed gravity response g(m pert) and the
observed gravity response dobs the value of the likeli-
hood function L(m pert) is computed using equation (6).
The attempted perturbation is now accepted or rejected
according to the Metropolis rule, using the likelihoods
L(mcur) and L(m pert) of the current and perturbed mod-
els, respectively (see the section on sampling the a poste-
riori probability density).

This completes the description of the algorithm used
in our numerical example. There are, however, a few
remaining issues concerning the use of its output models.
Most importantly, we want independent samples from the
a posteriori distribution.

If independent sample models are required, one has to
wait some time between saving the samples. In practice,
a single test run of, say, 1000 iterations is performed,
and the value of the likelihood function is recorded for
the current model of each iteration. After some itera-
tions the likelihood has risen from the usually very low
value of the initial model to a rather stable “equilibrium
level”, around which it fluctuates during the remaining
iterations. By calculating the autocorrelation function
for the equilibrium part of this series of likelihood values,
it is possible to estimate the waiting time (in iterations)
between statistically independent likelihood values. This
waiting time a very rough measure of the minimum wait-
ing time between statistically independent model samples
from σ(m) . The waiting time between saving model sam-
ples in our computations is 100 iterations. A discussion
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of the validity of the above measure is beyond the scope
of this paper. It shall, however, be noted that the de-
scribed method is only approximate and that the crucial
problem of estimating how many iterations are needed
to yield a sufficient number of samples (to characterize a
given inverse problem) is still unsolved.

Making of a Movie

First, the comparison between computed and observed
data is “turned off”, so as to generate a sample of mod-
els representing the a priori probability. This has two
purposes. First, it allows us to make statistics and to
verify that the algorithm is working correctly. More im-
portantly, it allows us to really understand which sort of a
priori information we are inputting to the problem. Fig-
ure 8, for instance, shows 30 of the models representing
the a priori probability distribution, of the many tens of
thousands generated. We call this figure a “movie”, as
this is the way the whole set of generated models is dis-
played on a computer screen. These 30 models give an
approximate idea of the sort of a priori information used.
Of course, more models are needed if we want a more
accurate representation of the a priori probability.

We may not be interested in the models per se but only
in smooth Earth models (for instance, if we know that
only smooth properties are resolved by the data). The
movie of Figure 8 then easily becomes the smooth movie
displayed in Figure 9 (where the density at each point is
arbitrarily chosen to be a simple average over 250 points
surrounding it).

“Turning on” the comparison between computed and
observed data, i.e., using the Metropolis rule, the random
walk sampling the prior distribution is modified and starts
sampling the posterior distribution. Figure 10 shows a
movie with some samples of the posterior distribution,
and Figure 11 shows the smoothed samples.

Let us first concentrate on the a posteriori movie of
Figure 10. It is obvious that many different models are
possible. This is no surprise, as gravity data do not con-
strain strongly the Earth model. But it is important to
look at Figure 12. We display the a priori and the a pos-
teriori data movie, i.e., the synthetic data corresponding
to models of the a priori random walk in the model space
and the synthetic data corresponding to models of the
a posteriori random walk in the model space, when the
Metropolis rule is biasing the prior random walk towards
the posterior. Even though the models in the posterior
movie of Figure 10 are quite different, all of them predict
data that, within experimental uncertainties, are models
with high likelihood: gravity data alone can not have a
preferred model.

Let us now analyze the smoothed models of Figure 11.
They do not look as “random” as the models without

smoothing: they all have a zone of high-density contrast
centered around 10 km depth, which is a “structure” re-
solved by the data.

Answering Questions

From the viewpoint defended here, there are no well-
posed questions or ill-posed questions, but just questions
that have a probabilistic answer.

Making histograms. We may be interested in the
value of the mass density at some depth, say z0. Each of
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Figure 8: Some images of a movie representing the a priori
probability density.
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Figure 9: Same as Figure 8 but with the models
smoothed.

our many samples (of both the a priori and the a posteri-
ori probability in the model space) has a particular value
of the mass density at z0. The histogram of these values
clearly represents the marginal probability distribution
for the mass density at that point.

Figures 13 and 14 show both the prior and posterior
histograms for the mass density at 2 km, 10 km and 80
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km depth, respectively. In particular, we see, when com-
paring the prior and posterior histograms at 2 km depth,
that the mass density to some extent has been resolved
there: the histogram has been slightly “narrowed”. This
is not the case at 80 km depth. Instead of the value of
the mass density at some particular depth, we may be
interested in the average mass density between, say, z1
and z2 . Taking this average for all our samples gives the
histogram shown at the bottom of Figure 14.

A posteriori models

100

80

60

40

20

0

100

80

60

40

20

0

= 10000 kg/m3

Figure 10: Some images of a movie representing the a
posteriori probability density.
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Figure 11: Same as Figure 10, smoothed. The smoothed
models do not look as “random” as the models without
smoothing (Figure 10): they all have a “bump” at about
10 km depth, which is a “structure” resolved by the data.

Computing central estimators, or estimators of
dispersion. Central estimators and estimators of disper-
sion are traditional parameters used to characterize sim-
ple probability distributions. It is well known that while
mean values and standard deviations are good measures
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Figure 12: The a priori and a posteriori data movie.
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Figure 13: Prior and posterior histograms for the mass
density respectively at 2 km and 10 km. When comparing
the prior and posterior histograms at 2 km depth, we see
that the mass density has been quite well resolved there.
the histogram has been considerably “narrowed”.
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for Gaussian functions, median values and mean devia-
tions are better adapted to Laplacian (double exponen-
tial) functions. We can compute both estimators (or any
other), as we are not dependent on any particular assump-
tion.
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Figure 14: Prior and posterior histograms for the mass
density at 80 km depth, and average mass density between
7.5 km and 12.5 km. The mass density at 80 km depth has
been less well “resolved” that at 2 km depth (see Figure
13).

Figure 15 shows the mean value for the mass density,
plus and minus the standard deviation, and the median,
plus and minus the mean deviation for both the a priori
and the a posteriori movie. Again, these plots represent
the mean and median (and corresponding deviations) of
the a priori and a posteriori probability distributions in
the model space. Notice that the mean and the median
a posteriori models both show the zone of high density
contrast centered around 10 km depth, characteristic of
the true model of Figure 5, a feature well resolved by our
data.

Computing correlations. We may also ask how cor-
related are the mass density values at different depth lo-
cations. From our movies, we can, for instance, easily
compute the covariance function C(z, z′) . The correla-
tion function is given by c(z, z′) = C(z, z′)/(σ(z)σ(z′)) ,
where σ(z) is the standard deviation at point z (just esti-
mated). The correlation function, taking its values in the
interval (−1,+1) , has a simpler interpretation than the
covariance function.

We have chosen to compute the correlation between
a point arbitrarily chosen at z0 = 10 km and all other
points, i.e., the function c(z0, z) . The result is displayed
in Figure 16.

Notice that correlations in the a priori probability dis-
tribution decay approximately exponentially, and that
they are all positive. In the a posteriori probability dis-
tribution, anticorrelations appear. This means, roughly
speaking, that if the mass density of any particular real-
ization is in error at 10 km depth, it is likely that it will
also be in error, but with opposite sign, in the layers just
above and below 10 km.

The approximate exponential decay of the correlation
in the prior probability results from the exponential prior
probability chosen for the layer thicknesses. The anticor-
relations appearing in the posterior probability describe
the uncertainty in our posterior models due to the type
of information brought by the gravity data.

Discussion

All the results presented in Figures 8 and 9, and the left
parts of Figures 13 to 16 concern the a priori movie (i.e.,
they correspond to the sampling of the model space ac-
cording to the a priori probability density). Should we at
this point decide that we are not representing well enough
our a priori information or that we are inputting a priori
information that we do not actually have, it would be time
to change the way we generate pseudorandom models. If
the a priori movie is acceptable, we can “switch on” the
synthetic data calculation, and the filter described above,
to generate samples of the a posteriori probability distri-
bution, i.e., to produce the a posteriori movie.

It should be properly understood in which way the fea-
ture at 10 km depth is “resolved” by the data. None of
the models of the a posteriori movie shows a clear density
bump at 10 km depth, as the considered inverse prob-
lem has a highly nonunique solution (i.e., many different
models fit the data and are in accordance with the a pri-
ori information). From the a posteriori movie we can not
conclude that the true model does have the bump, as
many models without it are acceptable. Simply, models
with the bump, and arbitrary “high frequencies” super-
imposed, have a greater chance of being accepted.

General Considerations

There are two major differences between our Metropo-
lis rule (for solving inverse problems) and the original
Metropolis algorithm. First, it allows an introduction of
non-uniform a priori probabilities. Moreover, an explicit
expression for the a priori probabilities is unnecessary: an
algorithm that samples the model space according to the
prior is sufficient. Second, our Metropolis rule is valid
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Figure 15: Mean value for the mass density, plus and
minus the standard deviation, and the median, plus and
minus the mean deviation for both, the a priori and the
a posteriori movie. These represent the mean and me-
dian (and corresponding deviations) of the a priori and a
posteriori probability distributions in the model space.
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Figure 16: The (left) a priori and (right) a posteriori cor-
relation functions c(z0, z) for z0 = 10 km. Notice the an-
ticorrelations appearing in the posterior correlation func-
tion.

for an arbitrary probability (i.e., it is not linked to the
Gibbs-Boltzmann distribution).

Our algorithm has been developed for sampling of dis-
crete spaces according to given probabilities. However,

it can be used for optimization. The Metropolis algo-
rithm is already used in simulated annealing [Kirkpatrick
et al., 1983], where the desired distribution is changed
during the process, starting with a uniform distribution
and ending with a near-delta distribution, centered at the
optimal solution. We could also find the “best model”
by artificially using in the equations values for the ex-
perimental uncertainties that tend to zero. However, we
do not recommend paying any interest to this concept of
“best model”.

The method developed above is independent of the way
probabilities have been normalized. This is important, as
many interesting properties of a probability distribution
can be inferred from a random walk, even before the walk
has been so extensive that it allows an effective estimation
of the denominator of equation (14).

Although we have designed a sampling algorithm (and
given proof of its convergence to the desired distribution),
we have only addressed heuristically the difficult problem
of designing efficient algorithms. It can be shown that
the Metropolis rule is the most efficient acceptance rule
of the kind we consider (see Appendix C), but the accep-
tance rule is only part of the efficiency problem: defining
the graph (i.e., how the models can be perturbed) is a
nontrivial task, and we have only shown an example of it,
having no general theory to propose.

Conclusion

We have described a near-neighbor sampling algorithm
(random walk) that combines prior information with in-
formation from measurements and from the theoretical
relationship between data and model parameters. The
input to the algorithm consists of random models gen-
erated according to the prior distribution ρ(m) and the
corresponding values of the likelihood function that car-
ries information from measurements and the theoretical
data/model relationship. Output from the algorithm are
pseudo-random realizations of the posterior distribution
σ(m) . We applied the algorithm to a highly nonunique,
linear inverse problem, to show the method’s ability to
extract information from noisy data.

The a posteriori distribution contains all the informa-
tion about the parameterized physical system that can be
derived from the available sources. Unfortunately, this
distribution is multidimensional and is therefore impossi-
ble to display directly.

It is important to direct future efforts toward the de-
velopment of methods for analyzing and displaying key
properties of a posteriori distributions of highly nonlin-
ear inverse problems. For this class of inverse problems,
the a posteriori distributions are typically multimodal,
and traditional techniques for analyzing error and reso-
lution properties of unimodal a posteriori distributions
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break down. There is no known way of understanding
uncertainties in the result of a highly nonlinear inverse
problem. Here, we have defined the a posteriori proba-
bility density σ(m) , which contains all the information,
but how to extract it? Clearly, computing standard devi-
ations or covariances may be meaningless if the posterior
probability density is far from Gaussian, which is always
the case for highly nonlinear problems. Also, an exten-
sive exploration of the model space can not be made if
the space is of high dimension, as, for instance, in the
problem of interpretation of seismic reflection data.

In that problem, each model is usually represented by
an image. Using the methods described above, we should
start by generating pseudo random models with the prior
distribution ρ(m) . The movie should show models that,
on the grounds of our prior information, are more or less
likely. In geophysics, this is the right time for a geologist
to tell us if he agrees with the movie or if, on the contrary,
he sees too many unlikely or too few likely models. When
the geologist is satisfied, we now can turn to look at the
data, and to run the Metropolis rule, using data misfits, to
converge to the posterior probability distribution σ(m) .
The movie is now showing only models which are likely
after examination of prior evidence and of geophysical
data.

It must be understood that this point of view is much
more general than the usual one. For instance, imag-
ine a problem where certain parameters can be resolved
deterministically and other parameters can only be re-
solved statistically. This is the case, for instance, when
inverting seismograms to obtain earth models. The ma-
jor impedance contrasts, for instance, can be determinis-
tically resolved from reflected energy. However, imagine
that our space of admissible models contains models with
very fine layering, much finer than the seismic wavelength.
The position of these very fine layers can not be resolved
deterministically, but, as some properties of the seismo-
grams (coda amplitude decay, etc.) do contain informa-
tion on the average density of fine layers, models (with
fine layering) compatible with this information should be
generated. Those fine layers could of course not be lo-
cated individually, but if the data, say, perfectly resolve
the average density of a series of layers, all the selected
models should display the same average density of these
layers. A simple illustration of this possibility has been
made here with the “bump” in our mass density models.

From the final collection of models we can start posing
questions. Ask for instance for any particular property of
the model, for instance, the depth of a particular layer,
the smoothed matter density distribution, etc. We have
now many examples of that property. It may happen
that all the models give the same value for it: the prop-
erty is well constrained by the data. Some, using old
terminology, would say that asking for that property is

a “well-posed question”. On the contrary it may happen
that all the models give absolutely different answers to
the question.

In general, we are able to estimate statistics on that
property and give answers with a clear probabilistic mean-
ing. In almost all the interesting cases, those statistics will
not follow the nice bell-shaped Gaussian distribution, but
this should not be an obstacle to a proper analysis of un-
certainties. We are well aware of the often tremendous
computational task imposed by this approach to inver-
sion. However, the alternative may be an uncertain esti-
mation of uncertainties.

Appendix A: Design of Random
Walk With a Desired Equilibrium
Distribution

The design of a random walk that equilibrates at a de-
sired distribution {pi} can be formulated as the design of
an equilibrium flow having a throughput of pi particles at
point i . The simplest equilibrium flows are symmetric,
that is, they satisfy fij = fji : the transition i ← j is
as likely as the transition i → j . It is easy to define a
symmetric flow on any graph, but it will in general not
have the required throughput of pj particles at point j .
This requirement can be satisfied if the following adjust-
ment of the flow is made: first, multiply all the flows fij

with the same positive constant c . This constant must be
small enough to assure that the throughput of the result-
ing flows cfij at every point j is smaller than its desired
probability pj . Finally, at every point j , add a flow fjj ,
going from the point to itself, such that the throughput
at j gets the right size pj . Neither the flow scaling nor
the addition of fjj will destroy the equilibrium property
of the flow. In practice, it is unnecessary to add a flow
fjj explicitly, since it is implicit in our algorithms that
if no move away from the current point takes place, the
move goes from the current point to itself. This rule au-
tomatically adjusts the throughput at j to the right size
pj .

Appendix B: Näıve and Uniform
Random Walks

Näıve Walks

Consider two arbitrary neighbors, i and j , having ni and
nj neighbors, respectively, and a random walk with the
simple transition probabilities pji = 1/ni and pij = 1/nj

(choosing one of the neighbors, as the next point, uni-
formly at random). If we want the equilibrium flow to
be symmetric, pjiqi = pijqj , which is satisfied if qi = ni.
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Furthermore, the above probabilities make all the flows
fji = pjiqi equal to unity. So, the total throughput
through point i is

∑
k fik =

∑
j fji = ni = qi. Hence

qi = ni must be the equilibrium distribution for the ran-
dom walk.

Uniform Walks

The rules for the uniform walk follows now directly from
applying the Metropolis rule (see later) to the above ran-
dom walk. The Metropolis acceptance probabilities are
pacc

ji = min(vj , vi)/vi , where vi = 1/qi and vj = 1/qj are
the “modification probabilities”.

Appendix C: Modifying a Random
Walk by Introduction of an Accep-
tance Rule

Consider a random walk Pij with equilibrium distribu-
tion ρi and equilibrium flow fij . We can multiply fij

with any symmetric flow ψij , where ψij ≤ Lj , for all i
and j , and the resulting flow ϕij = fijψij will also be
symmetric and hence an equilibrium flow. The transi-
tion probabilities of a “modified” algorithm with flow ϕij

and equilibrium probability σj is obtained by dividing
ϕij with the product probability σj = ρjLj . This gives
the transition probability: Pmodified

ij = fijψij/ρjLj =
Pijψij/Lj , which is equal to the product of two fac-
tors: the initial transition probability, and a new prob-
ability: the acceptance probability P acc

ij = ψij/Lj . If
we choose to multiply fij with the symmetric flow ψij =
min(Li, Lj) , we obtain the Metropolis acceptance prob-
ability P metrop

ij = min(Li, Lj)/Lj , which is one for Li ≥
Lj , and equals Li/Lj when Li < Lj . Choosing, instead,
ψij = LiLj/(Li +Lj) , we get the “logistic rule” with ac-
ceptance probability P log

ij = Li/(Li + Lj) . The simplest
algorithm can be derived from ψij = mini(Li) , giving
the acceptance probability P evap

ij = mini(Li)/Lj . The
acceptance rule for this constant flow we call the “evapo-
ration rule”, as the move by a random walker away from
the current point depends only on the desired probability
at that point and that this recalls the behavior of a water
molecule trying to evaporate from a hot point. A last
example appears by choosing ψij = LiLj , which gives
the acceptance probability P cond

ij = Li . We refer to this
acceptance rule as the “condensation rule”, as it recalls
the behavior of a water molecule trying to condensate at
a cold point. The efficiency of an acceptance rule can
be defined as the sum of acceptance probabilities for all
possible transitions. The acceptance rule with maximum
efficiency is obtained by simultaneously maximizing ψij

for all pairs of points j and i . Since the only constraint
on ψij (except for positivity) is that ψij is symmetric and

ψkl ≤ Ll , for all k and l , we have ψij ≤ Lj and ψij ≤ Li .
This means that the acceptance rule with maximum effi-
ciency is the Metropolis rule, where ψij = min(Li, Lj) .

Appendix D: An Iteration Consist-
ing of a Randomly Chosen Step

In this case, the transition probability matrix for the it-
eration is equal to a linear combination of the transition
probability matrices for the individual steps. The coeffi-
cient of the transition probability matrix for a given step
is the probability that this step is selected. Since the vec-
tor of desired probabilities is an equilibrium distribution
(eigenvector with eigenvalue 1) for each of the step tran-
sition probability matrices, and since the sum of all the
coefficients in the linear combination is equal to 1, it is
also an equilibrium distribution for the transition proba-
bility matrix for the complete iteration. This equilibrium
distribution is unique, since it is possible, following the
given steps, to go from any point to any other point in
the space.
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