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Abstract: A mass-conservative version of the semi-implicit semi-Lagrangian High-Resolution Limited Area Model (HIRLAM) is
presented. The explicit continuity equation is solved withthe so-called cell-integrated semi-Lagrangian (CISL) method. To allow
for long time steps the CISL scheme is coupled with a recentlydeveloped semi-implicit time-stepping scheme that involves the
same non-complicated elliptic equation as in HIRLAM. Contrarily to the traditional semi-Lagrangian method the trajectories are
backward in the horizontal and forward in the vertical, thatis, cells moving with the flow depart from model layers and arrive
in a regular column, and their vertical displacements are computed from continuity of mass and hydrostatic balance in the arrival
column. This involves just two-dimensional upstream integrals and allows for a Lagrangian discretization of the energy conversion
term in the thermodynamic equation.
Preliminary validation of the new model version is performed using an idealized baroclinic wave test case. The accuracyof the new
formulation of HIRLAM is comparable to the reference version though it is slightly more diffusive. A main finding is that the new
discretization of the energy conversion term leads to more accurate simulations compared to the traditional ‘Eulerian’ treatment.
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1 Introduction

The semi-Lagrangian method for advection together with
a semi-implicit treatment of the gravity wave terms is well
known to be an efficient and accurate numerical method
for atmospheric models (for a review see Staniforth and
Côté 1991). A deficiency of the semi-Lagrangian semi-
implicit method is the lack of formal mass-conservation.
The mass-conservation can be restored by the appli-
cation of so-called mass-fixers that repeatedly restore
global mass-conservation. However, mass-fixers are not
completely satisfactory since the mass restoration is not
local, so mass is not added where spurious sinks have
removed mass (and vice versa). A first step toward a
locally mass-conservative semi-Lagrangian semi-implicit
model has been taken with the development of the
cell-integrated semi-Lagrangian (CISL), or equivalently,
finite-volume semi-Lagrangian advection scheme (e.g.,
Nair and Machenhauer 2002). For a recent review of
finite-volume methods used in meteorology see Machen-
haueret al.(2007) and the detailed stability analysis given
in Lauritzen (2007).

A semi-implicit time-stepping of the fast waves
requires that the term involving the flow divergence in the
continuity equation must be handled in a semi-implicit
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manner. As described in Machenhauer and Olk (1997),
when the mass equation is discretized using a CISL
scheme the flow divergence appears only in the way the
trajectories determine Lagrangian departure volumes, and
therefore the Lagrangian divergence should be computed
implicitly. This, however, leads to a complicated elliptic
system as shown in detail in Lauritzen (2005) and Thuburn
(2007). To retain a simpler elliptic system as in HIRLAM
we chose a ‘predictor-corrector’ approach (Lauritzenet al.
2006, hereinafter referred to as LKM06).

The semi-Lagrangian component of the model obvi-
ously involves the determination of the characteristics.
Here we track cells moving with the flow that depart
from a model layer and arrive in a vertical column of
regular Eulerian grid cells in the horizontal (Machen-
hauer and Olk 1998) but at vertical levels that are dif-
ferent from the model levels. That is, a cell originat-
ing from a particular model layer moves forward and
with vertical walls along the backward trajectories deter-
mined from horizontal winds (Fig.1). So in the horizon-
tal the trajectories are backward and in the vertical they
are forward. Consequently, the upstream integral, which
determine the mass advected into the regular column
is two-dimensional, and existing two-dimensional CISL
methods are directly applicable. Contrarily to conven-
tional fully three-dimensional upstream trajectory algo-
rithms where the vertical displacements are computed
from time-extrapolated vertical displacements, we use the
CISL continuity equation to determine the mass-flux into
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the arrival column and can then determine the vertical dis-
placements from hydrostatic balance. Hereby the pressure
at the top of a mass cell transported into the arrival col-
umn is obtained as a diagnostic variable. This is used for
a simple Lagrangian discretization of the vertical velocity
in pressure coordinates given by the difference between
the pressure over the departure cell and the hydrostati-
cally determined pressure over the arrival cell divided by
the time step. Since the parcel trajectories are forward in
the vertical, they generally do not arrive at model layers,
and therefore a vertical remapping of the prognostic vari-
ables back to model layers must be performed (Machen-
hauer and Olk 1998; Lin 2004). These remappings are,
however, only one-dimensional. This concept of ’float-
ing Lagrangian surface’, along which the Lagrangian cells
here in fact are moving during a time step, was theoreti-
cally introduced by Starr (1946). With this reference the
concept has been utilized also by Lin (2004) and Nair and
Tufo (2007).

The paper is organized as follows. In Section2 the
continuous primitive equations are reformulated for the
new model. In Section3 the discretization of the equa-
tions is presented which encompasses the Eulerian dis-
cretization grid, discretization of the hydrostatic equation,
new trajectory algorithm, explicit CISL continuity equa-
tion and the semi-implicit CISL continuity equation. The
remaining equations of motion are discretized using a grid
point representation as in HIRLAM, but modified for the
hybrid trajectory and the Lagrangian discretization of the
energy conversion term in the thermodynamic equation.
Finally, the CISL continuity equation for tracers and the
vertical remapping are discussed. Section4 contains pre-
liminary results from tests of the new dynamical core fol-
lowed by conclusions and a discussion in Section5.

2 Reformulation of the primitive equations

Consider the equations for a quasi-hydrostatic and
moist-diabatic atmosphere using the vertical coordinate,
η(p, ps), introduced by Simmons and Burridge (1981):

du
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= −

1

a cos θ
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−
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where t is time, λ is the longitude,θ the latitude,a
the radius of the earth,f the Coriolis parameter,u and

v are the horizontal wind components towards east and
north, respectively,Φ the geopotential,p the pressure,
ω = dp/dt the vertical velocity in pressure coordinates,
T the temperature,D the divergence, andTv the virtual
temperature given by

Tv = T
[
1 +

(
1

ǫ − 1
)

q
]
, (7)

ǫ =
Rd

Rv
, (8)

and the total derivative and specific heat capacity are given
by
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[
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(
cpv

cpd
− 1
)

q
]
, (10)

respectively, anḋη is the η-coordinate vertical velocity.
Rd and Rv are the gas constants for dry air and water
vapor, respectively, andcpd andcpv are the specific heat
capacity of dry air and water vapor at constant pressure.
Finally, the termsKT , Ku, andKv represent horizontal
diffusion processes, andPT , Pu, andPv represent physical
processes.

The continuity equation (5) is reformulated to use
the CISL approach by expanding the left-hand side
and replacing the right-hand side, which is the three-
dimensional divergence, with its Lagrangian form

1

δV

d δV

dt
, (11)

where δV is an infinitesimal volume element in the
(λ, θ, η)-coordinate system. Making use of the chain rule
for differentiation, the Lagrangian form of the continuity
equation can be written as

d

dt

(
∂p

∂η
δV

)
= 0, (12)

(e.g., Machenhauer 1994). Equations (1), (2), (4), (6) and
(12) form the basis for the discretizations in the new model
version.

3 Discretization of the primitive equations

3.1 Discretization grid

In the horizontal the Arakawa C-grid defines the Eulerian
grid cells and grid points. The prognostic mass variable
is the mass integrated over a regular Eulerian grid cell
with velocity component grid points at its sides (Fig. 3 in
LKM06). The points in the centre of the Eulerian mass
cells are called mass points. They are also temperature
grid points.

Following Simmons and Burridge (1981), the atmos-
phere is divided intoNLEV layers and the layer index is
increasing toward the surface. The pressure at the interface
between layerk andk + 1 is defined by the pressure

peul
k+1/2 = Ak+1/2 + Bk+1/2 ps, (13)
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Figure 1. Schematic illustration of the departure and arrival cells, which make up the deformed column on the left and theregular column
on the right, respectively (in the special case where all cells in each model level have the same pressure thickness). Thecells move with
vertical walls and the horizontal extension is a polygon. Inthis Figure the polygon is as in the two-dimensional CISL scheme of Nair and
Machenhauer (2002), but the general idea applies to all CISLschemes.〈∆pk〉

n
∗ is the integral mean value of the pressure-layer thickness

over the irregular departure cell areaδAn
k , and〈δpk〉

n+1 is the mean value of the pressure-layer thickness over the regular arrival cell area
∆A. The average pressure at the bottom of the arrival cell is denoted〈pk+1/2〉

n+1 and is given by the weight of the air above it (see (29)).

Knowing the average pressure over the departure and arrivalcell, 〈pk〉
n
∗

and〈pk〉
n+1 respectively, the vertical velocity〈ωk〉

n+1/2 may
simply be discretized in a Lagrangian fashion in terms of thedifference between these average pressures (see (33)). Since the trajectories
are forward in the vertical the vertical location of the arrival cells 〈pk+1/2〉

n+1 is different from the new Eulerian hybrid model level

〈peul
k+1/2〉

n+1
determined by the new surface pressure and hybrid coefficients (13).

whereAk+1/2 and Bk+1/2 are predefined constants,ps

is the surface pressure and0 ≤ k ≤ NLEV . The vertical
index k + 1/2 refers to a ‘half level’ and the pressure
pk+1/2 is the pressure at the ‘bottom’ of the cell with
vertical indexk. In HIRLAM the pressure at the top of
the atmospherep1/2 is set to zero. The pressure thickness
of layerk is denoted∆pk = pk+1/2 − pk−1/2. In between
the half levels are the ‘full levels’ and their exact location
is discussed in the next Section. The vertical staggering
of the dependent variables is a Lorenz-type staggering in
whichT , u andv are at the full levels and the geopotential,
pressure, and vertical velocity are at half levels.

3.2 Hydrostatic equation

Since the pressure gradient force involves the horizontal
gradient ofΦk in the momentum equations, the full level
geopotentialΦk is needed. Hence the discretization of
the pressure gradient force is related to the hydrostatic
equation. The finite-difference analogue of the hydrostatic
equation (6) for a single layer and for the air mass from the
surface and up to half levelk + 1/2 is given by

Φk+1/2 − Φk−1/2 = −Rd (Tv)k (∆ ln p)k , (14)

Φk+1/2 = Φs + Rd

NLEV∑

ℓ=k+1

(Tv)ℓ (∆ ln p)ℓ , (15)

respectively, where

(∆ ln p)k ≡ ln

(
pk+1/2

pk−1/2

)
. (16)

To getΦk the popular approach by Simmons and Burridge
(1981) is used

Φk = Φk+1/2 + αk Rd (Tv)k, (17)

where the last term on the right-hand side of (17) is an
approximation to

Rd

∫ p=pk+1/2

p=pk

Tv d ln p. (18)

Under the assumption thatTv is constant equal to(Tv)k

over the half layer,p = pk to p = pk+1/2, αk is the
approximation to the integral

∫ p=pk+1/2

p=pk

d ln p. (19)

Simmons and Burridge (1981) approximatesαk with

αk =

{
ln 2 , for k = 1,

1 −
pk−1/2

∆pk
(∆ ln p)k , for k = 2, .., NLEV.

(20)
This approximation is used here as well.
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For the discretizations in the trajectory algorithm the
pressure (which is held at half levels) is needed at full
levels in the new HIRLAM version. Equation (19) is
used to define the full level pressure consistent with the
definition ofαk:

pk = pk+1/2 exp (−αk) , (21)

where the integral constant has been set to zero so that
p1 = 1

2
p3/2. Equation (21) is slightly different from the

approximationpk = (pk+1/2 + pk−1/2)/2 used in the cur-
rent operational HIRLAM.

3.3 The explicit CISL equations

As indicated in the introduction and illustrated in Figure1
the mass transport is modeled by finite volumes that
originate at timet = n ∆t from a model layerk, move
with vertical walls with the three dimensional flow and
end up at timet = (n + 1)∆t in a regular grid column
(arrival column). We will call such a moving finite volume
a Lagrangian cell. The mass in a Lagrangian cell with
thicknessδz = z2 − z1 is at a certain time:

MδV =

∫∫

δA

(∫ z2

z1

ρ dz

)
dA =

1

g

∫∫

δA

δp dA

=
1

g
〈δp〉δA, (22)

where the hydrostatic equationdp = −gρ dz was used in
the inner integral. Thus, the condition for local mass-
conservation is

d (MδV )

dt
=

1

g

d

dt
(〈δp〉δA) = 0. (23)

Here,local mass-conservationis defined as conservation
of the mass of individual Lagrangian cells. From (23)
the CISL continuity equation for moist air is obtained
by integration in time fromn∆t to (n + 1)∆t. It may be
written as

〈δpk〉
n+1

expl = 〈∆pk〉
n
∗

δAn
k

∆A
, (24)

where

〈∆pk〉
n
∗

=
1

δAn
k

∫∫

δAn
k

S(〈∆pk〉) dA. (25)

A sub-script ‘expl’ has been added in (24) to distinguish
the updated value from that in the semi-implicit continuity
equation (47) to be presented in Section3.4.2. Note, that
brackets〈·〉 denote a mean value over a regular grid area
∆A whereas a mean value over an irregular departure
areaδAn

k , as defined in (25), is denoted〈·〉n
∗

(Figure1).
S(〈∆pk〉) refers to the sub-grid-scale representation based
on the known Eularian cell averaged values〈∆pk〉 at time
level n. Depending on the CISL advection scheme the
departure areaδAn

k at a certain model levelk is determined
by straight-line segments connecting the departure points
of four trajectories. Each of these is ending up in a corner
point of the arrival area∆A at the pressure levelpn+1

k .

Note thatpn+1
k is the cell averaged pressure at full level

〈pk〉
n+1 interpolated to the corner point in question.
In traditional semi-Lagrangian models as HIRLAM

all three dimensions of the departure point position are
determined iteratively from given time-extrapolated three-
dimensional velocity vectors (e.g., Ritchie 1991). In
the iterative procedure of the present mass-conservative
HIRLAM version, given horizontal wind vectors deter-
mine just the horizontal position of the departure point
whereas the vertical position of the arrival point, that is the
updated Lagrangian pressure〈pk〉

n+1

expl , is calculated from
hydrostatic balance in the arrival cell columns; after the
quasi-horizontal displacements of mass cells determined
by the CISL continuity equation have taken place. As a
by-product the difference between the arrival pressure and
the departure pressure of Lagrangian cells divided by the
time step determines a mean vertical velocity along the
trajectories. This Lagrangian vertical velocity is used in
the energy conversion term of the thermodynamic equa-
tion instead of the Eulerian vertical velocities used in tra-
ditional semi-Lagrangian models as HIRLAM.

For a certain trajectory in levelk let theith iteration
of the horizontal position vector of the departure point and
the position vector of the arrival point be calledr∗ andr,
respectively. Thenr∗ is determined by

r∗ = r − 〈V〉∆t. (26)

Here〈V〉 is an averaged horizontal wind vector along the
trajectory. It is approximated by

〈V〉 =
1

2
V

n
∗

+
∆t

8

dVn
∗

dt
+

1

2
Ṽ

n+1 −
∆t

8

dṼn+1

dt
, (27)

where ( )n
∗

and ( )n+1 denote values interpolated to the

departure point(r∗, pn
∗
) and the arrival point

(
r, pn+1

expl

)
,

respectively, for which cubic Lagrange interpolation is
used.Ṽn+1 = 2Vn − V

n−1 is the time-extrapolated hor-
izontal wind valid at timet = (n + 1)∆t. The accelera-
tions in (27) are approximated with

dV

dt
≈ V · ∇V. (28)

(McGregor 1993). The initial condition for the iteration
is r∗ = r and pn

∗
= (peul

k )n. The wind components are
interpolated from their C-grid positions to the grid cell
vertices, where they are needed in (27), using cubic
Lagrangian interpolation.

When in a certain iteration the four corner pointsr∗

of the departure cell at model layerk have been deter-
mined from (26) the horizontal upstream areaδAn

k can be
constructed and the mass transport from this model layer
into the arrival column can be computed using the explicit
CISL continuity equation (24). The two-dimensional inte-
gral in (25) is computed by a CISL scheme. Here we
use the scheme of Nair and Machenhauer (2002) or alter-
nately the cascade scheme of Nairet al. (2002) both
using a parabolic sub-grid-scale representation. When the
mass transported into the arrival column from all NLEV
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model layers (Figure1) have been computed, the cell
averaged pressure at the bottom of each Lagrangian cell
〈pk+1/2〉

n+1

expl
can be determined by the assumption of

hydrostatic balance. This implies simply that it is the
weight of the air mass above the cell bottom:

〈pk+1/2〉
n+1

expl
=

k∑

l=1

〈pl〉
n+1

expl . (29)

The cell averaged pressure at full levels is obtained from
(21):

〈pk〉
n+1

expl = exp
{
−〈αk〉

n+1

expl

}
〈pk+1/2〉

n+1

expl , (30)

where〈αk〉
n+1

expl results by substituting〈pk+1/2〉
n+1

expl , deter-
mined from (29), for pk−1/2 in the formula forαk (20).
The procedure is then iterated.

It was found empirically that two iterations of the
trajectory algorithm are sufficient. Using the values deter-
mined from the final iteration also the explicit updated cell
averaged surface pressure〈ps〉

n+1

expl can be determined from
the assumption of hydrostatic balance:

〈ps〉
n+1

expl =

NLEV∑

k=1

〈δpk〉
n+1

expl . (31)

Using these surface pressures in (13) explicit updated
Eulerian half levels may be determined.

For a global model version global mass-conservation
follows from (31). This is seen by substituting (24) in (31),
multiplying the result by∆t and sum over all horizontal
grid cells

I∑

i=1

J∑

j=1

NLEV∑

k=1

〈δpijk〉
n+1

expl ∆Aij

=
I∑

i=1

J∑

j=1

NLEV∑

k=1

〈∆pijk〉
n
∗
δAn

ijk , (32)

where I and J is the number of Eulerian grid cells in
the zonal and meridional direction, respectively. At each
level k the departure areas are constructed such that the
sum of all departure areas

∑I
i=1

∑J
j=1 δAn

ijk, like the sum

of Eulerian grid areas
∑I

i=1

∑J
j=1 ∆Aij , is equal to the

global area. The right-hand side of (32) is the weight of
the total mass at timet, which according to (32) is equal
to the weight of the total mass at timet + ∆t. Thus the
total mass is conserved.

In the case of a limited area model, as the present
HIRLAM version, the left-hand side is still the weight of
the total mass in the total limited integration area at time
t + ∆t, which according to (32) is equal to the weight
of the total mass in the total upstream departure area∑I

i=1

∑J
j=1 δAn

ijk at time t. However, these areas vary
generally from time step to time step and differ from level
to level, so consequently, the total mass in the integration
area will change during each time step. The change is

equal to the difference between the total inflow and the
total outflow through the limited area boundary. Generally,
further changes in the total mass in the integration area
will result from the boundary relaxation performed at the
end of the time step.

As already mentioned, we discretize the vertical
velocity ω = dp/dt on the right-hand side of the explicit
thermodynamic equation (4) in a Lagrangian fashion, that
is, the mean value〈ωk〉

n+1/2

expl of ω along the trajectories
for a cell departing from levelk is determined by

〈ωk〉
n+1/2

expl =
1

∆t

[
〈pk〉

n+1

expl − 〈pk〉
n
∗

]
, (33)

where the pressure at levelk averaged over the departure
area is given by

〈pk〉
n
∗

=
1

δAn
k

∫∫

δAn
k

S(〈pk〉) dA, (34)

(Figure 1). Also here the values obtained in the last
iteration are used. The explicit CISL thermodynamic
equation then becomes

(Tk)
n+1

expl = (T n
k )

∗

+ ∆t Rd

[(
Tv

cp

)n

∗

+

(
T̃ n+1

v

c̃p
n+1

)]
×

[
〈pk〉

n+1

expl − 〈pk〉
n
∗

〈p〉
n+1

expl + 〈pk〉
n
∗

]
. (35)

3.4 The semi-implicit CISL equations

In this Section the derivation of a semi-implicit system
of prognostic equations from the system of explicit equa-
tions is described briefly. The derivation is described in
more details in Lauritzen (2005) and Machenhaueret al.
(2007). All steps in a complete derivation will not be dealt
with here. We will focus on steps that deviate from the tra-
ditional semi-implicit system of HIRLAM that is derived
in Undén (2002). Central parts of the derivation are sim-
ilar to those described for the CISL shallow water model
of Lauritzenet al. (2006).

Let us summarize the steps involved in a complete
derivation. First the explicit system is made semi-implicit
by averaging in time between time-leveln and(n + 1):

1. the linearized part of the pressure gradient force in
the momentum equations,

2. the linearized divergence term in the continuity
equation and

3. the linearized divergence term in the energy conver-
sion term in the thermodynamic equation.

This is done for the present HIRLAM version in Section
3.4.1, 3.4.2, and3.4.3, respectively. Secondly the formula
for the updated surface pressure and temperature (at time
level (n + 1)) are inserted into the formula for the lin-
earized pressure gradient force in the momentum equa-
tions. Finally the divergence operator,∇ · ( ), is applied
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to the momentum equations resulting in the set of coupled
elliptic equations with updated divergence as the unknown
variable. These insertions and the final derivation of the
elliptic system are not repeated here. They are derived
similarly and result in a similar elliptic system, a set of
coupled Helmholtz equations, as in HIRLAM. The reader
is referred to Undén (2002) or Lauritzen (2005) for details.
The final solution to the elliptic system determines the
semi-implicit corrections to the explicit solutions for all
the prognostic variables.

3.4.1 The linearized pressure gradient force

The pressure gradient force at levelk

PGFk = −
Rd(Tv)k

pk
∇pk −∇Φk = −

Rd (Tv)k

pk
∇pk

−∇

{
Φs + Rd

NLEV∑

l=k+1

(Tv)l (∆ ln p)l + αkRd(Tv)k

}
,

(36)

is linearized and temporary averaged as in HIRLAM. The
result is

−∇Gk = −∇

[
Φs

+
Rd

2

NLEV∑

l=k+1

{
(Tv)

n
l +

(
T̃v

)n+1

l

}(
∆ln pref)

l

+
Rdα

ref
k

2

{
(Tv)

n
l +

(
T̃v

)n+1

l

}]

−
RdT

ref

2pref
s

∇
(
〈ps〉

n + 〈p̃s〉
n+1
)

, (37)

whereT ref and pref
s is a constant reference temperature

and a constant reference surface pressure, respectively.
(∆ ln pref)k and αref

s are defined by (16) and (20) with
the half level pressures obtained from (13) by choosing
ps = pref

s . See also Appendix A for a suggestion for
an alternative Lagrangian discretization of the pressure
gradient force.

3.4.2 The semi-implicit CISL continuity equation

The discretization of the explicit continuity equation
was discussed in Section3.3. The derivation of the
semi-implicit continuity equation considered here is a
direct extension of the derivation for the shallow water
model in Lauritzenet al. (2006). Defining the discretized
Lagrangian divergence

D
n+1/2

k =
1

∆A

∆A − δAn
k

∆t
=

1

∆t

(
1 −

δAn
k

∆A

)
, (38)

and substitutingδAn
k/∆A from the explicit continuity

equation (24) in the form

〈δpk〉
n+1

expl = 〈∆pk〉
n
∗

(δAn
k )

∆A
, (39)

it may be written as

〈pk〉
n+1

expl =〈∆pk〉
n
∗
− ∆t〈∆pk〉

n
∗
D

n+1/2

k (40)

=〈∆pk〉
n
∗
− ∆t {〈∆pk〉

n
∗
}
′

D
n+1/2

k

− ∆t (∆pk)
ref

D
n+1/2

k , (41)

where the superscript ‘′’ refers to the deviation from the
reference value. Treating the linear term as a temporal
average the (‘ideal’) semi-implicit continuity equation
yields

〈δpk〉
n+1

= 〈δpk〉
n+1

expl

−
∆t

2
(∆pk)ref

{
D̃

n+1
k + D

n
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(
D

n+1/2

k

)}
, (42)

or

〈δpk〉
n+1

= 〈δpk〉
n+1

expl

−
∆t

2
(∆pk)

ref

{
D

n+1

k − D̃
n+1

k

}
, (43)

whereD̃
n+1

k is defined as the Lagrangian divergence for
the last part of the hybrid trajectory

D̃
n+1

k = D̃
n+1

k

(
Ṽ

n+1

k

)
=

1

∆A

∆A − δA
n+1/2
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, (44)

and

D
n
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n
k (Vn

k ) =
1
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δA
n+1/2

k − δAn
k

∆t
. (45)

Thus,
D

n
k + D

n+1

k = 2D
n+1/2

k . (46)

This was used to derive (43) from (42).
In order to proceed with the derivation of the semi-

implicit system the predictor-corrector approach from
Lauritzen et al. (2006) is introduced. This results in
elliptic equations in the same simple form as in HIRLAM.
The predictor-corrector approach is given by

〈δpk〉
n+1

= 〈δpk〉
n+1

expl −
∆t

2
(∆pk)

ref
(
Dn+1

k − D̃
n+1
k

)

+
∆t

2
(∆pk)

ref
〈Dk − Dk〉

n
∗

δAn
k

∆A
, (47)

where the discretized Eulerian divergenceDn
k is defined

in the C-grid in spherical coordinates as

Dn
k =

1

a cos θ

{
δλun

k

∆λ
+

δθ (vn
k cos θ)

∆θ

}
(48)

=
δλun

k

∆x
+

1

cos θ

δθ (vn
k cos θ)

∆y
, (49)

where∆x = a cos θ∆λ, ∆y = a∆θ, andδλ() is a centered
finite difference over a grid distance in longitude.δθ()
is defined similarly. The updated surface pressure is the
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weight of the air in the arrival column, so it is obtained by
summing (47) over all NLEV layers.

As shown in Section3.3the explicit continuity equa-
tion is conserving mass exactly, both locally and glob-
ally. Since the correction terms in (47), which correct
the explicit prediction, consist of linear divergence terms,
integration of these terms over the entire integration area
is zero if the Lagrangian and the Eulerian divergence is
zero at the boundaries or if the integration area is global.
Consequently, with these assumptions fulfilled, the semi-
implicit continuity equation also conserves global mass.
It is the author’s impression from preliminary tests that
the semi-implicit correction terms generally are small
compared to the explicit local mass changes, so it is
our impression that the local mass-conservation is only
slightly modified by the semi-implicit corrections.

3.4.3 The semi-implicit version of the thermodynamic
equation

Also a linear dependence on divergence in the thermo-
dynamic equation (4) needs to be temporary averaged
in the semi-implicit model version. Specifically, it is the
energy conversion term(RdTv ω)/(cpp), approximated in
the explicit model with (35), that is divergence dependent.
To isolate this dependence〈ωk〉

n+1/2, given by (33), is
expanded as follows

〈ωk〉
n+1/2

expl =
1

∆t

(
〈pk〉

n+1

expl − 〈pk〉
n
∗

)
(50)

=
1
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{
exp〈αk〉
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n
∗

}
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(51)

where (21) and (29) have been used. When〈pk〉
n+1

expl is
substituted from (39) the result is

〈ωk〉
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− exp〈αk〉
n+1

k∑

l=1

〈∆pk〉
n
∗
D
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l . (52)

When (52) is inserted in the explicit thermodynamic equa-
tion, the result is linearized about a reference temperature
T ref and surface pressurepref

s , and the linear term is tempo-
rary averaged, we get the (‘ideal’) semi-implicit thermo-
dynamic equation

T n+1
k = (Tk)

n+1

expl −
∆tRd
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(
T

pk+1/2

)ref

×
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(∆pl)
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D
n+1
l − D̃
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l

}
, (53)

where agaiñDn+1
l is defined by (44). In order to obtain

the same uncomplicated elliptic equations as in HIRLAM

the predictor-corrector approach of Lauritzenet al.(2006)
is again utilized. This changes (53) to

T n+1

k = (Tk)n+1
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×
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δAn
l
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]
. (54)

3.5 Continuity equations for tracers

The explicit continuity equations for humidity, cloud
water, and other atmospheric constituents or tracers are
similar to the one for moist air, equation (24), except that
they are derived using the densities of the constituents in
questionρi = Qiρ instead of the density of moist air. Here
Qi is the specific concentrationof the constituent. It is
defined as the ratio between the mass of the constituent
and the mass of themoist air it is mixed into.

The tracer mass in a Lagrangian cell with thickness
δz = z2 − z1 is at a certain time:

Mqi,δV =

∫∫

δA

(∫ z2

z1

Qiρ dz

)
dA (55)

=
1

g

∫∫

δA

qi δp dA (56)

=
1

g
〈qiδp〉δA, (57)

where the hydrostatic equationdp = −gρ dz was used in
the inner integral and a vertical averaged value, defined by
qiδp = −g

∫ p2

p1
Qi dp, was introduced. Thus, the condition

for local tracer mass-conservationis

dMδV

dt
=

1

g

d

dt
(〈qiδp〉δA) = 0. (58)

This is valid only for passive tracers. For non-passive
tracers, as water vapor and cloud water, source and sink
terms must be added on the right-hand side of (58). The
explicit CISL continuity equation for a passive traceris
obtained from (58) by integration in time fromn∆t to
(n + 1)∆t. The result is

〈(qi)k δpk〉
n+1

expl = 〈(qi)k ∆pk〉
n
∗

δAn
k

∆A
. (59)

The trajectories determined for the moist air continuity
equation is used for the tracers as well, so the upstream
integrations in (59) are performed over the same upstream
areasδAn

k as those in (24).
The conservation properties for explicit unforced pre-

dictions (59) for limited area models, as the new HIRLAM
version, are as described in Section3.3for moist air. That
is, (59) ensureglobal tracer mass-conservation. This is
proven as for moist air (see Section3.3).

So far only preliminary test runs with humidity and
cloud water variables included have been made. No other
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tracer variables were included. In these preliminary tests
of the new HIRLAM version the explicit form of the tracer
continuity equations (59), with appropriate forcing terms,
were used. This form is not completely consistent with the
semi-implicit continuity equation (47) used for the moist
air, as (59) does not degenerate to (47) if the initial and the
reference specific concentrationsQi are set to 1. Theoreti-
cally one can obtain such a consistency by making similar
corrections to the explicit tracer predictions as were made
to the explicit moist air predictions, i.e. instead of using
(59) the following ‘semi-implicit’ tracer continuity equa-
tion

〈(qi)k δpk〉
n+1

= 〈(qi)k δpk〉
n+1

expl

−
∆t

2
[(qi)k ∆pk]

ref
(
D − D̃

)n+1

k

+
∆t

2
[(qi)k ∆pk]

ref
〈Dk − Dk〉

n
∗

δAn
k

∆A
. (60)

It is seen that the right-hand side with(qi)
0
k ≡ 1 and

(qi)
ref
k ≡ 1 degenerates to the right-hand side of (47). If

(60) is practical will depend, especially, on the magnitude
of the difference between explicit predictions with (59)
and ‘semi-implicit’ predictions with (60). In this paper we
use the explicit tracer transport equation (59).

3.6 Vertical remapping and interpolation

Each of the preliminary updated tracer densities
〈(qi)k δpk〉

n+1, obtained from (60) (or from (59)) at the
end of a time step, is an average over a Lagrangian layer
〈δpk〉

n+1 . The preliminary values must be remapped
to become averaged values over the updated Eulerian
model layers〈∆peul

k 〉
n+1

= 〈peul
k+1/2

〉
n+1

− 〈peul
k−1/2

〉
n+1

.
This vertical remapping is based on a piecewise parabolic
sub-grid scale representation (Colella and Woodward
1984), except at the top and at the surface where piece-
wise constant representations are applied. Higher-order
reconstructions based on extrapolations near the bound-
aries could be expected to improve accuracy but this was
not explored in this preliminary study.

Likewise the updated grid point valuesT n+1

k , un+1

k

and vn+1
k are given at the end of each time step

at the updated discrete Lagrangian levels〈pk〉
n+1

=

exp 〈αk〉
n+1

〈pk+1/2〉
n+1. They must be interpolated

to the discrete Eulerian model levels〈peul
k 〉

n+1
=

exp 〈αeul
k 〉

n+1
〈peul

k+1/2
〉
n+1

. Since the prognostic equa-
tions for the velocity components and temperature are
solved with a grid-point semi-Lagrangian scheme based
on cubic Lagrange interpolation, we also use cubic
Lagrange interpolation for the vertical remapping of these
variables.

In the present approach at the end of each time
step the vertical mean values of tracer densities over
Lagrangian layers are remapped to become averaged val-
ues over the Eulerian model layers. This gives rise to
a certain smoothing or damping of the density fields.
To minimize this damping it may be considered to keep

the Lagrangian layer mean values for a number of con-
secutive time steps before performing the actual remap-
ping to Eulerian model layer mean values. This could
be done simply by letting the arrival cells of the previ-
ous time step be the departure cells of the new time step.
In the finite volume integrations of Lin (2004) the final
vertical remapping of the dynamical prognostic variables
were postponed successfully for several consecutive short
explicit time steps. So, it seems likely that the Lagrangian
layer mean values and the Lagrangian level values may
be kept without remapping and interpolation even for sev-
eral large semi-implicit time steps. Present parameteriza-
tion schemes need Eulerian model layer mean values or
Eulerian model level values. So, at time steps between
final remappings and interpolations special remappings
and interpolation may be performed for the purpose of
parameterization.

As an alternative to the vertical remapping and inter-
polation procedure chosen here the mass, momentum and
total energy conserving vertical remapping algorithm pre-
sented in Lin (2004) might be applied. To do that the
updated gridpoint values of temperature and velocity com-
ponents obtained here at the Lagrangian levels at the end
of a time step must be interpreted as averaged values
over the corresponding Lagrangian levels. The computa-
tionally more expensive Lin(2004) algorithm might prove
to be more accurate than the present procedure because
total energy in a closed system is conserved in the Lin
(2004) algorithm and dissipated kinetic energy is consis-
tently converted locally to total potential energy, an effect
which is not explicitly included in HIRLAM. A problem
seems, however, to be that the energy-conserving verti-
cal remapping introduces spurious contributions to the
pressure gradient force leading to unphysical temperature
profiles at the model top (C.-C. Chen personal communi-
cation).

4 Preliminary test results

The Jablonowski-Williamson baroclinic wave test case
consists of an analytic steady-state zonal solution to the
global primitive equations (Jablonowski and Williamson
2006; hereafter referred to as JW06). The steady-state sur-
face pressure is constant 1000 hPa. The steady-state is
unstable so that an overlaid perturbation triggers the devel-
opment of an idealized baroclinic wave in the Northern
Hemisphere. By day 4 a well-defined wave train is estab-
lished, and by day 7-9 a significant deepening of the highs
and lows takes place before a break down by day 20-30
leads to a full circulation in both hemispheres.

The limited integration area of HIRLAM, in which
the new model version has been implemented, is not
prepared for an extension to a global domain. In the
meridional direction both poles cannot be included in
the integration area and in the zonal direction periodic
boundaries cannot be used due to the elliptic solver in
HIRLAM. Due to these technical issues it would be
difficult to extend the integration area of HIRLAM to a
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complete global domain. We choose to make the limited-
area domain as global as possible and try to minimize
the effects of the boundaries. The active domain extends
meridionally from80◦S to 80◦N, and zonally360◦ from
80◦W to 280◦E. The zonal extension is chosen such that
the initial perturbation, centred at (20◦E,40◦N), is far
away from the western domain boundary (exactly100◦).
The relaxation zone is located just inside the boundary of
the active domain. Within this zone the updated values
are relaxed toward the initial values with a weight that
decreases from 1 at the boundary to zero at approximately
6◦ from it. To accommodate the CISL schemes there is a
halo zone around the active domain in which the fields are
held fixed at their initial value.

Two horizontal resolutions are used. The lower reso-
lution is∆λ ≈ 1.45◦, ∆θ ≈ 1.15◦, and the highest resolu-
tion is ∆λ ≈ 0.74◦, ∆θ ≈ 0.59◦. In the vertical there are
27 levels and the placement of the levels is as in JW06, but
with one more layer added at the top of the atmosphere
(so that the pressure at the upper boundary is zero as in
HIRLAM). The time-step for the low- and high-resolution
runs is 30 and 15 minutes, respectively.

The new dynamical cores do not use decentering or
filtering of the non-linear terms in time as in HIRLAM,
but it was necessary to retain horizontal diffusion in order
to avoid noise problems. All integrations were run with
∇6 implicit horizontal diffusion onT , u andv (see p.12-
13 in Undén 2002). The horizontal diffusion coefficients
are based on HIRLAM default values scaled for resolution
so that thee-folding time of the2∆x wave is the same
regardless of resolution (McDonald 1998). There has been
no attempt to tune the diffusion coefficients for these
idealized runs.

In the shallow-water model of LKM06 the constant
horizontal mean geopotential used for the semi-implicit
scheme was chosen sufficiently large to avoid instabilities
because of the ‘predictor-corrector’ approach applied in
the semi-implicit CISL scheme. In a baroclinic model that
corresponds to an increase in the reference temperature
so that the equivalent depths are increased. In HIRLAM
the reference temperature is set to300 K and in the new
dynamical core version it is set to360 K. The reference
surface pressure is unchanged 1000 hPa.

The boundaries introduce effects that are not present
in the global model runs. The boundary relaxation and the
elliptic solver trigger a weak wave, hereinafter referred
to as theboundary wave(Fig. 2b), with a structure that
is very similar to the large amplitude wave train, here-
inafter referred to as themain wave, triggered by the over-
laid velocity perturbation (Fig.2a). Theboundary wave
is approximately symmetric about the equator and located
in the mid-latitudes. By comparing runs with and with-
out the initial overlaid perturbation on the balanced initial
state, it is seen that theboundary waveis very similar
in the two runs and, thus, theboundary waveis not a
result of boundary reflections of fast waves triggered by
the overlaid velocity perturbation (not shown). Thebound-
ary wavegrows as it propagates eastward just as the main
wave train does, and with variation on the order of 1-2

hPa around day 7 after which the deepening accelerates.
By placing the velocity perturbation100◦ from the west-
ern boundary, where theboundary waveis triggered, the
main waveand boundary waveare initially located far
from each other and, hence, the interaction between the
two waves is minimized. In the following analysis it is
assumed that theboundary wavedoes not interact non-
linearly with the main wavetrain, and that the gravity
waves triggered by the perturbation do not interact with
theboundary wave. Under this assumption theboundary
wavecan be ‘removed’ from the flow by subtracting the
deviation from 1000 hPa in the unperturbed run from the
perturbed run. As showed on Fig.2c this is a reasonable
operation, that makes the comparison of the limited-area
model runs with global model reference solutions feasible.

The error measures defined in JW06 are used to
assess the accuracy and convergence characteristics of the
new CISL HIRLAM version. Since an analytical solution
is not available, JW06 provided high-resolution reference
solutions computed with four different dynamical cores.
These provide independent estimates of the true solution.
JW06 defined the uncertainty for any reference solutions
as the maximum deviation in terms of thel2 error measure
between the highest and second highest horizontal reso-
lution runs of all model versions (see JW06 for details).
The uncertainty is marked with the shaded region on Fig.
3, hence, a model integration has converged when itsl2
difference is located in the shaded area. For the compu-
tation of the l2 differences the reference solution from
the finite-volume dynamical core of the NCAR Commu-
nity Atmosphere Model (CAM) version 3 is used (Lin
2004). The resolution of the CAM reference solution is
(∆λ, ∆θ) = (0.3125◦, 0.25◦).

Fig.3 shows thel2 differences for different HIRLAM
versions. First of all it can be seen that up to day 8 both
the HIRLAM (reference) and the CISL-HIRLAM have
converged in the high-resolution runs (Fig.3a). After day
eight the wave is too close to the boundaries and cannot be
compared with the global model simulations provided by
JW06. Before approximately day 5 the wave train has very
little amplitude andl2 differences reflect interpolation
errors rather than forecast skill. For the lower resolution
runs the CISL version of HIRLAM has not converged
whereas HIRLAM has, so the finite-volume model needs
higher resolution than the grid-point model to get the
same level of accuracy. This has also been observed for
the finite-volume dynamical core in CAM (Lin 2004),
which needs higher resolution to reach the same level of
accuracy as the lower-resolution spectral dynamical core
of CAM (JW06). Regarding phase errors (not shown) the
CISL-HIRLAM performs slightly better than HIRLAM at
both resolutions. When using the cascade scheme of Nair
et al. (2002) instead of the fully two-dimensional CISL
scheme of Nair and Machenhauer (2002) the accuracy in
terms of thel2 difference is not altered (Fig.3b). The
importance of the consistent Lagrangian discretization of
the energy conversion term introduced in Section3 is
demonstrated on Fig.3c. The l2 differences and phase
errors (not shown) are larger when using the Eulerian
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Figure 2. (a) shows the surface pressure,ps, in hPa at day 6 for the Jablonowski-Williamson baroclinic wave test case for the high-
resolution run with CISL-HIRLAM. Thick solid contour is 1000 hPa, the contour interval is 1 hPa and shaded region marks values below
1000 hPa. Themain waveis located from approximately90E to 160W in the northern hemisphere. (b) When subtracting the CAM
reference solution from the CISL-HIRLAM data theboundary wave, which is triggered by the boundary relaxation and ellipticsolver in
HIRLAM, becomes clearly visible. The thick solid contour is0 hPa, the contour interval is0.2 hPa and shaded region marks negative
values. The boundary wave is also present in the unperturbedCISL-HIRLAM run that does not contain themain wave. (c) shows the CAM
reference solution and the unperturbed CISL-HIRLAM solution subtracted from the perturbed CISL-HIRLAM solution. This demonstrates

that theboundary wavecan, to a first approximation, be ‘removed’. Contours in (c) are the same as in (b).

treatment of the conversion term (R-CISL) compared to
the Lagrangian discretization presented herein.

CISL-HIRLAM has also been coupled with the
HIRLAM physics package and initial tests run from the
initial condition of a strongly developing extra-tropical
storm have been performed (not shown). The new model

version ran stably and produced simulations quite simi-

lar to REF-HIRLAM. Also for the full-physics run the

Lagrangian discretization of the energy-conversion term

lead to more accurate simulations compared to the tradi-

tional discretization.
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Figure 3. The Figure showsl2 norms of the surface pressure differences (in hPa) between HIRLAM versions and the CAM global reference
solution as a function of time. The shaded region is the uncertainty of the reference solutions defined in JW06. (a) showl2 differences for
the high(short dashed line)/low(long dashed line) resolution CISL-HIRLAM and the high(solid line)/low(dashed line)resolution standard
HIRLAM (REF). (b) showl2 differences for high-resolution versions of CISL-HIRLAM:solid line is CISL-HIRLAM based on the two-
dimensional CISL scheme of Nair and Machenhauer (2002), dashed lines is CISL-HIRLAM based on the conservative cascade scheme
(CCS) of Nairet al. (2002), and long dashed lines is CISL-HIRLAM using the traditional Eulerian discretization of the energy-conversion
term in the thermodynamic equation (R-CISL). Note that the choice of advection scheme does not alter the accuracy of the solution in
terms ofl2 and that the traditional treatment of the energy conversionterm in the thermodynamic equation leads to less accurate solutions

compared to the Lagrangian discretization presented in this paper.

5 Conclusions and discussion

It has been demonstrated that the semi-implicit semi-
Lagrangian primitive equation model HIRLAM can
be rendered mass-conservative by combining a cell-
integrated semi-Lagrangian (CISL) version of the conti-
nuity equation with the grid point form of the prognos-
tic momentum and thermodynamic equations. Long time
steps are obtained with the application of the recently
developed predictor-corrector method of Lauritzenet al.
(2006) that results in the same non-complicated elliptic
equations as in the semi-implicit scheme of HIRLAM.
Contrarily to traditional approaches in semi-Lagrangian
models, the vertical displacements of Lagrangian mass
cells in the new model version are determined without
use of time extrapolated vertical velocities. They are diag-
nosed from their horizontal displacements, determined
from the horizontal flow and maintenance of hydrostatic
balance. This is used to diagnose vertical velocities that
discretize the energy conversion term in the thermo-
dynamic equation in a Lagrangian fashion.

The new dynamical core has been validated using
a recently developed idealized baroclinic wave test case
for global dynamical cores (Jablonowski and Williamson
2006). Except for a slight smoothing of a low resolu-
tion run the new model version was found to be accurate
compared to a high-resolution global reference simulation
when the artifacts introduced at the limited-area bound-
aries were, at least to first order, removed from the flow.
The model has also been coupled to HIRLAM physics,
and stable 48-hour forecasts from an initial condition lead-
ing to a strong extra-tropical cyclone development have

been performed but not reported on here. A main find-
ing in both test cases is that the new model version based
on the Lagrangian discretization of the energy conver-
sion term in the thermodynamic equation was significantly
more accurate than when using the traditional Eulerian
treatment of the conversion term.

The model version presented here is for a limited
area on the sphere. For wider applications, an extension
to a full global domain is, of course, needed. No serious
problems is expected in such an extension, especially as
both advection schemes used here have originally been
formulated on the sphere, both using the same local
approach for accurate transport over the polar regions.
Also, the discretization of the pressure gradient force
may be performed in a Lagrangian fashion as outlined in
Appendix A. As described in Machenhaueret al. (2007),
we note that the approach of solving the CISL continuity
equation via a two dimensional upstream integration is
not only valid in the quasi-hydrostatic case. This method
is general and can be used to extend the CISL-HIRLAM
scheme to the non-hydrostatic case.
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Appendix A: Suggestion for a Lagrangian pressure
gradient force discretization

Lin (1997) derived an Eulerian expression for the hori-
zontal pressure gradient force aiming at an elimination
of the well-known inaccuracy caused by different trun-
cation errors in the two terms that the pressure gradient
force traditionally is split into when using terrain follow-
ing coordinates (see (1) and (2)). As illustrated in Figure4
the pressures〈pk〉

n+1

expl and〈pk〉
n
∗

can be used to determine
a similar Lagrangian mean value of the explicit horizontal
pressure gradient force (PGFh) acting upon a Lagrangian
mass cell moving with the three dimensional flow along a
hybrid trajectory. The mean pressure gradient force along
the sloping hybrid trajectory is

PGFs =

[(
−

1

ρ

∂p

∂s′

)

k

]n+1/2

expl

(61)

= −
1

〈ρ〉

〈pk〉
n+1

expl − 〈pk〉
n
∗

∆s′
(62)

= −
1

〈ρ〉

〈pk〉
n+1

expl − 〈pk〉
n
∗

∆s
cos(ϕ), (63)

where〈ρ〉 is an approximation to the mean density along
the hybrid trajectory (e.g. the arithmetic mean value of the
density of the mass cell at the arrival and the departure
positions),∆s is the horizontal distance between the mid
points of the mass cells at the arrival and the departure
position, and∆s′ is the corresponding distance along the
sloping trajectory (Fig.4). Thus,ϕ is the slope of the
hybrid trajectory determined bytanϕ = ∆z

∆s , where∆z
is the height difference of the mid points of the mass
cells at the arrival and the departure position. In order to
determinePGFh the vertical component of the pressure
gradient force,PGFv, which in a hydrostatic atmosphere
is balanced by gravityg, must be subtracted from (61). So,

PGFh =
√

(PGFs)2 − g2. (64)

Instead of approximations of the traditional two-term
expressions for the pressure gradient force in the explicit
momentum equations (1) and (2), one could consider to

use properly interpolated eastward and northward compo-
nents ofPGFh determined by (61). This must be expected
to lead to increased accuracy, even in semi-implicit inte-
grations and even though the linearized pressure gradient
force is based on the two-term expression.
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