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Some considerations of the concept of climate feedback
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ABSTRACT: A conceptual study of climate feedbacks is carried out using two simple linear two-zone models and the
commonly-used zero-dimensional model to which they reduce under simplifying assumptions. The term ‘feedback’ is used
in many different senses in the climate literature. Two prototype usages, stability-altering feedback (defined in terms of a
system’s asymptotic response to an impulsive forcing, negative when stability-enhancing) and sensitivity-altering feedback
(defined in terms of a system’s steady-state response to a step-function forcing, negative when sensitivity-diminishing)
have been isolated for study. These two climate feedback concepts are viewed against the background of control theory,
which provides a generalized feedback perspective embracing all forms of forcing and which is often seen as providing
the paradigm for the concept of feedback as used in climate studies.

The relationship between the prototype climate feedbacks is simple in the context of the zero-dimensional model. Here,
the stability-altering and sensitivity-altering feedbacks provided by a given interaction are of the same sign, and the sign of
the stability-altering feedback as measured by initial tendencies always coincides with its sign as measured by the defining
asymptotic tendencies. Even in this simple model, however, the sign of the prototype climate feedbacks can be opposite
to the sign of the system’s feedback as defined in control theory.

In the two-zone models, the relationship between the prototype climate feedbacks is not so simple. It is shown that,
contrary to the common assumption, these feedbacks can be of opposite signs. Moreover, the sign of the stability-altering
feedback as measured by initial tendencies can be opposite to its sign as measured by asymptotic tendencies. It is further
shown that there is no simple relationship between the sign of either of the prototype climate feedbacks in the two-zone
models and the sign of these models’ feedback as defined in control theory.

These results point to the need for greater precision and explicitness in the definition and use of the term ‘climate
feedback’, both to facilitate interdisciplinary dialogue in relation to feedback and to guard against erroneous inferences
within the climate field. Explicit definitions of the two prototype categories of climate feedback studied here are
proposed. Copyright  2007 Royal Meteorological Society
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1. Introduction

Feedbacks in the climate system are currently receiving
much attention, particularly as the future extent of
anthropogenic global warming is believed to depend
critically on their influence (e.g. NRC, 2003; Bony et al.,
2006). Considerable difficulty has been encountered in
understanding the various climate feedbacks in operation.
In a recent review of cloud feedbacks, Stephens (2005)
has identified conceptual difficulties in the definition
of feedback as one of the impediments to progress,
pointing out that different assumptions about the nature
of the climate system can lead to feedback measures
that differ not only in magnitude but even in sign. The
present paper expands on this theme, examining some
further conceptual aspects of climate feedback. Attention
is focused on two of the different senses in which the term
‘climate feedback’ is commonly used, and it is shown

* Correspondence to: J. R. Bates, School of Mathematical Sciences,
University College Dublin, Belfield, Dublin 4, Ireland.
E-mail: Ray.Bates@ucd.ie

that, except in a zero-dimensional model, they can be in
conflict.

We argue that careful attention to how climate feedback
is defined is important for two reasons. First, interdis-
ciplinary dialogue with scientists working outside the
climate field, or discussion between scientists working in
different areas of the climate field, can be greatly impeded
if those involved have different understandings of what
the term ‘climate feedback’ means. Secondly, an aware-
ness of the different ways in which feedback is defined
is necessary to guard against erroneous transfer of results
from other disciplines into the climate field, or faulty
reasoning within the climate field.

We begin by reviewing the concept of feedback as used
in electronics and in the theory of automatic control, since
it is from these areas that the concept of feedback as used
in climate studies is frequently claimed to be derived.

Feedback as a technical concept originated in the field
of electronics in the early part of the twentieth century,
where it was used to describe the return of a portion
of the output of an amplifier to the input, modifying the
properties of the amplifier. In 1927, H. S. Black invented
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the negative-feedback audio amplifier and derived the
now-classical formula for the amplification with feed-
back:

GF = G

1 − GH
,

where GF is the gain (ratio of output to input signals)
with feedback, G is the forward gain (or gain without
feedback), and H is the feedback factor, defined as the
ratio of the fed-back signal to the output signal. (For
a historical view, see the retrospective article by Black
(1977); for a general treatment of feedback in electron-
ics, see (Smith, 1987)). Black’s formula, which applies
to both positive and negative feedback, describes the
steady-state response of a stable single-loop amplifier
to a sinusoidal input signal. (At the audio frequencies
of relevance in amplifier theory, adjustment to the final
steady state in an electronic circuit is effectively instan-
taneous). The output is a sinusoidal signal of the same
frequency. In general, changes in phase and magnitude
(both frequency-dependent) occur at both the amplifica-
tion and the feedback stages within the feedback loop;
thus, G and H are complex quantities. Negative feedback
is said to occur when the amplitude and phase of the fed-
back signal are such that the magnitude of GF is less then
the magnitude of G, and vice versa for positive feedback.
A special case of negative feedback, corresponding to a
signal fed back with a 180° phase change, occurs when
the loop gain GH is real and negative.

The term ‘feedback’ was subsequently adopted in
the field of automatic control, where it is used to
describe an operation in which the difference between
the desired value of a variable (the input) and its
measured value (the output) is returned to a controller
that drives the variable in such a way as to reduce
the difference (e.g. Dorf and Bishop, 2005). General
feedback control theory embraces systems that may
involve electrical, mechanical, hydraulic and chemical
components. Unlike in the case of the audio amplifier,
instantaneous adjustment of such general systems to
a final steady state cannot usefully be assumed: the
transient response and the eventual steady-state response
to a given input are both of concern, and the transient
features (such as the stability properties and the swiftness
of response) are generally the ones of primary interest.

In the design of a feedback control system, a math-
ematical model of the system is usually constructed,
and the system’s performance under normal operating
conditions assessed using test input signals of various
forms – for example, an impulse function, a step func-
tion, or a sinusoidal function. (Maxwell (1868) initiated
the mathematical modelling of what are now called feed-
back control systems before the term ‘feedback’ was
coined. He was mainly concerned with the stability of
such systems.) It is the usual practice in control theory
to linearize the governing equations of the model and to
solve them for the various test inputs using the method of
Laplace transforms. For a single-loop system, a gain for-
mula analogous to Black’s amplifier formula then arises,

but with the complex numbers GF, G and H replaced
by the corresponding transforms GF(s), G(s) and H(s),
which are explicit functions of the complex Laplace vari-
able s. For a negative-feedback control system (defined
as one in which the fed-back signal is subtracted from
the input signal), the gain with feedback GF(s) can be
expressed in terms of the forward gain G(s) and the loop
gain G(s)H(s) as:

GF(s) = G(s)

1 + G(s)H(s)
.

For a positive-feedback control system (defined as one in
which the fed-back signal is added to the input signal),

GF(s) = G(s)

1 − G(s)H(s)
.

The gain formula (or closed-loop transfer function) thus
expressed explicitly shows the sign of the feedback and
provides a means of determining both the transient and
the steady-state response of the system to any form of
input.

It might be expected that, for a sinusoidal input, in
the limit as the transients decay to zero in a stable sys-
tem, the sign of the feedback as defined in control theory
would coincide with that of the feedback as defined in
electronics. We shall show here, however, that it is pos-
sible in this limit for a system that has negative feedback
according to the control-theory definition to have posi-
tive feedback according to the electronics definition. This
gives an indication from outside the climate field of the
need for caution in relation to how feedback is defined.

The term ‘feedback’ entered the climate literature in
the 1960s, and its use is now widespread within this
field. Even within this restricted area, there are many
different usages. From these, two prototype senses can
be isolated. The first, which we shall call stability-
altering feedback, describes the effect of an interaction
between physical processes that influences the asymptotic
stability of impulsively-forced perturbations in the global
climate system or its components. The second, which
we shall call sensitivity-altering feedback, describes
the effect of an interaction between physical processes
that influences the equilibrium change in global mean
surface temperature resulting from a constant increment
in external forcing.

Climate feedback in the stability-altering sense was
introduced by Stommel (1961) in a theoretical study of
the thermohaline circulation. The interaction providing
the feedback in his case was that between the local den-
sity transforming processes (heating and cooling, evapo-
ration and precipitation) in the warm and cold reservoirs
of his ocean model and the flow between the reservoirs,
which is itself driven by the density difference. This
interaction implies the existence of three possible equi-
librium states of the model for the same basic forcing,
and determines whether small perturbations about these
states are asymptotically stable or unstable. Feedback in
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the stability-altering sense is now a common concept
in the oceanographic literature, with positive feedback
used to characterize a destabilizing interaction and neg-
ative feedback a stabilizing one (e.g. Nakamura et al.,
1994; Rahmstorf and Willebrand, 1995; Marotzke, 1996;
Jayne and Marotzke, 1999). It is also common in the
general climate literature. For example, Charney et al.
(1977) used the concept in their study of the stability of
desert margins using a general-circulation model (GCM);
the interaction providing the feedback involved surface
albedo, radiation, evaporation and rainfall. Ramanathan
and Collins (1991) and Lindzen et al. (2001), using satel-
lite observations, proposed stabilizing feedbacks on tropi-
cal sea surface temperature (SST) perturbations involving
cloud–radiation–temperature interactions, based respec-
tively on increased albedo and increased infrared emis-
sion through a dryer and more cloud-free upper tro-
posphere as the tropical SST increases. Bates (1999)
proposed a stabilizing feedback on large-scale SST per-
turbations based on the interaction between dynamically-
induced changes in evaporation (caused by changes in
eddy angular momentum transport and the consequent
changes in surface wind) and the local physical processes
influencing SST. Caballero (2001) further investigated
this stabilizing feedback using a single-column model for
the Tropics interacting with an Extratropics where the
SST is held fixed, a tropical upper-tropospheric humidity
profile being prescribed.

Climate feedback in the sensitivity-altering sense was
introduced by Manabe and Wetherald (1967) in a study
of the equilibrium temperature response of a one-
dimensional radiative–convective model to a constant
increment in external forcing, such as a change in the
solar constant or a doubling of the atmospheric CO2 con-
centration. The interaction providing the feedback in their
case was that between the changes in the water-vapour
field with a fixed relative-humidity profile and the radia-
tive–convective processes determining the temperature
field, the zero-interaction case corresponding to a fixed
absolute-humidity profile. This type of feedback is usu-
ally referred to in the climate literature simply as the
water-vapour feedback. Sensitivity-altering feedback was
soon extended to the GCM context and to other types of
interactions. Thus, Wetherald and Manabe (1988) studied
the effect of cloud–radiation interactions on the equilib-
rium response of a GCM to a CO2 doubling, comparing
the results with interactive and prescribed cloud cover.
Sensitivity-altering feedback is defined as positive if the
equilibrium global-mean surface temperature increment
due to a constant increment in global-mean forcing is
enhanced by a specified interaction between physical pro-
cesses, and negative if it is diminished. Feedback in the
sensitivity-altering sense is now a common concept in the
climate-change literature (e.g. IPCC, 2001; NRC, 2003).

An unstated assumption generally made in the climate
literature is that the two usages of the term ‘climate
feedback’ described above are interchangeable. In other
words, it is implicitly assumed that if an interaction
between physical processes provides a stability-altering

feedback, then it provides a sensitivity-altering feedback
of the same sign. (Exceptions where this assumption
is not made are the studies of Lindberg (2002) and
Alexeev (2003). In these studies, the complexity of the
relationship between climate stability and sensitivity is
recognized, but the authors’ concerns are with matters
other than those discussed here.) Here are some examples
to illustrate this point:

• In (Peixoto and Oort, 1992), chapter 2, the mathemat-
ical treatment in sections 2.5.1 and 2.5.2 is concerned
with sensitivity-altering feedback, whereas the subse-
quent verbal discussion in section 2.5.3 is concerned
mainly with stability-altering feedback. There us no
mention of any transition to a different concept of feed-
back.

• In (AMS, 2000), the following definition is given:

Feedback – A sequence of interactions that determines
the response of a system to an initial perturbation.
Feedbacks may either amplify (positive feedback) or
reduce (negative feedback) the ultimate state of the
system.

The first sentence, in referring to the response to an
initial perturbation, is concerned with stability. The
second, in referring to the ultimate state, is concerned
with sensitivity. No distinction between the two senses
of feedback is made.

• In (IPCC, 2001), chapter 7 ‘Physical Climate Processes
and Feedbacks’ is concerned mainly with sensitivity-
altering feedback, but also deals with stability-altering
feedback (for example, in relation to the stability of
the thermohaline circulation). When discussing water-
vapour and cloud feedbacks, the term is used in some
places in a sensitivity-altering sense and in others in
a stability-altering sense, with no discussion of the
possible implications of the alternation in usage. The
glossary of the report provides the following definition:

Climate Feedback. An interaction mechanism between
processes in the climate system is called a climate
feedback when the result of an initial process triggers
changes in a second process that in turn influence the
initial one. A positive feedback intensifies the initial
process and a negative feedback reduces it.

Since this definition does not mention a constant incre-
ment in external forcing or the equilibrium response
thereto, it is not a definition of sensitivity-altering feed-
back. It can be interpreted as a definition of stability-
altering feedback, though it appears to define the sign
of the feedback in terms of initial rather than asymp-
totic tendencies. (These tendencies can be of oppo-
site sign, and the sign of stability-altering feedback
as indicated by initial tendencies can be misleading:
see Section 3.4 below.) Both in chapter 7 and in the
glossary definition, there is clearly an assumption that
the stability-altering and sensitivity-altering senses of
climate feedback are interchangeable.
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The main purpose of the present paper is to show
that stability-altering feedback and sensitivity-altering
feedback as used in climate are two separate concepts,
and that neither of them coincides with the concept
of feedback as defined in control theory or in elec-
tronics. The signs of stability-altering and sensitivity-
altering feedback coincide for the simple case of a zero-
dimensional climate model, but not necessarily if the
model is extended to include two zones with dynamical
interaction between them. To demonstrate this, results are
presented from two two-zone models of a hemisphere
that include dynamical interaction between the Tropics
and the Extratropics through baroclinic eddy transports.
If interhemispheric symmetry is assumed, the models are
global.

An additional purpose of the paper is to investigate
the relationship between the initial and asymptotic ten-
dencies of impulsively-forced perturbations. Here again,
it is shown that the simple relationship between these
tendencies and stability-altering feedback that holds for
a zero-dimensional climate model can break down when
the model is generalized to include two zones.

The models used are based on linearized energy equa-
tions for an idealized climate system in which the surface
fluxes determining the tropical and extratropical SSTs
are calculated using, respectively, top-of-the-atmosphere
and surface parametrizations. These two models will be
referred to as the TOA and SFC models, respectively.
More complex versions of them have been used in (Bates,
1999) to examine climate stability and in (Bates, 2004) to
examine climate sensitivity. The results presented here,
however, are new, involving parameter values chosen
specifically to demonstrate that the stability-altering and
sensitivity-altering feedbacks provided by the interaction
between given physical processes can be of opposite
signs. The required parameter values differ, though not
drastically, from the observational estimates used previ-
ously.

Brief descriptions of both models are given. These
are intended to demonstrate that both are internally
consistent and physically possible low-order models of an
idealized climate system. The models differ in assigning
the determining roles to different physical processes. The
question of which model may come closest to providing
a realistic first-order description of the actual climate
system has been discussed elsewhere (Bates, 1999, 2004),
and will not be taken up here; it is not necessary for
present purposes that either model provide an accurate
description of the climate system. For the most part, the
same results regarding conceptual aspects of feedbacks
emerge from both models, but the overall results of our
investigation are more clearly seen using the SFC model.

2. The models

The models used are two-zone box models of a hemi-
sphere on an aquaplanet, zone 1 representing the Tropics
(taken as 0–30°) and zone 2 the Extratropics (taken as

30° –90°), with a wall at the Equator. The models do
not resolve the seasonal cycle. A mixed-layer ocean of
depth D (taken here as 100 m) is assumed in both zones.
The basic equations for both models are derived from the
ocean energy equations:

c0
dT1

dt
= (F

↓
SFC)1 − FOH, (1)

c0
dT2

dt
= (F

↓
SFC)2 + FOH, (2)

where T1 and T2 are the SSTs in zones 1 and 2
respectively, c0 is the mixed-layer heat capacity in each
zone, F

↓
SFC is the net downward energy flux at the surface

in a zone, and FOH is the poleward ocean energy transport
at 30°. We calculate c0 as

πa2cpwρwD,

where a is the Earth’s radius (6.37 × 106 m), cpw is the
specific heat of seawater (4187 J kg−1K−1) and ρw is
the density of seawater (103 kg m−3); thus, c0 = 5.337 ×
1022 JK−1. The atmosphere, having a much lower heat
capacity than the mixed-layer ocean, is assumed to be
in energetic balance on the long time-scales of interest;
thus,

(F
↓
SFC)1 = (F

↓
TOA)1 − FE, (3)

(F
↓
SFC)2 = (F

↓
TOA)2 + FE, (4)

where F
↓
TOA is the net downward radiative energy flux at

the top of the atmosphere in a zone and FE is the poleward
transport of moist static energy by atmospheric motions
at 30°. Eliminating the surface fluxes from Equations (1)
and (2) using Equations (3) and (4) gives

c0
dT1

dt
= (F

↓
TOA)1 − (FE + FOH), (5)

c0
dT2

dt
= (F

↓
TOA)2 + (FE + FOH). (6)

The TOA model is based on the explicit use of
Equations (5) and (6), with the quantities on the right-
hand side parametrized in terms of T1 and T2. It is
implicitly assumed that (F

↓
SFC)1 and (F

↓
SFC)2 respond

in such a way that Equations (3) and (4), and thus
Equations (1) and (2), are always satisfied. The SFC
model is based on the direct use of Equations (1) and
(2), with the different quantities on the right-hand side
now parametrized in terms of T1 and T2. In this case
it is implicitly assumed that (F

↓
TOA)1, (F

↓
TOA)2 and FE

respond in such a way that Equations (3) and (4), and thus
Equations (5) and (6), are always satisfied. Thus, both
models provide energetically consistent representations
of the idealized climate system: atmospheric energy
balance is always observed, and there is no energetic
inconsistency for either model at either the surface or the
top of the atmosphere. The difference between the models
consists in the choice of which quantities are considered
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as playing a determining role and which are considered
as being a diagnostic consequence.

The equilibrium climates of the TOA and SFC models
satisfy, respectively, Equations (5) and (6) and Equations
(1) and (2), with d

dt
= 0. For a description of the

equilibrium climates based on observations, see (Bates,
1999). We are here concerned with small perturbations
about the observed equilibrium climate with FOH fixed
at its observed equilibrium value. Observed equilibrium
values will be denoted by an overbar and perturbations
about these values by a prime.

2.1. Perturbation equations

2.1.1. The TOA model

In deriving the perturbation forms of Equations (5) and
(6), we omit any variations in F

↓
TOA due to short-wave

radiation and consider only variations in this quantity
due to changes in outgoing long-wave radiation (OLR).
The OLR per unit area is parametrized as A + BT , T
being the SST in degrees Celsius, as is customary in
models of the Budyko–Sellers type (e.g. North et al,
1981). We choose different values of B in the tropical and
extratropical zones, denoted by B1 and B2 respectively.
Perturbations in FE are parametrized as in (Bates, 1999),
whereby

F ′
E = aE(aZ1T

′
1 − aZ2T

′
2). (7)

Here, aE, aZ1 and aZ2 are observationally-derived quan-
tities found by relating the seasonal mean values of FE
to the difference between the tropical and extratropical
500 hPa heights, with aZ1 and aZ2 representing the sensi-
tivities of these heights to SST changes.

The perturbation forms of Equations (5) and (6) can
thus be written as

c0
dT1

dt
= −b̂1T

′
1 − (d̂1T

′
1 − d̂2T

′
2) + (F ′

T)1, (8)

c0
dT2

dt
= −b̂2T

′
2 − (d̂1T

′
1 − d̂2T

′
2) + (F ′

T)2, (9)

where b̂i = πa2Bi , d̂i = aEaZi , and (F ′
T)1 and (F ′

T)2 rep-
resent the external forcings at the top of the atmosphere
in the respective zones.

The coefficients b̂1 and b̂2 in the above equations,
which are both positive, represent the local stabilizing
effects of OLR on SST perturbations as seen from the
top of the atmosphere, while the coefficients d̂1 and d̂2
represent the interzonal dynamical effects.

2.1.2. The SFC model

In deriving the perturbation forms of Equations (1)
and (2), we omit any variations in F

↓
SFC due to short-

wave radiation or sensible heat flux, and consider only
variations in this quantity due to net (upward minus
downward) long-wave radiation (FI) and latent heat flux

(FL). The perturbation in net long-wave radiation at the
surface is parametrized as

F ′
I = γIT

′ − F ′
G, (10)

where the first term on the right-hand side includes
variations in the upwelling Stefan–Boltzmann flux and
the downwelling back radiation from the atmosphere, and
the second term represents the external radiative forcing
at the surface. The coefficient γI is negative (giving
a locally destabilizing tendency), since downwelling
long-wave radiation at the surface, with the water-
vapour changes accompanying temperature changes taken
into account, increases faster with temperature than the
upwelling Stefan–Boltzmann flux: for a discussion of this
point, see (Hartmann, 1994, chapter 9), (Bates, 1999) or
(Lindberg, 2003).

The perturbation in latent heat flux, following the bulk
aerodynamic formula, can be written as

FL = F L

(
$q ′

$q
+ V ′

V

)
. (11)

Here, $q ′/$q is a humidity factor (q being the specific
humidity) and V ′/V is a wind factor (V being the magni-
tude of the surface wind). The humidity factor is approx-
imated, as in (Bates, 1999), by assuming the air–sea
temperature difference and low-level relative humidity to
be fixed; this leads to the Clausius–Clapeyron expression

$q ′

$q
= L

RvT
2 T ′, (12)

where L is the latent heat of vaporization of water
and Rv is the gas constant for water vapour. The wind
factor is approximated, as in (Bates, 1999), by assuming
balance between angular momentum and torque and
taking the ratio u′/u (u being the zonal wind component)
as representative of V ′/V ; thus, for small perturbations
about equilibrium in either zone,

V ′

V
= aM

2F M
(aZ1T

′
1 − aZ2T

′
2). (13)

Here, aM is an observationally-derived quantity found
by relating the seasonal mean values of the eddy angu-
lar momentum transport at 30° (FM) to the difference
between the tropical and extratropical 500 hPa heights.

Using Equations (10), (11), (12) and (13), we see that
the perturbation forms of Equations (1) and (2) become

c0
dT1

dt
= −b1T

′
1 − (d11T

′
1 − d12T

′
2) + (F ′

G)1, (14)

c0
dT2

dt
= −b2T

′
2 − (d21T

′
1 − d22T

′
2) + (F ′

G)2, (15)

where

bi =
(

F L
L

RvT
2 + γI

)

i

, (16)
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and
dij = (F L)i

aMaZj

2F M
. (17)

As in the TOA case, the coefficients b1 and b2 in the
above equations represent local stabilizing effects (it
being assumed that the Clausius–Clapeyron evaporative
term in Equation (16) predominates over the negative
long-wave radiation term, so that b1 and b2 are both pos-
itive), while the coefficients dij represent the interzonal
dynamical effects. In contrast to Equations (8) and (9),
where the sign preceding the dynamical terms changes
from one equation to the other, the sign remains the same
in Equations (14) and (15). This is because in the TOA
model an increase in the tropical–extratropical 500 hPa
difference is explicitly reflected in an increase in pole-
ward eddy heat transport (which cools the tropical zone
and heats the extratropical zone), while in the SFC model
it is explicitly reflected in an increase in poleward angular
momentum transport (which cools the SST in both zones,
thanks to an increase in surface wind speed in both).

3. Stability, sensitivity and feedbacks

The governing equations (Equations (8), (9), (14) and
(15)) for our two-zone models can be written in the
generic forms:

c0
dT1

dt
= −α1T

′
1 − α2T

′
2 + F ′

1, (18)

c0
dT2

dt
= −α3T

′
1 − α4T

′
2 + F ′

2, (19)

where for the TOA model

α1 = b̂1 + d̂1
α2 = −d̂2
α3 = −d̂1
α4 = b̂2 + d̂2
F ′

i = (F ′
T)i





(20)

and for the SFC model

α1 = b1 + d11
α2 = −d12
α3 = d21
α4 = b2 − d22
F ′

i = (F ′
G)i





. (21)

By elimination of one or other of the dependent variables,
Equations (18) and (19) can be written as two second-
order equations in the independent variables T ′

1 and T ′
2,

as follows:

M
d2T ′

1

dt2 + β
dT ′

1

dt
+ kT ′

1 = r ′
1, (22)

M
d2T ′

2

dt2 + β
dT ′

2

dt
+ kT ′

2 = r ′
2, (23)

where

M = c2
0, (24)

β = c0(α1 + α4), (25)

k = α1α4 − α2α3, (26)

r ′
1 =

(
c0

d
dt

+ α4

)
F ′

1 − α2F
′
2, (27)

r ′
2 =

(
c0

d
dt

+ α1

)
F ′

2 − α3F
′
1. (28)

The quantities r ′
1 and r ′

2, which are functions of the forc-
ings in both zones, represent the effective forcings on T ′

1
and T ′

2, respectively. Equations (22) and (23) are equiva-
lent to the governing equation for a spring–mass–damper
system in which M is the mass of the bob, β is the fric-
tion coefficient, k is the spring constant and r ′ is the
external force on the bob (e.g. Dorf and Bishop, 2005,
chapter 2).

We shall use our TOA and SFC models, and the zero-
dimensional model to which they can be reduced, to study
the various categories of feedback that were described in
Section 1. These categories will be designated as follows:

• F1 – feedback according to the control-theory defini-
tion;

• F2 – feedback according to the electronics definition;
• F3 – stability-altering feedback as used in climate

studies;
• F4 – sensitivity-altering feedback as used in climate

studies.

3.1. A control-theory perspective on the two-zone
models

At this point, we express our generic two-zone governing
equations in the formalism of control theory, following
Dorf and Bishop (2005). In control theory, the transfer
function of a linear system is defined as the ratio of the
Laplace transform of the output variable to the Laplace
transform of the input variable, with all initial conditions
assumed to be zero. A closed-loop feedback control
system is conventionally represented as a block diagram
as in Figure 1. Here, the signals are Laplace transforms of
the system variables, these transforms being functions of
the complex Laplace variable s. The input signal R(s) is
combined at the summing point (represented by the open
circle in the figure) with the fed-back signal B(s); in the
case of a negative (positive) feedback, B(s) is subtracted
from (added to) R(s), giving the actuating signal

A(s) = R(s) ∓ B(s). (29)

The output signal Y (s) is related to the actuating signal
by

Y (s) = G(s)A(s), (30)
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G(s)

H(s)

Output

B(s)

Y(s)

Y(s)

Input A(s)R(s)

Figure 1. Block diagram for a single-loop feedback control system with
forward gain G(s) and feedback factor H(s).

where G(s) is the forward gain. The fed-back signal is
the output signal multiplied by the feedback factor H(s):

B(s) = H(s)Y (s). (31)

Note that, while at the summing point the output is the
difference or sum of the inputs, at the pick-off point
(represented by the small full circle in Figure 1) the signal
is transmitted undiminished in two directions. Using
Equation (31) to eliminate B(s) from Equation (29), and
then using the result to eliminate A(s) from Equation
(30), we obtain:

Y (s) = G(s) (R(s) ∓ H(s)Y (s)) . (32)

From this we obtain the standard expression for the
closed-loop transfer function:

GF(s) ≡ Y (s)

R(s)
= G(s)

1 ± G(s)H(s)
. (33)

A positive sign in the denominator indicates that the sign
of feedback F1 is negative, a negative sign that it is
positive. Note that the sign of feedback F1 is independent
of the form of the input signal and is not restricted in
its connotation to a transient or steady-state response. In
this respect, as we shall see, feedback F1 differs from
feedbacks F2, F3 and F4.

To relate our model to the above control-theory for-
malism, we take the Laplace transforms of Equations
(22) and (23). Assuming zero initial conditions (i.e. all
perturbation quantities zero for t < 0), we then obtain

(
Ms2 + βs + k

)
T̂1(s) = r̂1(s), (34)

(
Ms2 + βs + k

)
T̂2(s) = r̂2(s), (35)

with

r̂1(s) = (c0s + α4)F̂1(s) − α2F̂2(s), (36)

r̂2(s) = (c0s + α1)F̂2(s) − α3F̂1(s). (37)

In the above, the Laplace transform L{f (t)} = f̂ (s) of a
function of time f (t) is defined by

f̂ (s) =
∫ ∞

0−
e−stf (t) dt, (38)

and T̂i(s), r̂i (s) and F̂i(s) represent the transforms of
T ′

i (t), r ′
i (t) and F ′

i (t), respectively.
It is clear from Equations (34) and (35) that the

variables T ′
1 and T ′

2 have the same transfer function
GF(s):

GF(s) = T̂1(s)

r̂1(s)
= T̂2(s)

r̂2(s)
, (39)

where
GF(s) = 1

Ms2 + βs + k
. (40)

This transfer function can be written in the standard
closed-loop form

GF(s) = G(s)

1 + G(s)H(s)
(41)

with six possible choices of (G(s), H(s)); for example,
we can choose

G(s) = 1

Ms2 + βs
H(s) = k. (42)

Whichever one of the possible choices we take, the plus
sign in the denominator in Equation (41) is always the
relevant one as long as M , β and k are all positive.
The parameter M is positive by definition, and we shall
see below that β and k are positive if our system is
stable. Assuming this to be the case, our generic two-
zone system (Equations (18) and (19)) is dynamically
equivalent to a negative-feedback control system: in other
words, the sign of F1 for our system is negative. Note that
Equations (39), (41) and (42), which were obtained by
mathematical manipulation of the governing equations,
are consistent with Equation (33), which was obtained
by symbolic manipulations based on the block diagram
of Figure 1.

Of primary interest in control theory are the stability
and time behaviour of a system. To examine these char-
acteristics, an impulse-function input signal is normally
used, and we follow this approach here by assuming a
forcing of the form

F ′
i = ($Fi)δ(t), (43)

where δ(t) is the delta function (zero everywhere except
at t = 0). Since L{δ(t)} = 1, we have

F̂i(s) = $Fi, (44)

and Equations (36) and (37) then give

r̂1(s) = (c0s + α4)$F1 − α2$F2, (45)

r̂2(s) = (c0s + α1)$F2 − α3$F1. (46)
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Hence, Equations (39) and (40) give

T̂1(s) = (c0s + α4)$F1 − α2$F2

Ms2 + βs + k
, (47)

T̂2(s) = (c0s + α1)$F2 − α3$F1

Ms2 + βs + k
. (48)

After some manipulation, the inverse transforms of
Equations (47) and (48) give the solutions

T ′
1(t) = 1

c2
0(RF − RS)

[{(c0RF − α4) $F1

+α2$F2} exp(−RFt)

− {(c0RS − α4) $F1 + α2$F2} exp(−RSt)
]

(49)

and

T ′
2(t) = 1

c2
0(RF − RS)

[{(c0RF − α1) $F2

+α3$F1} exp(−RFt)

− {(c0RS − α1) $F2 + α3$F1} exp(−RSt)
]
, (50)

where the characteristic rates of decay RF and RS are
defined by

RF = 1
c0

α1 + α4

2

(
1 +

√
1 − x

)
, (51)

RS = 1
c0

α1 + α4

2

(
1 −

√
1 − x

)
, (52)

with
x = 4

α1α4 − α2α3

(α1 + α2)
2 . (53)

These solutions satisfy the initial conditions T ′
i = $Fi/c0

at t = 0, and it can easily be verified by substitution that
they satisfy the original differential equations, Equations
(18) and (19), for t > 0. (Note that RF and RS can also
be viewed as the decay rates of the model’s fast and slow
normal modes: see (Bates, 1999)).

The conditions for asymptotic stability of the solutions
given by Equations (49) and (50) are that the real parts
of RF and RS be positive. These conditions are satisfied
if

α1 + α4 > 0 α1α4 − α2α3 > 0. (54)

The above conditions can also be expressed as

β > 0 k > 0; (55)

in other words, the stability conditions are that the ‘fric-
tion coefficient’ and ‘spring constant’ both be positive. It
is assumed everywhere in this paper that these conditions
are satisfied (and when numerical values are assigned
they are chosen so that this is the case).

Feedback F3 is defined with respect to the asymptotic
response of a system to an impulse-function input such
as Equation (43), being negative if a specified interac-
tion gives increased asymptotic rates of decay of the
impulsively-induced perturbation and positive if it gives
decreased asymptotic rates of decay. Clearly, this is a dif-
ferent concept of feedback from F1, though it describes
an aspect of the system’s behaviour that is of interest in
control theory. The sign of feedback F3 in our simple
climate models will be considered later.

Another aspect of a system’s performance of interest
in control theory is its response to a step-function input.
We study this aspect here by taking

F ′
i = ($Fi)1(t), (56)

where 1(t) is the unit step function, which has the value
zero for t < 0 and the value 1 for t ≥ 0. The complete
time-dependent response of our generic two-zone system
to such an input can be obtained using the method of
Laplace transforms, as for the impulse-function input.
Here, however, we confine our attention to the steady-
state response to the forcing given by Equation (56) after
the transients have died out. The steady-state response
can be simply obtained by setting all time derivatives to
zero in Equations (22) and (23), whence we have

T ′
i (∞) = 1

k
r ′
i (∞) = GF(0)r ′

i (∞), (57)

where r ′
1(∞) and r ′

2(∞) (the values at t = ∞) are given
by Equations (27) and (28) with F ′

i replaced by $Fi , and
GF(0) is given by Equation (40). Thus, the steady-state
temperature increment in each zone in response to a step-
function input is the steady-state value of the effective
forcing in that zone divided by the ‘spring constant’, or
multiplied by the steady-state transfer function.

Feedback F4 is defined in terms of the steady-state
response of the climate system to a step-function forcing
such as Equation (56), being negative if a specified
interaction causes a decreased response and positive if
it causes an increased response. Again, this is a different
concept of feedback from F1, though it also describes
an aspect of the system’s behaviour that is of interest in
control theory. The sign of feedback F4 in our simple
climate models will be considered later.

To investigate the sign of feedback F2 in our generic
two-zone system, we take a sinusoidal input

F ′
i = ($Fi)eiωt , (58)

where ω is the frequency. It is easily shown that
the steady-state response of our system governed by
Equations (22) and (23) to this input is an output signal
of the same frequency satisfying

T ′
i = GF(iω)r ′

i , (59)

where r ′
1 and r ′

2 are given by Equations (27) and (28),
F ′

1 and F ′
2 by Equation (58), and GF(iω) by Equation
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(40). Choosing G(s) and H(s) as given by Equation (42),
GF(iω) can be written:

GF(iω) = G(iω)

1 + G(iω)k
. (60)

In the above, electronics theory is seen as a special case
of control theory. However, the field of electronics has
its own convention for defining the sign of feedback.
According to the electronics definition (Smith, 1987,
chapter 15), an amplifier provides a positive or negative
feedback for a sinusoidal input signal of frequency ω
according as the magnitude of the steady-state gain
with feedback is greater or less than the magnitude
of the steady-state gain without feedback. Applying
this convention here, our system provides a positive or
negative feedback F2 according as GF(iω) is greater or
less in magnitude than G(iω). For a system with G(s) of
the form given by Equation (42), it is easily seen from
Equation (60) that

|GF(iω)|
|G(iω)| =

(
M2ω4 + β2ω2

M2 (
ω2 − ω2

n

)2 + β2ω2

) 1
2

, (61)

where ωn = (k/M)1/2. (In terms of the spring–mass–
damper analogy, ωn is the natural frequency of oscillation
of the system.) From Equation (61) it can be seen that
the feedback F2 for our system is positive or negative
according as ω is greater or less than ωn/

√
2. But we have

seen that for our generic two-zone model the feedback
F1 is negative for all input signals. Thus, we have an
example of a system in which the feedbacks F1 and F2
can be of opposite signs.

Our model results show that transferring the gain
formula of electronics (which refers to the steady-state
response of a system to a sinusoidal input) to the climatic
context (where it is meant to apply to the steady-state
response to a step-function input) is not as straightforward
as is often assumed. When ω *= 0, we see from Equation
(60) that GF(iω) can be written in the closed-loop form
G/(1 − f ) (in the climate literature, the loop gain GH
is usually replaced by the quantity f , which is called
the feedback); however, GF(iω) is then complex and not
equal to the model’s steady-state gain for a step-function
input, GF(0). In the limit as ω → 0, GF(iω) becomes
real and equal to the steady-state gain for a step-function
input, but then it does not have the form G/(1 − f ). It is
possible, of course, to define a G and an f independently
of any governing equations in such a way that GF(0) can
be written as G/(1 − f ), but any direct relationship with
control theory is then lost and calling G a forward gain
and f a feedback becomes purely figurative.

3.2. The zero-dimensional model

If the dynamical interaction terms are omitted and the
local stabilizing coefficients are regarded as having the

same (positive) value in both zones, our generic two-
zone system of Equations (18) and (19) reduces, with an
assumption of interhemispheric symmetry, to a simple
equation for the global average SST perturbation, of the
form

c0
dT ′

dt
= −bT ′ + F ′. (62)

A model represented by Equation (62) is usually referred
to as a zero-dimensional model. The TOA version of this
equation is of the form used in conceptual discussions
of climate feedbacks in the IPCC context (IPCC, 2001,
chapter 9). The considerations of this subsection refer
equally to the TOA and SFC versions. We here examine
in the context of this model the various concepts of
feedback defined earlier.

We begin, once more, by adopting a control-theory
perspective. Taking the Laplace transform of Equation
(62), and assuming zero initial conditions, we obtain

c0sT̂ (s) = −bT̂ (s) + F̂ (s), (63)

where T̂ (s) and F̂ (s) represent the transforms of
T ′(t) and F ′(t) respectively. Thus our transfer function
GF(s) ≡ T̂ (s)/F̂ (s) is given by

GF(s) = 1
c0s + b

. (64)

We see that GF(s) can be written in the closed-loop
form of Equation (41) with two possible choices of
(G(s), H(s)); for example, we can choose

G(s) = 1
c0s

H(s) = b. (65)

Whichever choice we make, the plus sign in the denom-
inator of Equation (41) is the relevant one as long as
c0 and b are positive. The parameter c0 is positive by
definition, and b is positive if the system represented by
Equation (62) is stable (see below). Assuming this to
be the case, the zero-dimensional model is dynamically
equivalent to a negative-feedback control system; i.e. the
sign of F1 for the model is negative.

If we take an impulse-function input F ′ = ($F)δ(t),
we have F̂ (s) = $F and Equation (64) gives

T̂ (s) = $F

c0

1
s + R

, (66)

where R = b/c0. The inverse transform gives the solution

T ′(t) = $F

c0
exp (−Rt), (67)

showing that the system is stable if b > 0.
If we take a step-function input F ′ = ($F)1(t), the

steady-state solution can be seen directly from Equation
(62) to be

$T = $F

b
, (68)
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where we have set T ′(∞) = $T . Clearly, any interaction
between physical processes that increases b will increase
the asymptotic rate of decay of a perturbation caused by
an impulsive forcing and decrease the magnitude of the
steady-state perturbation caused by a step-function forc-
ing; in other words, the feedbacks F3 and F4 resulting
from the interaction are both negative. Similarly, in the
case of an interaction that decreases b, the feedbacks F3
and F4 are both positive. Thus, for the zero-dimensional
model, the common assumption regarding the equiva-
lence in sign of feedbacks F3 and F4 is valid. It is clear,
however, that for this system the sign of these feedbacks
can be opposite to that of feedback F1: feedbacks F3 and
F4 can be of either sign, depending on the change in b,
but feedback F1 remains negative for any change in b as
long as b remains positive.

From Equation (67) it is clear that in the zero-
dimensional model the initial and asymptotic tendencies
dT ′/dt of an impulsively-forced perturbation are of the
same sign. (For a perturbation that is impulsively forced
at t = 0, ‘initial values’ and ‘initial tendencies’ will mean
the values and tendencies at t = 0+.) Furthermore, any
changes in the initial and asymptotic tendencies caused
by a change in b are of the same sign: in other words,
for this model, the sign of feedback F3 (which is defined
in terms of changes in asymptotic tendencies) can be
correctly derived from changes in initial tendencies. We
shall later present examples of cases where these features
do not carry over to a two-zone model.

To investigate the sign of feedback F2 in the zero-
dimensional model, we take a sinusoidal input F ′ =
($F) exp (iωt). The steady-state response to this input
signal can be seen from Equation (62) to be

T ′ = GF(iω)F ′, (69)

where GF(iω) is given by Equation (64). Using Equation
(65) (or the other possible choice of (G(s), H(s))), it
is easily seen that |GF(iω)| < |G(iω)| for all ω when
b > 0; thus in the zero-dimensional model the sign of
feedback F2 is negative, coinciding with the sign of F1.
For this model we therefore have F1 and F2 of the same
sign and F3 and F4 of the same sign, but the signs of
these two pairs of feedbacks do not necessarily coincide.
Thus, it is not possible in the zero-dimensional model
to equate precisely the stability-altering and sensitivity-
altering concepts of feedback with the control-theory and
electronics concepts.

In what follows, we show that when one moves
from the zero-dimensional to the two-zone models,
one introduces further complexity in the relationships
between the signs of our four selected feedbacks.

3.3. Stability-altering and sensitivity-altering feedbacks

3.3.1. The TOA model

The sign of feedback F3 in the two-zone models is
determined by examining how the dynamical interaction

terms influence the magnitudes of the real parts of the
characteristic decay rates RF and RS defined by Equations
(51) and (52). The sign of feedback F4 is determined by
examining how the dynamical interaction terms influence
the magnitude of the steady-state hemispheric mean SST
perturbation caused by a step-function forcing. Here
and in the remainder of this section, we shall take the
step-function forcing as being that due to a doubling
of the atmospheric CO2 content. For greater physical
transparency, we expand Equation (57) into the more
explicit forms

$T1 = α4$F1 − α2$F2

α1α4 − α2α3
, (70)

$T2 = α1$F2 − α3$F1

α1α4 − α2α3
, (71)

where we have set T ′
i (∞) = $Ti .

For the TOA model, we choose (B1, B2) = (1.8, 1.6)
Wm−2K−1. (These are close to the value 1.7 Wm−2 K−1

calculated by Nakamura et al. (1994) using a 1D radia-
tive–convective model, and used in (Bates, 1999).) We
choose (aZ1, aZ2) = (28, 16) mK−1. (These are the obser-
vational values used in (Bates, 2004).) The dynamical
coefficient aE, which determines the rate of poleward
transport of moist static energy by baroclinic eddies
between the zones, is allowed to vary between 0 and
0.006 PW m−1 (1 PW = 1015 W), the upper limit cor-
responding to the observational value used in (Bates,
1999). Our coefficients on the right-hand side of Equa-
tions (8) and (9) thus have the values (b̂1, b̂2) =
(0.229, 0.204) PW K−1, and with the value of aE set at
its upper limit, (d̂1, d̂2) = (0.168, 0.096) PW K−1.

The asymptotic stability properties of the TOA model
for these parameter values are illustrated in Figure 2,
where the characteristic decay rates RF and RS given by
Equations (51), (52) and (20) are plotted as functions of
aE. It can be seen that RF and RS (both real here) increase
monotonically with aE throughout its range. Since the
interzonal dynamical transport coefficients d̂1 and d̂2 are
proportional to aE, we see that the interaction between the
dynamical transport terms and the local stabilizing terms
increases the asymptotic stability of the system relative
to the zero-interaction case; i.e. the sign of feedback F3
provided by this interaction is negative.

To illustrate the sensitivity properties of the TOA
model, we need to assign values to the prescribed steady
forcing at the top of the atmosphere in zones 1 and
2 corresponding to a CO2 doubling. Values for the
zonally-averaged forcing as a function of latitude from
the NCAR Atmospheric General Circulation Model for
such a doubling have been presented by Harvey (2000)
(see his figure 7.3). Approximating from his graph of
the forcing at the tropopause, we take ($F1,$F2)T =
πa2[(4, 3) Wm−2]. The sensitivity properties of the TOA
model with this forcing, and the remaining parameters as
before, are illustrated in Figure 3, where the equilibrium
temperature increments $T1 and $T2 given by Equations
(70) and (71) and their mean $Tm are plotted as functions
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Figure 2. Characteristic rates of decay of impulsively-forced pertur-
bations in the TOA model as functions of the dynamical interaction
coefficient aE, which varies between 0 and 0.006 PW m−1. The remain-
ing parameters have the values (B1, B2) = (1.8, 1.6) Wm−2K−1,

(aZ1, aZ2) = (28, 16) mK−1, and D = 100 m.
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Figure 3. Equilibrium temperature increments $T1 and $T2 for a CO2
doubling in the TOA model, and their mean $Tm, as functions of
the dynamical interaction coefficient aE, which varies between 0 and
0.006 PW m−1. The top-of-the-atmosphere radiative forcings are taken
as ($F1,$F2)T = πa2[(4, 3) Wm−2], and the remaining parameters

are as in Figure 2.

of aE. It can be seen that $T1 decreases as aE increases
over its allowed range, while $T2 increases. The mean
temperature increment $Tm shows a slight monotonic
increase over the range. Thus, the interaction between
the dynamical transport terms and the local stabilizing
terms increases the sensitivity of the system as measured
by $Tm relative to the zero-interaction case for all values
of aE considered; i.e. the sign of feedback F4 provided
by the interaction is positive.

3.3.2. The SFC model

For the SFC model, we choose (b1, b2) = (0.17, 0.19)
PW K−1; these are to be compared with the obser-
vational estimates (b1, b2) = (0.56, 0.15) PW K−1 used

in (Bates, 2004). The dynamical coefficient aM, which
determines the rate of poleward transport of angular
momentum by baroclinic eddies between the zones,
is allowed to vary between 0 and 0.13 Hadley m−1

(1 Hadley = 1018 kg m2 s−2), the upper limit being the
observed value found by Alexeev and Bates (2000). We
choose ((F L)1, (F L)2) = (13, 11) PW, F M = 30 Hadley,
and (aZ1, aZ2) = (28, 24) mK−1. Thus, the dij vary
between 0 and the values (d11, d12, d21, d22) = (0.789,
0.676, 0.667, 0.572) PW K−1. These are to be compared
with the observational estimates (d11, d12, d21, d22) =
(0.98, 0.56, 0.30, 0.17) PW K−1 used in (Bates, 2004).

The asymptotic stability properties of the SFC model
for these parameter values are illustrated in Figure 4,
where the characteristic decay rates RF and RS given
by Equations (51), (52) and (21) are plotted as functions
of aM. It can be seen that, apart from a small region
to the left of the figure, the real parts of RF and RS
(both now complex) increase monotonically with aM
and exceed the values at aM = 0. Since the interzonal
dynamical transport coefficients dij are proportional to
aM, we see that for almost the whole range of variation of
these coefficients the interaction between the dynamical
transport terms and the local stabilizing terms increases
the asymptotic stability of the system; i.e for most of the
range the sign of feedback F3 provided by the interaction
is negative.

To illustrate the sensitivity properties of the SFC
model, we need to assign values of the prescribed steady
forcing at the surface in zones 1 and 2 corresponding
to a CO2 doubling. These are again taken from (Harvey,
2000). Approximating from Harvey’s graph of the surface
forcing, we take ($F1, $F2)G = πa2[(1, 2) Wm−2]. The
sensitivity properties of the SFC model with this forcing,
and the remaining parameters as above, are illustrated in
Figure 5, where the equilibrium temperature increments

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

am (Hadley/m)

Stability of the SFC Model

RF

RSC
ha

ra
ct

er
is

tic
 r

at
es

 o
f d

ec
ay

 (
1/

ye
ar

)

Figure 4. Characteristic rates of decay of impulsively-forced pertur-
bations in the SFC model as functions of the dynamical interaction
coefficient aM, which varies between 0 and 0.13 Hadley m−1. The
remaining parameters have the values (b1, b2) = (0.17, 0.19) PW K−1,
(aZ1, aZ2) = (28, 24) mK−1, ((F L)1, (F L)2) = (13, 11) PW, F M = 30
Hadley, and D = 100 m. This figure is available in colour online at

www.interscience.wiley.com/qj
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Figure 5. Equilibrium temperature increments $T1 and $T2 for a
CO2 doubling in the SFC model, and their mean $Tm, as functions
of the dynamical interaction coefficient aM, which varies between
0 and 0.13 Hadley m−1. The surface radiative forcings are taken as
($F1,$F2)G = πa2[(1, 2) Wm−2], and the remaining parameters are

as in Figure 4.

$T1 and $T2 given by Equations (70) and (71) and
their mean $Tm are plotted as functions of aM. It can
be seen that $T1, $T2 and $Tm all show a monotonic
and significant increase as aM increases over its allowed
range. Thus, for the full range, the sign of feedback F4
provided by the dynamical interaction is positive.

Thus the same conclusion emerges from both the TOA
and the SFC models: for certain regions of parameter
space, the interaction between the interzonal dynamical
transport and the local stabilizing processes provides
feedbacks F3 and F4 that are of opposite signs. The
result is more clear-cut in the case of the SFC model,
where, for most of the parameter range considered,
the interaction more clearly stabilizes the model and
more clearly increases its sensitivity relative to the zero-
interaction case.

An aspect of the sensitivity of the SFC model that has
not been discussed here is the effect on $Tm of different
distributions of the external forcing with latitude. This
question has been examined in some detail in (Bates,
2004); it is shown there that, for a given hemispheric
average forcing, the value of $Tm is quite sensitive to
how the forcing is distributed between the tropical and
extratropical zones. Such a result has also been found in
the GCM experiments of Alexeev et al. (2005).

3.4. Initial versus asymptotic tendencies in the
two-zone models

Here we examine the relationship between initial and
asymptotic tendencies of impulsively-forced perturba-
tions in the TOA and SFC models, as well as considering
whether initial tendencies provide reliable indications of
the sign of feedback F3. An impulsive forcing of the
form of Equation (43) is assumed. As noted earlier, this
gives the initial perturbation T ′

i = $Fi/c0 and the solu-
tion given by Equations (49) and (50) for t > 0.

We first consider the TOA model, with the parame-
ters chosen as in Section 3.3.1 above. The model is then
asymptotically stable and the initial perturbation decays
asymptotically to zero. However, it is possible under
these circumstances to choose the form of the initial per-
turbation so that the hemispheric mean SST perturbation
T ′

m is initially growing though asymptotically decaying.
To see this, we take the sum of the governing equations
(Equations (8) and (9)) for the TOA model and divide by
two; thus, for t > 0,

c0
dT ′

m

dt
= −1

2
(b̂1T

′
1 + b̂2T

′
2). (72)

Clearly, T ′
m > 0 and dT ′

m/dt > 0 initially for any initial
conditions that satisfy T ′

1 < 0, T ′
2 > 0 and

b̂2

b̂1
T ′

2 <
∣∣T ′

1

∣∣ < T ′
2.

Since our chosen parameters are such that b̂2 < b̂1,
there is a range of initial conditions that satisfy the
above requirements. It is to be noted, however, that the
individual perturbations T ′

1 and T ′
2 both show initial decay

when the above conditions are satisfied. (This is easily
seen from Equations (8) and (9) using only the conditions
T ′

1 < 0 and T ′
2 > 0.) Thus, for the TOA model, it is

possible to have initial growth and asymptotic decay
for T ′

m, though not simultaneously for T ′
1 and T ′

2. An
example illustrating the above considerations is shown in
Figure 6. It is also possible, with the same parameters,
to have initial growth and asymptotic decay for one, but
not both, of the individual perturbations T ′

1 and T ′
2, but

then it is not possible to have it for T ′
m. Clearly, in the

TOA model there is no simple relationship between initial
and asymptotic tendencies such as exists for the zero-
dimensional model.

We next consider the SFC model, with the parameters
chosen as in Section 3.3.2 above. With these values, the
SFC model is asymptotically stable. Here it is possible to
choose initial conditions for which all three of T ′

1, T ′
2 and

T ′
m show initial growth and asymptotic decay. To see this,

consider the case where initially both T ′
1 > 0 and T ′

2 > 0.
From Equations (14) and (15) we then see that, provided
d22 > b2 (which is satisfied with our chosen parameters
for the upper part of the range of aM), we have both
dT ′

1/dt > 0 and dT ′
2/dt > 0 initially, provided that

T ′
1

T ′
2

<
d12

b1 + d11
, (73)

T ′
1

T ′
2

<
d22 − b2

d21
. (74)

It is easy to choose initial conditions such that Equations
(73) and (74) are both satisfied, giving the required
result regarding the initial growth of both T ′

1 and T ′
2.

But when both of these quantities are positive and
have initial growth, their mean T ′

m is also positive
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Figure 6. An example of an impulsively-forced perturbation in the
TOA model showing initial growth and asymptotic decay of T ′

m.
The corresponding evolution of T ′

1 and T ′
2 is also shown. The initial

conditions are (T ′
1(0), T ′

2(0)) = (−4.9, 5.0) K. The parameters are as
in Figure 2, with aE = 0.006 PW m−1.

and has initial growth. Meanwhile, for the given initial
conditions, asymptotic stability guarantees decay of all
three quantities as t → ∞. An example illustrating these
considerations is shown by the solid curves in Figure 7,
where aM has been set to the maximum value in
its assigned range (aM = 0.13 Hadley m−1) and initial
conditions satisfying Equations (73) and (74) have been
chosen. The initial growth and asymptotic decay of all
three of T ′

1, T ′
2 and T ′

m is clearly seen.
The solid curves in Figure 7 represent the case where

the dynamical interaction terms are present with full
strength, while the dashed curves show the corresponding
results when the dynamical interaction terms are set
to zero (aM = 0). The latter curves represent the zero-
interaction case, relative to which the effect of the
dynamical interaction on the perturbation is measured.
Comparing the solid with the dashed curves, we see
that the asymptotic effect of the dynamical interaction
is opposite to its initial effect. Asymptotically, the
interaction is stability-enhancing, increasing the rate of
decay of the perturbation and thus providing a negative
feedback F3 (in accord with the results of Section
3.3.2 above). Judged in terms of initial tendencies, the
interaction is stability-diminishing, giving growth where
decay otherwise occurs. We therefore have an example
showing that estimating the sign of feedback F3 on the
basis of initial (or instantaneous) tendencies can give
a false result. It is not possible to find such a clear
illustration of this using the TOA model. (There, as can
be seen from Equation (72), the dynamical interaction
terms have no influence on the initial tendency of T ′

m.)

3.5. Summary of results

We summarize in Table I the results of our investigation
of the signs of our four selected forms of feedback in the
simple climate models. Only situations where the models
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Figure 7. An example of an impulsively-forced perturbation in the
SFC model. The initial conditions are (T ′

1(0), T ′
2(0)) = (2.0, 5.0) K.

The solid curves show the initial growth and asymptotic decay of T ′
1,

T ′
2 and T ′

m when the dynamical interaction is present with full strength
(aM = 0.13 Hadley m−1); the dashed curves show the corresponding
evolution of the perturbation when the dynamical interaction is absent

(aM = 0). The remaining parameters are as in Figure 4.

are stable have been considered. In the case of the zero-
dimensional model, our results are quite general, applying
throughout the full stable region of the model’s parameter
space. The same is true for the two-zone models as far
as feedbacks F1 and F2 are concerned, but in discussing
feedbacks F3 and F4 only a particular region of parameter
space has been considered in each of the TOA and SFC
models.

It can be seen that from the point of view of feedback
the zero-dimensional model is relatively simple in that
the signs of feedbacks F1 and F2 coincide and the signs
of feedbacks F3 and F4 coincide. However, the signs of
these two pairs of feedbacks do not necessarily coincide
with each other. Thus, even in the case of the simplest
model, one cannot draw any direct parallel between
feedback as used in control theory or electronics and
the two prototype concepts of feedback used in climate
studies.

In the two-zone models, there is much greater com-
plexity in the signs of the feedbacks. Here, differences
in sign can arise both within and between the two pairs.
In the case of the pair F3 and F4, our model parame-
ters have been chosen specifically to demonstrate that,
for both the TOA and SFC models, these two forms of
feedback can be of opposite sign in the same region of
parameter space.

The zero-dimensional model is also relatively simple
in that the initial and asymptotic tendencies of an
impulsively-forced perturbation are always of the same
sign, and the sign of feedback F3 can always be derived
from changes in initial tendencies. With a two-zone
model, on the other hand, a perturbation can grow initially
while decaying asymptotically and changes in initial
tendencies can give an incorrect indication of the sign
of feedback F3.
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Table I. Signs of the feedbacks in the simple models.

Category of feedback Zero-dimensional model Two-zone models
(TOA and SFC)

F1 (control theory Negative Negative
definition)

F2 (electronics Negative Either signb

definition)
F3 (stability-altering Either signa Negative for the

definition) chosen parametersc

F4 (sensitivity-altering Same as for F3 Positive for the same
definition) chosen parametersc

a Depends on whether an interaction between physical processes increases or decreases the
parameter b relative to some specified zero-interaction case.
b Depends on the frequency of the input signal.
c The feedback considered here is that provided by the interaction between the interzone dynamical
transport terms and the local stabilizing terms.

4. Discussion and conclusions

A conceptual study of climate feedbacks has been carried
out using two simple two-zone climate models, called
the TOA and SFC models, that incorporate dynamical
interaction between the Tropics and the Extratropics
through baroclinic eddy transports. The models are linear
and admit of analytical solution. A zero-dimensional
model, to which both of the two-zone models reduce
under simplifying assumptions, is used as a reference
for comparing the feedback properties of the two-zone
models.

Our study is carried out against the background of
control theory, which provides a general framework for
the concept of feedback. In an automatic control system,
a measure of the output is used as a feedback signal to
control the system. Negative feedback is said to occur
when this signal is fed back so that it subtracts from the
input signal, positive feedback when it adds to the input
signal. Mathematically, the operation of the system is
modelled by a closed-loop transfer function that explicitly
shows the sign of the feedback and that allows the output
to be calculated for arbitrary forms of input. In control
theory, the sign of the feedback is already defined before
the system’s response to any particular form of input is
considered.

Historically, ‘feedback’ as a technical term originated
in the field of electronics. Feedback in electronics again
involves an actual signal being fed back to the input;
but here a specific form of input is assumed, namely,
a sinusoidal signal. The sign of the feedback is defined
in terms of the system’s steady-state response to such
a signal. Negative feedback is said to occur when the
magnitude of the system’s gain with feedback is less
than the magnitude of its gain without feedback, and vice
versa for positive feedback. We have shown here, using
our simple climate models, that a system whose feedback
is negative in the control-theory sense (as judged by the
form of its transfer function) can have a feedback that
is positive in the electronics sense (depending on the
frequency of the input signal).

In climate studies, feedback is frequently assumed to
have a well-defined meaning, based on one or other
of the above paradigms. Close examination, however,
reveals different usages that can be in mutual conflict
and that may not be in close accord with the assumed
paradigms. Two prototype usages, stability-altering feed-
back and sensitivity-altering feedback, have been isolated
for study. The following definitions of these, suggested
by actual and widespread usage in the climate literature,
are proposed:

• If an interaction between physical, chemical or bio-
logical processes alters the asymptotic stability of the
global climate system or its components, the interac-
tion is said to provide a stability-altering feedback.
A negative feedback increases the stability of the
system relative to the zero-interaction case, causing
or contributing to the asymptotic decay of an initial
impulsively-forced perturbation; and vice versa for a
positive feedback.

• If an interaction between physical, chemical or biolog-
ical processes alters the equilibrium deviation of the
globally-averaged surface temperature from its initial
equilibrium value under the influence of a step-function
forcing, the interaction is said to provide a sensitivity-
altering feedback. A negative feedback decreases the
equilibrium deviation relative to the zero-interaction
case; a positive feedback increases it.

The stability-altering and sensitivity-altering feedbacks
are defined with respect to specific forms of forcing – an
impulse function and a step function, respectively – and
their signs are defined in terms of the system’s response to
the forcing in question. Thus, neither of them corresponds
to the concept of feedback used in control theory,
though each of them describes a specific aspect of a
system’s behaviour that is of interest in control theory.
Neither do they correspond in any literal sense to the
concept of feedback as used in electronics, though the
amplification formula of electronics, GF = G/(1 − GH),
for the special case where the loop gain GH ≡ f is real,
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is often used figuratively in discussing sensitivity-altering
feedback. The figurative transfer of an amplification
formula from another field into the climate area must not
be seen as implying that some general physical principle
is being invoked.

The signs of the four feedbacks described above have
been examined in the context of the two-zone models and
the zero-dimensional model, on the basis of the actual
governing equations rather than any figurative consid-
erations. From the point of view of climate feedback,
the situation in the zero-dimensional model is relatively
simple. Here, the stability-altering and sensitivity-altering
feedbacks always have the same sign. Furthermore, the
initial and asymptotic tendencies of the model’s depen-
dent variable in response to an impulsive forcing are
always of the same sign, and any changes in the initial
tendencies due to a feedback interaction always give a
correct indication of the sign of a stability-altering feed-
back. However, even for this simple model the signs of
the prototype climate feedbacks can be opposite to those
given by the control-theory and electronics definitions.

In the case of the two-zone models, the above simple
relationship between the signs of the two prototype forms
of climate feedback no longer has any general validity. It
has been shown that in certain regions of parameter space
the stability-altering and sensitivity-altering feedbacks
can be of opposite signs. In the same region of parameter
space, the response to an impulse function input (or
imposed initial conditions) can exhibit initial growth
while exhibiting asymptotic decay, and changes in initial
tendencies can give an incorrect indication of the sign
of a stability-altering feedback. Furthermore, for these
models there is no simple relationship between the signs
of the prototype climate feedbacks and the signs of the
feedbacks as defined in control theory or electronics.

The stability-altering and sensitivity-altering feedbacks
studied in our two-zone models are both dynamical, the
interaction providing the feedback being that between the
interzonal atmospheric eddy transport processes and the
local stabilizing processes. It seems likely that similar
results could be found using any form of dynamical inter-
action between zones – for example, east–west interac-
tions involving the Walker circulation in the Tropics, or
north–south interactions involving the thermohaline cir-
culation in a combined atmosphere–ocean model. The
present results give no direct indication of whether sim-
ilar conflicts could occur between the sign of stability-
altering and sensitivity-altering feedbacks in the context
of the processes directly governing the radiative energy
exchange with space. However, it is clear that the two
categories of feedback are conceptually distinct, and that
information about the sign of one cannot be assumed
to apply to the other, except in the context of a zero-
dimensional model.

In this paper we have not considered feedbacks in
a transient forced climate-change situation (such as
one with a time-dependent CO2 forcing, or with a
step-function CO2 forcing where the system has not
reached its new equilibrium); the only form of transience

considered is that due to an initial impulsive forcing.
The complexities that can arise in considering feedback
in a transient forced situation have been examined by
Hallegatte et al. (2006).

Many usages of the term ‘feedback’ occur in the
climate literature that do not fall within either of the
definitions given here. An example is that of Aires and
Rossow (2003). They define feedbacks in terms of the
interactions that occur between the state variables of a
dynamical system when the dynamics are resolved in
time. Feedbacks so defined are present and active even
when the system is in equilibrium and no external forcing
is applied.

In conclusion, the present paper emphasizes that the
term ‘climate feedback’ has no universal and obvious
meaning. It also stresses that assumptions about feedback
concepts that are valid for a zero-dimensional model
may not carry over to more complex models. Some
existing glossary definitions of feedback fail to describe
the dominant usages in the literature, and none appear to
recognize that there are common usages that can be in
conflict. It is hoped that the definitions suggested here,
and the surrounding discussion, will help to clarify some
conceptual issues of climate feedback and contribute
usefully to the ongoing debate in this area.
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