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Abstract: A mass-conservative version of the semi-implicit semi+laagian High-Resolution Limited Area Model (HIRLAM) is
presented. The explicit continuity equation is solved wiité so-called cell-integrated semi-Lagrangian (CISL)hudt To allow
for long time steps the CISL scheme is coupled with a recesidlyeloped semi-implicit time-stepping scheme that ineslthe
same non-complicated elliptic equation as in HIRLAM. Canity to the traditional semi-Lagrangian method the tregees are
backward in the horizontal and forward in the vertical, tisatcells moving with the flow depart from model layers andvarr
in a regular column, and their vertical displacements arepzded from continuity of mass and hydrostatic balance énattrival
column. This involves just two-dimensional upstream irdégand allows for a Lagrangian discretization of the epenversion
term in the thermodynamic equation.

Preliminary validation of the new model version is perfodusing an idealized baroclinic wave test case. The accufatye new
formulation of HIRLAM is comparable to the reference versthough it is slightly more diffusive. A main finding is thaiet new
discretization of the energy conversion term leads to moceirate simulations compared to the traditional ‘Eulérte@atment.
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1 Introduction manner. As described in Machenhauer and Olk (1997),
when the mass equation is discretized using a CISL
The semi-Lagrangian method for advection together wisbheme the flow divergence appears only in the way the
a semi-implicit treatment of the gravity wave terms is wefajectories determine Lagrangian departure volumes, and
known to be an efficient and accurate numerical methtérefore the Lagrangian divergence should be computed
for atmospheric models (for a review see Staniforth andplicitly. This, however, leads to a complicated elliptic
Coté 1991). A deficiency of the semi-Lagrangian semiiystem as shown in detail in Lauritzen (2005) and Thuburn
implicit method is the lack of formal mass-conservatio(2007). To retain a simpler elliptic system as in HIRLAM
The mass-conservation can be restored by the apple chose a ‘predictor-corrector’ approach (Lauriteeal.
cation of so-called mass-fixers that repeatedly rest@®06, hereinafter referred to as LKMO06).
global mass-conservation. However, mass-fixers are not +,4 semi-Lagrangian component of the model obvi-

Icomlpletely satls_factory Z'SCS thﬁ mass re_storat!o:: 'Sh%?ltsly involves the determination of the characteristics.
ocal, 33 mass 1S ngt added w ereA SprI‘IOUS SINksS &re we track cells moving with the flow that depart
removed mass (an vice vers_a). Irst step t_O_W&fdrr_Bm a model layer and arrive in a vertical column of
locally mass-conservative semi-Lagrangian semi-impli égular Eulerian grid cells in the horizontal (Machen-

model has been taken with the development of e, 0. ny oIk 1998) but at vertical levels that are dif-

cell-integrated semi-Lagrangian (CISL), or equivalentlyerem from the model levels. That is, a cell originat-

finite-volume semi-Lagrangian advection scheme (e'ﬁ'i from a particular model layer moves forward and

'\_‘"’!” and Machenhauer 2092)' For a recent review With vertical walls along the backward trajectories deter-

finite-volume methods used in meteorology see Ma(.:h?ﬂi-ned from horizontal winds (Figl). So in the horizon-

_hauere'F al.(2007) and the detailed stability analysis IVEQ the trajectories are backward and in the vertical they

" Laur|tzen.(.2 00.7).' . . are forward. Consequently, the upstream integral, which
A semi-implicit time-stepping of the fast wave

. . ; . WVeYetermine the mass advected into the regular column
requires that the_term involving the rovv_dwergen_c_e n tﬁi two-dimensional, and existing two-dimensional CISL
continuity equation must be handled in a semi-implig ethods are directly applicable. Contrarily to conven-
' tional fully three-dimensional upstream trajectory algo-
aoorespondence to: NCAR, @%850 Table Mesa Drive, Boulder, GRhms where the vertical displacements are computed
- , . E-maill: pe ucar.eau . . .
TThe National Center for Atmospheric Research is sponsoyethé from time-extrapolated vertical displacements, we use the

National Science Foundation CISL continuity equation to determine the mass-flux into
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the arrival column and can then determine the vertical disare the horizontal wind components towards east and

placements from hydrostatic balance. Hereby the pressooeth, respectively® the geopotentialp the pressure,

at the top of a mass cell transported into the arrival cal-= dp/dt the vertical velocity in pressure coordinates,

umn is obtained as a diagnostic variable. This is used frthe temperaturep the divergence, and, the virtual

a simple Lagrangian discretization of the vertical velpcitemperature given by

in pressure coordinates given by the difference between

the pressure over the departure cell and the hydrostati- T,=T[1+(£-1)q], (7)

cally determined pressure over the arrival cell divided by Ry

the time step. Since the parcel trajectories are forward in €= R,’ (8)

the vertical, they generally do not arrive at model layers, o . ) )

and therefore a vertical remapping of the prognostic va@nd the total derivative and specific heat capacity are given

ables back to model layers must be performed (Mach@(—

hauer and Olk 1998; Lin 2004). These remappings are, d P w 8 v P

however, only one-dimensional. This concept of 'float- — ==+ ——c =+,

. . , . . dt — Ot acos@ON adb on

ing Lagrangian surface’, along which the Lagrangian cells

here in fact are moving during a time step, was theoreti- Cp = Cpd [1 + (CL - 1) q} , (20)

cally introduced by Starr (1946). With this reference the !

concept has been utilized also by Lin (2004) and Nair arespectively, and) is the n-coordinate vertical velocity.

Tufo (2007). R, and R, are the gas constants for dry air and water
The paper is organized as follows. In Sectibthe vapor, respectively, and,; andc,, are the specific heat

continuous primitive equations are reformulated for tle@pacity of dry air and water vapor at constant pressure.

new model. In Sectiord the discretization of the equaFinally, the termsK,, K, and K, represent horizontal

tions is presented which encompasses the Eulerian digfusion processes, anfér, P,,, andP, represent physical

cretization grid, discretization of the hydrostatic edomat processes.

new trajectory algorithm, explicit CISL continuity equa-  The continuity equation5] is reformulated to use

tion and the semi-implicit CISL continuity equation. Théhe CISL approach by expanding the left-hand side

remaining equations of motion are discretized using a geidd replacing the right-hand side, which is the three-

point representation as in HIRLAM, but modified for thdimensional divergence, with its Lagrangian form

hybrid trajectory and the Lagrangian discretization of the

energy conversion term in the thermodynamic equation. LM7

Finally, the CISL continuity equation for tracers and the oV dt

vertical remapping are discussed. Sectlarpntains pre- where 6V is an infinitesimal volume element in the

Iiminary results from tests of the new dynamical core 1:0{'/\7 97 n)_coordinate System_ Makmg use of the chain rule

lowed by conclusions and a discussion in Secfion for differentiation, the Lagrangian form of the continuity

equation can be written as

9)

(11)

2 Reformulation of the primitive equations d <5p5 > (12)
—(Z=6v) =0,

Consider the equations for a quasi-hydrostatic and dt \ dn

moist-diabatic atmosphere using the vertical coordina{@l,g. Machenhauer 1994). Equatiofi} (2), (4), (6) and
1(p, ps), introduced by Simmons and Burridge (1981): (1) form the basis for the discretizations in the new model

du 1 0 RyT, 1 Op version.

dt ~  acosh ON P a cosf OX

+fv+%tan9+Pu+Ku, (1)

dv 100 RyT,10p 3.1 Discretization grid

&~ a6 p aos 1" ©

3 Discretization of the primitive equations

In the horizontal the Arakawa C-grid defines the Eulerian

u2 grid cells and grid points. The prognostic mass variable
— —tanfd + P, + Ko, (3) is the mass integrated over a regular Eulerian grid cell
AT RyT,w with velocity component grid points at its sides (Fig. 3 in
T o ot Pr + K, (4) LKMO6). The points in the centre of the Eulerian mass
P . cells are called mass points. They are also temperature
4 (ln @) - _D— @’ (5) grid points.
dt \ 9on on Following Simmons and Burridge (1981), the atmos-
0 RyT, 0p (6) Phereis divided intaVLEV layers and the layer index is
on p On’ increasing toward the surface. The pressure at the interfac

between layek andk + 1 is defined by the pressure
where ¢ is time, A is the longitude,f the latitude,a

the radius of the earthf the Coriolis parameter;, and pzﬂfl/z = Apt1/2 + Big1/20s, (13)
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Figure 1. Schematic illustration of the departure and akgells, which make up the deformed column on the left andefalar column

on the right, respectively (in the special case where al§ éeleach model level have the same pressure thickness)ceéllsemove with
vertical walls and the horizontal extension is a polygorthis Figure the polygon is as in the two-dimensional CISLesoh of Nair and
Machenhauer (2002), but the general idea applies to all GtBemes(Apy)” is the integral mean value of the pressure-layer thickness
over the irregular departure cell arédy,, and(cSp;Q”Jrl is the mean value of the pressure-layer thickness over ghamearrival cell area
AA. The average pressure at the bottom of the arrival cell ieMpk+1/2>"+1 and is given by the weight of the air above it (S26)J.

Knowing the average pressure over the departure and acellakps)” and(pk>"+1 respectively, the vertical velocityuk>"“/2 may
simply be discretized in a Lagrangian fashion in terms ofdifference between these average pressures 8pe $ince the trajectories
are forward in the vertical the vertical location of the waticells (pk+1/2)"+1 is different from the new Eulerian hybrid model level

<p2f1/2>n+1 determined by the new surface pressure and hybrid coefféc{&g).

where 4,1/, and B/, are predefined constants, respectively, where

is the surface pressure afddk k£ < NLEV. The vertical

index k:_+ 1/2 refers to a ‘half level’ and the pressure (Alnp), =In (pk+1/2> . (16)
pr+1/2 1S the pressure at the ‘bottom’ of the cell with Dk—1/2

vertical indexk. In HIRLAM the pressure at the top of ) )
the atmosphere, /, is set to zero. The pressure thickness 9€et®;. the popular approach by Simmons and Burridge
of layerk is denoted\py, = .41 /2 — ps_1/2- In between (1981)is used

the half levels are the ‘full levels’ and their exact locatio

is discussed in the next Section. The vertical staggering O = Prtayz + o Ra (To), (17)
of the dependent variables is a Lorenz-type staggerin
whichT, v andv are at the full levels and the geopotentia
pressure, and vertical velocity are at half levels.

.Here the last term on the right-hand side d¥)(is an
pproximation to

P=Pk+41/2
Ry / T,dInp. (18)
p

=Pk

3.2 Hydrostatic equation

Since the pressure gradient force involves the horizonlfjaﬂder the assumption thal, is constant equal t.dT”)k
ver the half layer,p = py 10 p = pjy1/2, s is the

gradient of®;, in the momentum equations, the full leve] imation to the int |

geopotential®, is needed. Hence the discretization gtPproximation to the integra

the pressure gradient force is related to the hydrostatic P=Pht1/2

equation. The finite-difference analogue of the hydrastati / dlnp. (19)
p

equation 6) for a single layer and for the air mass from the Pk

surface and up to half level+ 1/2 is given by Simmons and Burridge (1981) approximatgswith
(I)k+1/2 _q)k—l/Q = —Rd (Tv)k (Ahlp)k, (14) o — In2 5 fork = ].7
NLEV T - 22 (Alp), | fork =2, NLEV.
Dpy1/2 = Ps + Ry Z (Tv)e (Alnp),, (15) (20)
f=k+1 This approximation is used here as well.
Copyright(© 2008 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-12 (2008)
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For the discretizations in the trajectory algorithm thiote thatp;** is the cell averaged pressure at full level
pressure (which is held at half levels) is needed at fl@ﬁk>"+1 interpolated to the corner point in question.
levels in the new HIRLAM version. Equationl®) is In traditional semi-Lagrangian models as HIRLAM
used to define the full level pressure consistent with thg three dimensions of the departure point position are
definition of ay.: determined iteratively from given time-extrapolated thre
dimensional velocity vectors (e.g., Ritchie 1991). In
Pk = Pry1/2 €xp (—ax), (21) the iterative procedure of the present mass-conservative
IRLAM version, given horizontal wind vectors deter-
He just the horizontal position of the departure point
whereas the vertical position of the arrival point, thahis t
updated Lagrangian pressqmﬂxﬂl, is calculated from
hydrostatic balance in the arrival cell columns; after the
quasi-horizontal displacements of mass cells determined
3.3 The explicit CISL equations by the CISL continuity equation have taken place. As a
As indicated in the introduction and illustrated in Figare PY-Product the difference between the arrival pressure and

the mass transport is modeled by finite volumes tHQF departure pressure of Lagrangi_an cells d_ivided by the
originate at timet = n A¢ from a model layet:, move time step determines a mean vertical velocity along the

with vertical walls with the three dimensional flow anarajectories. This La_lgrangian vertical velocity is gsed in
end up at timet = (n + 1) At in a regular grid column t_he energy conversion term of fche therm_o_dynamlc_ equa-
(arrival column). We will call such a moving finite volumé'on instead of the Eulerian vertical velocities used in tra

a Lagrangian cell The mass in a Lagrangian cell witrflitional semi-ngrangian quels as HlRLAMZ .
thickness)z — z, — 2, is at a certain time: For a certain trajectory in levél let theith iteration

of the horizontal position vector of the departure point and

22 1 the position vector of the arrival point be calledandr,
Msy = //5,4 /21 pdz | dA = §/~/6A opdA respectively. Them, is determined by

_ é<5p>5A, 22) r, =r— (V)AL (26)

. H
where the integral constant has been set to zero so m
= 1p. 5. Equati 1) is slightly different from the
p1 = 3p3/2. Equation R1) is slightly
approximatiorpy, = (py+1/2 + pr—1/2)/2 used in the cur-
rent operational HIRLAM.

Here(V) is an averaged horizontal wind vector along the

where the hydrostatic equatiaip = —gp dz was used in gr_ajectory. It is approximated by

the inner integral. Thus, the condition for local mas
conservation is

d(My) _1d
dt  gdt

1 AtdV? 1~ At dVHL
V _ _Vn =" * _Vn+1 _ =
Vi=gVit 33 T3 s

, (27)
((op)dA) = 0. (23) .

where ()7 and ()"*! denote values interpolated to the
Here,local mass-conservatiois defined as conservatiordeparture pointr.., p?) and the arrival point(r, pgjpll),

of the mass of individual Lagrangian cells. Fro@3) respectively, for which cubic Lagrange interpolation is
the CISL continuity equation for moist air is obtaineflgeq v=+! = 2v" — v»-1 is the time-extrapolated hor-

by integration in time frormA¢ to (n + 1)At. It may be jzontal wind valid at timet = (n + 1)At. The accelera-

written as ) SAP tions in 27) are approximated with
(OPk)expl = <Apk>fA—j7 (24) v
where - V.VV. (28)

n 1 (McGregor 1993). The initial condition for the iteration
(Apr), = ST //Mn S((Apk)) dA. @5 sk, = and pr = (peh". The wind components are
' interpolated from their C-grid positions to the grid cell
A sub-script ‘expl’ has been added ig84) to distinguish vertices, where they are needed in7), using cubic
the updated value from that in the semi-implicit continuityagrangian interpolation.
equation 47) to be presented in Sectidh4.2 Note, that When in a certain iteration the four corner points
brackets(-) denote a mean value over a regular grid areé the departure cell at model layérhave been deter-
AA whereas a mean value over an irregular departuméned from @6) the horizontal upstream aréal] can be
aread A}, as defined inZ5), is denoted(:)”" (Figure1). constructed and the mass transport from this model layer
S({(Apy)) refers to the sub-grid-scale representation basatb the arrival column can be computed using the explicit
on the known Eularian cell averaged valyés;) at time CISL continuity equationZ4). The two-dimensional inte-
level n. Depending on the CISL advection scheme thyal in (25) is computed by a CISL scheme. Here we
departure are@A} at a certain model levélis determined use the scheme of Nair and Machenhauer (2002) or alter-
by straight-line segments connecting the departure pointggely the cascade scheme of Nair al. (2002) both
of four trajectories. Each of these is ending up in a corngsing a parabolic sub-grid-scale representation. When the
point of the arrival area\ A at the pressure level!*'. mass transported into the arrival column from all NLEV
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model layers (Figurel) have been computed, the cekqual to the difference between the total inflow and the
averaged pressure at the bottom of each Lagrangian tatthl outflow through the limited area boundary. Generally,
(pkH/Q)Z;;Il can be determined by the assumption dfrther changes in the total mass in the integration area
hydrostatic balance. This implies simply that it is theill result from the boundary relaxation performed at the

weight of the air mass above the cell bottom: end of the time step.
As already mentioned, we discretize the vertical

1 velocity w = dp/dt on the right-hand side of the explicit
<pl>expl ‘ (29) thermodynamic equatiod)in a Lagrangian fashion, that

is, the mean valuéwy,) st /? of w along the trajectories

The cell averaged pressure at full levels is obtained frdff @ cell departing from levet is determined by

(21):
b = 5 [t — o7] . 39

k
+1
<Pk+1/2>pr| =

=1

Pl = exp { ()bl | Brs12nys  (30)
where the pressure at levelaveraged over the departure

where(oy) ot results by substitutingokﬂ/g);ﬁ, deter- areais given by

mined from @9), for p;,_,/, in the formula fora, (20). 1
The procedure is then iterated. (pr)s = AT // S((pr)) dA,
It was found empirically that two iterations of the kJJsAp

trajectory algorithm are sufficient. Using the values det? igure 1). Also here the values obtained in the last

mined from the final |terat|orlillso the explicit u_pdated cellbration are used. The explicit CISL thermodynamic
averaged surface pressug).,, can be determined fromequation then becomes

the assumption of hydrostatic balance:

(34)

» NLEV . (Tk)gzﬂl = (Ty).
<p5>gxpl = Z <5pk>gxpl' (31) T,\" Tr+t
— +AtRg (=) + | =%
CP * cpn+

Using these surface pressures iB)( explicit updated
Eulerian half levels may be determined.

For a global model version global mass-conservation
follows from (31). This is seen by substituting4) in (31),
multiplying the result byAt and sum over all horizontalz 4 The semi-implicit CISL equations
grid cells

1
(D) expl — (P)"

n+1 n
<p>exp| + <pk>*

] . (35)

In this Section the derivation of a semi-implicit system

J NLEV of prognostic equations from the system of explicit equa-
Z Z <5pijk)gx+pllAAij tions is described briefly. The derivation is described in
i=1 j=1 k=1 more details in Lauritzen (2005) and Machenhaeteal.
I J NLEV (2007). All steps in a complete derivation will not be dealt
= Z Z (Apije) 6 A}, (32) with here. We will focus on steps that deviate from the tra-
i=1 j=1 k=1 ditional semi-implicit system of HIRLAM that is derived

_ _ _ ~in Undén (2002). Central parts of the derivation are sim-
where I and J is the number of Eulerian grid cells injlar to those described for the CISL shallow water model
the zonal and meridional direction, respectively. At eagh Lauritzenet al. (2006).

level k the departure areas are constructed such that the | et us summarize the steps involved in a complete
sum of all departure are@le Z}le 0 A7, like the sum derivation. First the explicit system is made semi-implici
of Eulerian grid area§>!_, E}le AA4,;, is equal to the by averaging in time between time-levebnd(n + 1):
global area. The right-hand side &2 is the weight of
the total mass at time which according to32) is equal
to the weight of the total mass at time+ A¢. Thus the >
total mass is conserved.

In the case of a limited area model, as the present
HIRLAM version, the left-hand side is still the weight of
the total mass in the total limited integration area at time
t + At, which according to 32) is equal to the weight This is done for the present HIRLAM version in Section
of the total mass in the total upstream departure a®a.1, 3.4.2 and3.4.3 respectively. Secondly the formula
Ele Z}]:l 0A7, at timet. However, these areas varyor the updated surface pressure and temperature (at time
generally from time step to time step and differ from levédvel (n + 1)) are inserted into the formula for the lin-
to level, so consequently, the total mass in the integratiearized pressure gradient force in the momentum equa-
area will change during each time step. The changetitns. Finally the divergence operatdr,- (), is applied

1. the linearized part of the pressure gradient force in
the momentum equations,
. the linearized divergence term in the continuity
equation and
3. thelinearized divergence term in the energy conver-
sion term in the thermodynamic equation.
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to the momentum equations resulting in the set of coupliédhay be written as
elliptic equations with updated divergence as the unknown

va_ria_ble. These insertions and the final derivation of _the <pk>g>;;|l =(App)" — At<Apk>:DZ+l/2 (40)
elliptic system are not repeated here. They are derived N il d1/2
similarly and result in a similar elliptic system, a set of =(Apr), — At{{Ap), } Dy

coupled Helmholtz equations, as in HIRLAM. The reader — At (Apk)rEfDZ+l/2, (41)

is referred to Undén (2002) or Lauritzen (2005) for details

The final solution to the elliptic system determines thghere the superscript ‘refers to the deviation from the
semi-implicit corrections to the explicit solutions forl alreference value. Treating the linear term as a temporal

the prognostic variables. average the (‘ideal’) semi-implicit continuity equation
yields
3.4.1 The linearized pressure gradient force
n+1 n+1
The pressure gradient force at level (0pr)"" = (0Pk)expi
At ref ) n+1/2
T, - —(A Dt + DY -2 (D 42
O 71 _Rd; ey, > (Ap)® i+t 4D —2 (Dp2) 6, (42)
k
NLEV or
-V {(I)s + Rq Z (Tv)l (A hlp)l + ade(Tv)k} )
I=k+1 n n
36) 0P = (0pk)eq
is linearized and temporary averaged as in HIRLAM. The — % (App)™ {]D)ZJrl — ﬁg“}, (43)
result is
WhereffD’,jJrl is defined as the Lagrangian divergence for
—VGr =V, the last part of the hybrid trajectory
NLEV
Ry { " ~ n+1} of _ _ _ 1 AA— §A7T/2
+ =4 )" + (T, Aln ntl _ ot (o) = L A4 =0d
zlz;ﬂ()l ()l (Alnp™), Dyt =Dy (Vi) = @4
R ref " o \n+1 and
+ d;k {(Tv)l + (Tv) }] 1 SAMTY2 _san
l F=DR(V) = g (49)
B AA At
— eV ()" + 5") . @) Thus,
Ps P ntl _ omnt1/2
n Dt = optl/2, (46)

where 77" and p'®f is a constant reference temperatu

S

. This was used to derivelB) from (42).
and a constant reference surface pressure, respectiv

€Y 1n order to proceed with the derivation of the semi-

(Alnp'h), and o' are defined by 16) and @0) with imolici ;
s ) ) plicit system the predictor-corrector approach from
the half level pressures obtained frotg) by choosing Lauritzen et al. (2006) is introduced. This results in

_ ref i i
ps =ps. See also Appendix A for a suggestion foélliptic equations in the same simple form as in HIRLAM.
an alternative Lagrangian discretization of the press

gradient force Yhe predictor-corrector approach is given by

n n At n )
3.4.2 The semi-implicit CISL continuity equation (Opr)" T = (5191@)9;,}1 — (Apy)™ (D,frl - Dk“)
The discretization of the explicit continuity equation At ref oy n0AL
was discussed in SectioB.3 The derivation of the + 5 (Bp) (D = D) s (47)

semi-implicit continuity equation considered here is a i ) . , . .
direct extension of the derivation for the shallow watdfnere the discretized Eulerian divergenog is defined
model in Lauritzeret al. (2006). Defining the discretized " the C-grid in spherical coordinates as

Lagrangian divergen
agrangian divergence W1 {5w’,§ 8o (vy cosB)

- 4
g L AA-GAL 1 (1_5Ag A SN } (48)

_ 1 AA-0A 1 . @38
Az cosé Ay ’

and substitutingd Ay /AA from the explicit continuity

equation g4) in the form whereAz = acos§AN, Ay = aAf, andsy () is a centered

_ W (5A™) finite difference over a grid distance in longitudg/)
(0pk)expl = (Apk). AIZ : (39) is defined similarly. The updated surface pressure is the
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weight of the air in the arrival column, so it is obtained bthe predictor-corrector approach of Lauritzral. (2006)
summing &7) over all NLEV layers. is again utilized. This changes3) to
As shown in SectioB.3the explicit continuity equa-

tion is conserving mass exactly, both locally and glob- 1 nt1  AtRg T ref
ally. Since the correction terms i), which correct Tt =( kexpl — — ( ) X

.. .. . . . Cpd Prk+1/2
the explicit prediction, consist of linear divergence term .
integration of these terms over the entire integration area Z ( Apl)ref
is zero if the Lagrangian and the Eulerian divergence is
zero at the boundaries or if the integration area is global.
Consequently, with these assumptions fulfilled, the semi- (D — DQ”ﬂ '
implicit continuity equation also conserves global mass. “AA
It is the author’s impression from preliminary tests that
the semi-implicit correction terms generally are smallg Continuity equations for tracers
compared to the explicit local mass changes, so it is

our impression that the local mass-conservation is orll§€ €xplicit continuity equations for humidity, cloud
slightly modified by the semi-implicit corrections. water, and other atmospheric constituents or tracers are

similar to the one for moist air, equatio4), except that
o ) they are derived using the densities of the constituents in
3.4.3 The semi-implicit version of the thermodynan%estiomi = Q.p instead of the density of moist air. Here

equation Q; is the specific concentratiof the constituent. It is
Also a linear dependence on divergence in the therntigfined as the ratio between the mass of the constituent

dynamic equation4) needs to be temporary average%lnd the mass of theoist airit is mixed into. _
in the semi-implicit model version. Specifically, it is the ~ 1€ tracer mass in a Lagrangian cell with thickness

energy conversion teriiRy T, w)/(c,p), approximated in 97 = 22 — z1 is at a certain time:

{Dzwl B ]]S)ZLJrl}
=1

(54)

the explicit model with 85), that is divergence dependent. 22
To isolate this dependende;,)" /2, given by @3), is Mg, sv = // (/ Qipdz) dA (55)
expanded as follows . 04 Mz
1 = [ wopaa (56)
ivam > = 5 (Pe)o — (pe)7) (50) 90004
’ = §<qi5p>5z4, (57)

= é {exp(ak>n+1 Z<pl>g>:;|1 — (pky:} ,

= where the hydrostatic equatiaip = —gp dz was used in

(51) theinnerintegral and a vertical averaged value, defined by
qidp = —g f;f Q; dp, was introduced. Thus, the condition

where 1) and @9) have been used. thm>g)(4’-)|1 is for local tracer mass-conservatiaa

substituted fromg9) the result is dMsy  14d
==— ((q:6p)dA) = 0.
7 gt ({(gi0p)dA) =0 (58)
1 . . . .
<wk>Z>Z:JI1/2 == {exp(ak>n (App)" — <pk>’j} This is valid only for passive tracers. For non-passive
tracers, as water vapor and cloud water, source and sink

k
+1 Z
=1
k terms must be added on the right-hand side58).(The
— explag)™ ! Z(Apmef“/Q. (52) explicit CISL continuity equation for a passive trader
=1 obtained from %8) by integration in time fromnAt to

. . - ) (n + 1)At. The result is
When 62) is inserted in the explicit thermodynamic equa-

tion, the result is linearized about a reference tempezatur 1 n OAT

f f : : (@)1 0Pk )y = ((0) ), Api) T %
T'"and surface pressup€’, and the linear term is tempo- tk expl vk *AA
rary averaged, we get the (‘ideal’) semi-implicit therm
dynamic equation

(59)

QI'he trajectories determined for the moist air continuity
equation is used for the tracers as well, so the upstream
ref integrations in$9) are performed over the same upstream
TP = (T - AtRy ( T > " areasi Ay, as those in24). _ N

Cpd  \Pk+1/2 The conservation properties for explicit unforced pre-

k N dictions 69) for limited area models, as the new HIRLAM
Z (Ap)™ {]D)?“ — D?“} ., (53) version, are as described in Secti®B for moist air. That

=1 is, (59) ensureglobal tracer mass-conservatioifhis is
B proven as for moist air (see Sectidrs).
where agairD;*! is defined by 44). In order to obtain So far only preliminary test runs with humidity and

the same uncomplicated elliptic equations as in HIRLARloud water variables included have been made. No other
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tracer variables were included. In these preliminary tesfi® Lagrangian layer mean values for a number of con-
of the new HIRLAM version the explicit form of the traceisecutive time steps before performing the actual remap-
continuity equations59), with appropriate forcing terms,ping to Eulerian model layer mean values. This could
were used. This form is not completely consistent with the done simply by letting the arrival cells of the previ-
semi-implicit continuity equation4(’) used for the moist ous time step be the departure cells of the new time step.
air, as p9) does not degenerate 7 if the initial and the In the finite volume integrations of Lin (2004) the final
reference specific concentratiofsare set to 1. Theoreti-vertical remapping of the dynamical prognostic variables
cally one can obtain such a consistency by making simil@ere postponed successfully for several consecutive short
corrections to the explicit tracer predictions as were magbeplicit time steps. So, it seems likely that the Lagrangian
to the explicit moist air predictions, i.e. instead of usingyer mean values and the Lagrangian level values may
(59) the following ‘semi-implicit’ tracer continuity equa-be kept without remapping and interpolation even for sev-

tion eral large semi-implicit time steps. Present parameteriza
tion schemes need Eulerian model layer mean values or
(@), Spi)" Yt = (g), 5pk>$};|1 Eulerian m0(_1el level vglues. So_, at time steps between
At o ntl final remappings and interpolations special remappings
5 [(gi), Apr] (D - ]D)k and interpolation may be performed for the purpose of
At f SAP parameterization.
+5 [(q1) Apk]™ (Dy — Dy)? A/I; . (60) As an alternative to the vertical remapping and inter-

polation procedure chosen here the mass, momentum and

It is seen that the right-hand side with,)? =1 and total ene_rgy.conserving yertical remapping algorithm pre-
(¢:) = 1 degenerates to the right-hand side 67)( If sented in Lin (2004) might be applied. To do that the
(60) is practical will depend, especially, on the magnitudlrpdated gndp_omt values of temperature and velocity com-
of the difference between explicit predictions withg( POnents obtained here at the Lagrangian levels at the end
and ‘semi-implicit’ predictions with0). In this paper we of a time step must be interpreted as averaged values

use the explicit tracer transport equati&)( over the correspondi_ng L_agrangian IeV(_eIs. Thg computa-
tionally more expensive Lin(2004) algorithm might prove

to be more accurate than the present procedure because
total energy in a closed system is conserved in the Lin

Each of the preliminary updated tracer densitié3004) algorithm and dissipated kinetic energy is consis-
((g:), Spr)™ !, obtained from §0) (or from (59)) at the tently converted locally to total potential energy, an efffe
end of a time step, is an average over a Lagrangian layétich is not explicitly included in HIRLAM. A problem
(6pi)™ " . The preliminary values must be remappegeems, however, to be that the energy-conserving verti-
to become averaged values over the updated EuleG&h remapping introduces spurious contributions to the

model Iayers(Ap;“l>"+1 = Zill/ﬁn“ _ <pzul1/2>"+1_ pressure gradient force leading to unphysical temperature
This vertical remapping is based on a piecewise parabdllefiles at the model top (C.-C. Chen personal communi-

sub-grid scale representation (Colella and Woodwaf@tion).

1984), except at the top and at the surface where piece-

wise constant representations are applied. Higher-order o
reconstructions based on extrapolations near the boufid-Préliminary test results

aries could be expected to improve accuracy but this was N -
not explored in this preliminary study. Wﬁ‘le Jablonowski-Williamson baroclinic wave test case

Likewise the updated grid point valugg' ™, C?aniTtS of an analytic steadyt;lstate Zif‘a' 30|UFIiI(? h to the

and o7*' are given at the end of each time ste 0 a. primitive equations (Jablonowski and Williamson
) . a1 006; hereafter referred to as JW06). The steady-state sur-

at the SEf'ated d'iﬂete Lagrangian Iev%) ~ face pressure is constant 1000 hPa. The steady-state is
exp(ak) " (prt1/2) - They must be interpolated,siape so that an overlaid perturbation triggers theldeve
to the discrete Eulerian model levelgs:)" " = opment of an idealized baroclinic wave in the Northern
exp ()" (pgt, ). Since the prognostic equaHemisphere. By day 4 a well-defined wave train is estab-
tions for the velocity components and temperature dighed, and by day 7-9 a significant deepening of the highs
solved with a grid-point semi-Lagrangian scheme basaad lows takes place before a break down by day 20-30
on cubic Lagrange interpolation, we also use cubads to a full circulation in both hemispheres.
Lagrange interpolation for the vertical remapping of these The limited integration area of HIRLAM, in which
variables. the new model version has been implemented, is not

In the present approach at the end of each timespared for an extension to a global domain. In the
step the vertical mean values of tracer densities oveeridional direction both poles cannot be included in
Lagrangian layers are remapped to become averaged tr&- integration area and in the zonal direction periodic
ues over the Eulerian model layers. This gives rise lboundaries cannot be used due to the elliptic solver in
a certain smoothing or damping of the density fieldslIRLAM. Due to these technical issues it would be
To minimize this damping it may be considered to keefifficult to extend the integration area of HIRLAM to a

3.6 \Vertical remapping and interpolation
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complete global domain. We choose to make the limiteldPa around day 7 after which the deepening accelerates.
area domain as global as possible and try to minimiBg placing the velocity perturbatiorD0° from the west-
the effects of the boundaries. The active domain extersda boundary, where th@oundary waves triggered, the
meridionally from80°S to 80°N, and zonally360° from main waveand boundary waveare initially located far
80°W to 280°E. The zonal extension is chosen such thiitom each other and, hence, the interaction between the
the initial perturbation, centred aRQ°E40°N), is far two waves is minimized. In the following analysis it is
away from the western domain boundary (exadthp°). assumed that thboundary wavedoes not interact non-
The relaxation zone is located just inside the boundarylimiearly with the main wavetrain, and that the gravity
the active domain. Within this zone the updated valueswves triggered by the perturbation do not interact with
are relaxed toward the initial values with a weight th#fte boundary waveUnder this assumption thoundary
decreases from 1 at the boundary to zero at approximatebvecan be ‘removed’ from the flow by subtracting the
6° from it. To accommodate the CISL schemes there iglaviation from 1000 hPa in the unperturbed run from the
halo zone around the active domain in which the fields grerturbed run. As showed on Figc this is a reasonable
held fixed at their initial value. operation, that makes the comparison of the limited-area

Two horizontal resolutions are used. The lower resotodel runs with global model reference solutions feasible.
lutionis AX =~ 1.45°, Af ~ 1.15°, and the highest resolu- The error measures defined in JW06 are used to
tion is A\ =~ 0.74°, Af ~ 0.59°. In the vertical there areassess the accuracy and convergence characteristics of the
27 levels and the placement of the levels is as in JIWO06, betv CISL HIRLAM version. Since an analytical solution
with one more layer added at the top of the atmosphésenot available, JWO06 provided high-resolution reference
(so that the pressure at the upper boundary is zero asatutions computed with four different dynamical cores.
HIRLAM). The time-step for the low- and high-resolutiorThese provide independent estimates of the true solution.
runs is 30 and 15 minutes, respectively. JWO06 defined the uncertainty for any reference solutions

The new dynamical cores do not use decenteringas the maximum deviation in terms of theerror measure
filtering of the non-linear terms in time as in HIRLAM,between the highest and second highest horizontal reso-
but it was necessary to retain horizontal diffusion in ordkition runs of all model versions (see JWO06 for details).
to avoid noise problems. All integrations were run witfihe uncertainty is marked with the shaded region on Fig.
V¢ implicit horizontal diffusion onr’, « andv (see p.12- 3, hence, a model integration has converged wheits
13 in Undén 2002). The horizontal diffusion coefficiendifference is located in the shaded area. For the compu-
are based on HIRLAM default values scaled for resolutidation of thel, differences the reference solution from
so that thee-folding time of the2Ax wave is the samethe finite-volume dynamical core of the NCAR Commu-
regardless of resolution (McDonald 1998). There has begty Atmosphere Model (CAM) version 3 is used (Lin
no attempt to tune the diffusion coefficients for the2004). The resolution of the CAM reference solution is
idealized runs. (AN, Af) = (0.3125°,0.25°).

In the shallow-water model of LKMO6 the constant  Fig. 3 shows thé, differences for different HIRLAM
horizontal mean geopotential used for the semi-impliciérsions. First of all it can be seen that up to day 8 both
scheme was chosen sufficiently large to avoid instabilitidee HIRLAM (reference) and the CISL-HIRLAM have
because of the ‘predictor-corrector’ approach applied éonverged in the high-resolution runs (F8g). After day
the semi-implicit CISL scheme. In a baroclinic model thaight the wave is too close to the boundaries and cannot be
corresponds to an increase in the reference temperatmempared with the global model simulations provided by
so that the equivalent depths are increased. In HIRLAMVO6. Before approximately day 5 the wave train has very
the reference temperature is seBt K and in the new little amplitude andi, differences reflect interpolation
dynamical core version it is set 860 K. The reference errors rather than forecast skill. For the lower resolution
surface pressure is unchanged 1000 hPa. runs the CISL version of HIRLAM has not converged

The boundaries introduce effects that are not presertereas HIRLAM has, so the finite-volume model needs
in the global model runs. The boundary relaxation and thggher resolution than the grid-point model to get the
elliptic solver trigger a weak wave, hereinafter referreshme level of accuracy. This has also been observed for
to as theboundary waveFig. 2b), with a structure thatthe finite-volume dynamical core in CAM (Lin 2004),
is very similar to the large amplitude wave train, hergvhich needs higher resolution to reach the same level of
inafter referred to as thmain wavetriggered by the over- accuracy as the lower-resolution spectral dynamical core
laid velocity perturbation (Fig2a). Theboundary wave of CAM (JWO06). Regarding phase errors (not shown) the
is approximately symmetric about the equator and locat&tsSL-HIRLAM performs slightly better than HIRLAM at
in the mid-latitudes. By comparing runs with and withboth resolutions. When using the cascade scheme of Nair
out the initial overlaid perturbation on the balanced alitiet al. (2002) instead of the fully two-dimensional CISL
state, it is seen that thieoundary waves very similar scheme of Nair and Machenhauer (2002) the accuracy in
in the two runs and, thus, theoundary waves not a terms of thel, difference is not altered (Fig3b). The
result of boundary reflections of fast waves triggered Ibypportance of the consistent Lagrangian discretization of
the overlaid velocity perturbation (not shown). Theund- the energy conversion term introduced in Sectiis
ary wavegrows as it propagates eastward just as the mdiemonstrated on Fig3c. Thel, differences and phase
wave train does, and with variation on the order of 1érors (not shown) are larger when using the Eulerian
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Figure 2. (a) shows the surface pressuyrg,in hPa at day 6 for the Jablonowski-Williamson barocliniave test case for the high-
resolution run with CISL-HIRLAM. Thick solid contour is 10thPa, the contour interval is 1 hPa and shaded region maltkssvbelow
1000 hPa. Thenain waveis located from approximatel90E to 160W in the northern hemisphere. (b) When subtracting the CAM
reference solution from the CISL-HIRLAM data theundary wavewhich is triggered by the boundary relaxation and elligtitver in
HIRLAM, becomes clearly visible. The thick solid contourshPa, the contour interval 8.2 hPa and shaded region marks negative
values. The boundary wave is also present in the unpert@t#idHIRLAM run that does not contain threain wave(c) shows the CAM
reference solution and the unperturbed CISL-HIRLAM salnsubtracted from the perturbed CISL-HIRLAM solution. §demonstrates
that theboundary wavean, to a first approximation, be ‘removed’. Contours in (e)the same as in (b).

treatment of the conversion term (R-CISL) compared wersion ran stably and produced simulations quite simi-
the Lagrangian discretization presented herein. lar to REF-HIRLAM. Also for the full-physics run the

CISL-HIRLAM has also been coupled with thg 5grangian discretization of the energy-conversion term
HIRLAM physics package and initial tests run from the

initial condition of a strongly developing extra-tropicalf@d to more accurate simulations compared to the tradi-
storm have been performed (not shown). The new modehal discretization.
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Figure 3. The Figure shows norms of the surface pressure differences (in hPa) betw&ebAM versions and the CAM global reference
solution as a function of time. The shaded region is the uaitgy of the reference solutions defined in JW06. (a) shodifferences for
the high(short dashed line)/low(long dashed line) resmu€ISL-HIRLAM and the high(solid line)/low(dashed linesolution standard
HIRLAM (REF). (b) showl, differences for high-resolution versions of CISL-HIRLAolid line is CISL-HIRLAM based on the two-
dimensional CISL scheme of Nair and Machenhauer (2002hathbnes is CISL-HIRLAM based on the conservative cascatierse
(CCS) of Nairet al.(2002), and long dashed lines is CISL-HIRLAM using the ttiadial Eulerian discretization of the energy-conversion
term in the thermodynamic equation (R-CISL). Note that theice of advection scheme does not alter the accuracy ofaflaéa in
terms ofl, and that the traditional treatment of the energy conversgon in the thermodynamic equation leads to less accuraiésts
compared to the Lagrangian discretization presented srpéyper.

5 Conclusionsand discussion been performed but not reported on here. A main find-
ing in both test cases is that the new model version based

It has been demonstrated that the semi-implicit serfi? the Lagrangian discretization of the energy conver-
Lagrangian primitive equation model HIRLAM carbion term in the thermodynamic equation was significantly
be rendered mass-conservative by combining a céllore accurate than when using the traditional Eulerian
integrated semi-Lagrangian (CISL) version of the contfeatment of the conversion term.

nuity equation with the grid point form of the prognos-  The model version presented here is for a limited
tic momentum and thermodynamic equations. Long tiréea on the sphere. For wider applications, an extension
steps are obtained with the application of the recentfy @ full global domain is, of course, needed. No serious
developed predictor-corrector method of Lauritzral. Problems is expected in such an extension, especially as
(2006) that results in the same non-complicated ellipf@th advection schemes used here have originally been
equations as in the semi-implicit scheme of HIRLAMOrmulated on the sphere, both using the same local
Contrarily to traditional approaches in semi-Lagrangi@PProach for accurate transport over the polar regions.
models, the vertical displacements of Lagrangian m#¥$0, the discretization of the pressure gradient force
cells in the new model version are determined withofit2y be performed in a Lagrangian fashion as outlined in
use of time extrapolated vertical velocities. They are dia@PPendix A. As described in Machenhaueral. (2007),
nosed from their horizontal displacements, determind§ note that the approach of solving the CISL continuity
from the horizontal flow and maintenance of hydrostatg@uation via a two dimensional upstream integration is
balance. This is used to diagnose vertical velocities tfi@t Only valid in the quasi-hydrostatic case. This method
discretize the energy conversion term in the thermi§-9eneral and can be used to extend the CISL-HIRLAM
dynamic equation in a Lagrangian fashion. scheme to the non-hydrostatic case.

The new dynamical core has been validated using
a recently developed idealized baroclinic wave test Ca8Bnowledgements
for global dynamical cores (Jablonowski and Williamson
2006). Except for a slight smoothing of a low resolufhis work was supported by the Copenhagen Global
tion run the new model version was found to be accurat@ange Initiative, the Danish Meteorological Institute,
compared to a high-resolution global reference simulatiand the Advanced Study Program at the National Center
when the artifacts introduced at the limited-area bounfdr Atmospheric Research, and by the Centre for Energy
aries were, at least to first order, removed from the flognvironment and Health (www.ceeh.dk). The first author
The model has also been coupled to HIRLAM physicis, grateful to David L. Williamson for computing error
and stable 48-hour forecasts from an initial condition feagheasures and associated figures. Ramachandran D. Nair
ing to a strong extra-tropical cyclone development haged David L. Williamson are acknowledged for helping
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<p>"*1 use properly interpolated eastward and northward compo-
k

exp nents ofPG F}, determined by&1). This must be expected
, to lead to increased accuracy, even in semi-implicit inte-
As grations and even though the linearized pressure gradient
@a force is based on the two-term expression.
n
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Instead of approximations of the traditional two-term
expressions for the pressure gradient force in the explicit
momentum equationd) and @), one could consider to
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