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Abstract. In climatic time series abrupt changes are observed. We
hypothesize that these abrupt changes are due to nonlinear responses
inherent in the climate system, specifically, so-called tipping points.

This behaviour result from non-linear climate response to either ex-
ternal forcing, internal stochastic fluctuations or a combination of both.
At some point the forcing will cause the climate to jump from one stable
state to another. This scenario is termed a tipping point. The concept
of a tipping point is quite broad, but here we shall refrain from any gen-
eral definitions and consider the following more restricted framework: We
consider the climate or some components of the climate as a dynamical
system depending on a set of parameters. Factors, not included in the
system interacting with components of the system, can then be consid-
ered external forcing or stochastic fluctuations. Two common, and often
competing, hypotheses are: The climate system’s steady state loses its
stability and disappears as an external system (control-)parameter slowly
changes, so-called b-tipping, b for bifurcation-induced; or fluctuations
spontaneously push the climate system from one stable state to another,
so-called n-tipping, n for noise-induced.

The cause of the tipping can be very different in the two cases, and
especially the possibility of predicting a tipping will be different. In the
case that the underlying dynamics or the control-parameter are not com-
pletely known, there could still be early warning signals in the statistics
of the observed fluctuations prior to a tipping point.

The Pleistocene climate is documented in a variety of geological records, most promi-
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Figure 1: The top panel shows the last 1Myr of the Lisiecki and Raymo stack marine
benthic oxygen isotope record (Lisiecki & Raymo, 2005). The record is a proxy
for global ice volume, showing the last ten glacial cycles. The bottom panel shows
the NGRIP isotope record (North GRIP members, 2004) of the last glacial period.
The glacial climate was dominated by rapid fluctuations between cold and warmer
periods, the so-called Dansgaard-Oeschger events. The minus in front of δ18O is such
that for both panels have increasing paleo temperatures upward.

nently in ocean sediment cores and ice cores. These all show that climate has changed
abruptly through time both as response to the orbital changes and as a part of in-
ternal variability. Figure 1, top panel, shows the last 1Myr of the Lisiecki and
Raymo stack marine benthic oxygen isotope record (Lisiecki & Raymo, 2005). The
record is a proxy for global ice volume, showing the last ten glacial cycles. There
is a strong and consistent time asymmetry with rapid warming (terminations) and
gradual cooling (inceptions). The time asymmetry is not present in the orbital
changes (Berger, 1978), indicating that the climate response to the orbital forcing
is non-linear. The terminations are hypothesised to be tipping points, where the
insolation crosses a threshold such that the mass balance of the Northern ice sheets
cannot be maintained (Weertman, 1961; Paillard, 1998). The bottom panel shows
the NGRIP isotope record (North GRIP members, 2004) of the last glacial period.
This is a temperature proxy, showing much stronger variability during the glacial
period than in the interglacial. Most pronounced are the Dansgaard-Oeschger (DO)
events (Dansgaard et al., 1993), which have no known external trigger.
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Figure 2: Schematic graphs of steady states x as a function of a control parameter
µ. In the left panel there is only one steady state solution and changes in the state
are reversible as the parameter is charged. In the right panel multiple solutions exist
and changes are irreversible if a bifurcation point is crossed. In order to return to the
upper state again in the case shown in the right panel, the parameter must change
to a lower value where another bifurcation point is reached. In both cases the circles
indicate where dx/dµ diverge locally. The thick curves (arrows) indicate the steady
state as µ is increased and subsequently decreased.

Irreversibility and the feedback factor

The definition of the term ”tipping point” in the climate system is somewhat vague,
describing the general feature that a change in some parameter µ in the system,
often termed a control parameter, can lead to a disproportionately large change in
the state of the system. Such a change can be reversible in the sense that changing
the control parameter back to the original value will reset the system to the original
state. Otherwise, the system can change irreversibly to a different state, such that
resetting the control parameter does not make the system return to its original state.
This latter possibility implies the existence of multiple steady states of the system.

The two different scenarios are shown schematically in figure 2. The solid curves
represent stable steady states, while dashed the curve in the right panel is the sep-
arating unstable steady state. In the left panel a change of the control parameter µ
leads to a large, but reversible change in state, while in the right panel the system
undergoes a bifurcation leading to an irreversible change of state. Distinguishing
these two situations requires an analysis beyond the linear response. To illustrate
that consider the system governed by the equation

ẏ = f(y, µ). (1)

The response ∆x to a change ∆µ is described in terms of the linear feedback
factor λ = dx/dµ: ∆x = λ∆µ. The feedback factor is obtained from the governing
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equation, with x being a steady state, 0 = ẋ = f(x, µ). We thus have

0 = f(x + ∆x, µ + ∆µ) ≈ fx(x, µ)∆x + fµ(x, µ)∆µ

⇒ λ = ∆x/∆µ = −fµ/fx (2)

In both cases illustrated in figure 2 we get λ → −∞ as the points marked with
circles are approached. However, the two situations are completely different, the
second is in this context an irreversible tipping point, where the system goes through
a bifurcation, while the first is not.

Bifurcation theory

Before continuing investigating transitions in the climate, we shall describe the most
elementary basics of bifurcation theory (Ma & Wang, 2005). Bifurcation theory
describes the behaviour of a dynamical system governed by (1) when there is a
qualitative change in the set of solutions to (1), as function of initial values, when
the control parameter µ is continuously changed through a critical value. To make
this statement concrete, consider the situation depicted in the right panel in figure 2:
For values of µ to the right of the bifurcation point (the circle) all solutions regardless
of initial value will end up on the lower branch. On the contrary when µ is on the
left side of the bifurcation point solutions initially below the dashed line will end up
on the lower stable branch, while solutions initially above the dashed line will end up
on the upper branch. This ”forking out” from one to two solution is the motivation
for the technical term ”bifurcation”.

When we only consider the structural change of dynamics close to the bifurcation
point in the phase space (which in this case is the space along the y-axis) this is a
local bifurcation. One virtue of local bifurcation theory is that for a single control
parameter and a continuous dynamics, that is f(y, µ) is a continuous function of
y and µ, then there is a very small universal list of possible bifurcations. If we
further consider generic behaviour in the sense that perturbing f(y, µ) slightly will
not change the behaviour, then we are left with only two possibilities, the saddle-
node bifurcation, which is the one shown by the circle in the second panel in figure
2. The only other generic bifurcation is the Hopf bifurcation, where a single steady
state turns into a periodic oscillation (a limit cycle) at the bifurcation point.

Here we shall only be concerned with the saddle-node bifurcation. Close to the
bifurcation point the dynamics will be topological equivalent to the one dimensional
dynamics in the so-called normal form, where x is now a single variable:

ẋ = −x2 − µ (3)
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The fixed points are x±(µ) = ±√−µ. Thus only for µ < 0 will there be fixed points,
for µ > 0 the right hand side of (3) is always negative and x will escape to −∞ or
rather to some other state outside the domain where (3) is applicable. The stability of
the fixed points is determined from the linearised equation for perturbations around
the fixed point, ξ± = x − x±:

ξ̇± = ∓2
√−µξ±, (4)

thus x+(µ) is the stable branch, where perturbations decay exponentially (curve of
stable fixed points as a function of µ), while x−(µ) is the unstable branch, where
perturbations grow exponentially. The two branches merge at the bifurcation point
x = 0.
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Figure 3: The left panel shows the bifurcation diagram near a saddle-node bifurca-
tion. The top branch, the node (full curve) x+(µ) is stable while the bottom branch,
the saddle (dashed curve) x−(µ) is unstable. The grey arrows indicate the flow in
phase space governed by equation (4) for constant values of the control parameter µ.
The circle marks the bifurcation point. The panels at the right shows dx/dt along
the three vertical lines in the left panel. Crossings of the x-axis, marked with circles,
indicate fixed points. For µ < 0 there are two fixed points, which merge at µ = 0.
For µ > 0 there are no fixed points.
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Figure 3, left panel, shows the bifurcation diagram of the generic saddle-node
bifurcation. The full line is the stable branch, while the dashed line is the unstable
branch. The bifurcation point is marked by a circle. The vector field (µ̇ = 0, ẋ) is
shown in grey. To see this clearer, the right panels in Figure 3 show the derivative ẋ
along the three vertical lines in the left panel. Steady states are where the parabola
crosses the x-axis. The term saddle-node bifurcation simply comes from the merger
of the unstable, ”saddle” fixed point and the stable, ”node” fixed point.

The climate system has many degrees of freedom, and operates over many time
scales. We may assumed that the phenomenon in question can be described by a
set of variables xi = x1, ..., xN , where N need not be a small number, and a set of
governing equations,

ẋi = Fi(x1, ..., xN , µ). (5)

The reason why the high dimensional climate dynamics can be reduced to a single
variable representation (1) is that varying the single parameter µ maps out the (one
dimensional) stable fixed point curve x0

i (µ), where Fi(x
0) = 0. The stability of

the fixed point with respect to perturbations is determined from the linear stability
analysis; ξ̇i = Jijξj, where Jij = (∂Fi/∂ξj)x=x0 is the Jacobian. Since x0

i (µ) is the
stable branch, all eigenvalues of Jij have negative real parts. When crossing the
generic saddle-node bifurcation a single real eigenvalue λ(µ) will become positive.
The corresponding eigenmode ξi, (ξ̇i = Jijξj = λξi) will grow exponentially. This
represents the most unstable direction in phase space. The other case of a pair of
complex conjugate eigenvalues crossing the imaginary axis corresponds to a Hopf
bifurcation, which we shall not consider here.

Multiple states in the climate

In the climate system, we do not have a full understanding of components with the
potential of tipping. An overview, as some sort of expert assessment, has been pro-
posed (Lenton et al., 2008). In our context tipping is associated with existence of
multiple states, as shown in the second panel in figure 2. A few prominent examples
of possible multiple states in the climate can be described in terms of simple dynam-
ical systems: The global energy balance models (Budyko, 1969; Sellers, 1969) can be
simplified to a single equation for the mean surface temperature, balancing incom-
ing short wave and outgoing long wave radiation. The planetary albedo, governing
the reflection depends on the ice-albedo feedback, such that there are two possible
stable steady states: An ice covered cold planet, with high reflection and low long
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wave outgoing radiation and a warm planet with high absorption and high outgo-
ing long wave radiation. The control parameter µ forcing a bifurcation from one to
the other state could be the atmospheric greenhouse gas concentration, permitting
high surface temperature with lower outgoing radiation emitted from the top of the
atmosphere, or it could be the insolation changing the total incoming short wave
radiation. It is worth noting that even though the global energy balance models did
not explain the glacial cycles, they actually predicted the existence of the Snowball
Earth climate (Hoffman et al., 1998), which was not known when the models were
proposed. This is thus one of very few theoretical predictions in climate theory.

The Atlantic meridional overturning circulation (AMOC) was explained in the
very simple Stommel (Stommel, 1961) two box hydrological link model. The thermo-
haline circulation is forced by buoyancy with heavy surface water sinking to the bot-
tom, driving the meridional overturning circulation. The surface water can be heavy
because it gets cold from cooling to the atmosphere or because it gets saltier due
to fresh water being evaporated from the surface. For a given heating/evaporation
the model has two stable steady states of the flow: The on-mode where the sink-
ing, deep water formation, happens in the northern ocean because the salty surface
waters cools as it moves north. In the other state, the off-mode, the evaporation in
the warm equatorward surface waters and the precipitation into the poleward sur-
face waters leaves the heavy water to sink in the south. The Stommel box-model is
extremely simple, but it captures the essential multi state dynamics also found in
numerical ocean models solving the governing fluid mechanics equations (Rahmstorf,
1995). The model has a set of bifurcations from one to three steady states, where in
the latter case the two stable steady states are the on- and off-modes. In this case
the control parameter µ is typically the fresh water input into the mid latitude band
of the ocean.

Ice sheet dynamics might play an important role in glaciation (Weertman, 1961).
The size of an ice sheet is determined by the mass balance between accumulation
of snow and melting at the margin. The central part of the ice sheet where growth
dominate is called the accumulation zone, the temperature is below freezing either
because it is more poleward or because it is at high altitude. The marginal part where
melting and ice berg break off dominates is called the ablation zone. The steady
state shape of the ice sheet is maintained by ice flow from the accumulation to the
ablation zone. For given atmospheric temperature and precipitation fields multiple
states of the ice sheet could exist, namely a grown ice sheet, where the altitude of the
central ice sheet makes it cold enough to maintain a sufficient accumulation zone.
Alternatively, if the ice sheet is to low, the accumulation zone is to small to maintain
mass balance and the ice sheet collapse into the other stable state of no ice sheet at
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all. The control parameter for this system could be the summer temperature at the
equator-ward rim of the ice sheet.

For the most pronounced climate oscillation we observe, the glacial cycles, we do
not have a full theory yet. There are multiple lines of evidence that the Milankovitch
theory is essentially correct (Hays et al., 1976). The glacial cycles are related to
variations in Earth’s orbit around the Sun and the tilt of Earth’s axis of rotation
with respect to the plane of the orbit. From the climate record it is also evident
that climatic response to the orbital forcing is not linear. The climate record is time
a-symmetric, while the forcing is time symmetric. The record thus suggests that the
climate is jumping between different stationary states. If the dynamics is dominated
by waxing and waning of the Northern hemisphere ice sheets, the control parameter
could be the 65N summer insolation as suggested by Milankovitch (Milankovitch,
1930).

Finally, the coupling between the vegetation and the climate can also be mod-
elled as a two state system, with green moist planet, where the vegetation provides
evapotranspiration and cooling to maintain suitable growth conditions and a dry and
hot desert state where vegetation cannot be sustained (Kleidon et al., 2000). In this
case the control parameter could be local precipitation or temperature.

The effective dynamics

When considering specific climatic phenomena, or when seeking the physical expla-
nations for the variations observed in climatic and paleoclimatic time series, it is
often useful to keep the Global Climate Models, or Earth System Models (ESM),
in mind as the paradigm for our present understanding. The basic assumption of
these models are that the evolution of the climate can be simulated by numerical
integration the Navier-Stokes equations (albeit in a rudimentary form) for the at-
mospheric and oceanic flows, the heat equation, including radiative absorption and
scattering, cloud processes, hydrological cycle, effective equations for interaction with
ice masses, soils, vegetation etc. For the state-of-the-art models the spacial resolu-
tion, number and detail of processes incorporated is to a large extend governed by
computational limitations. Though an increasing realism in ESMs, the models (still)
respond quite linearly to changes in the forcing, be it changing atmospheric green-
house gasses or orbital changes. This is in contrast to evidence from the paleoclimatic
records, which document that the climate has undergone many abrupt changes, and
responds strongly non-linear to the orbital forcing. The reason for this apparent
discrepancy between models and observations is poorly understood. However, the
structural change and the system behaviour associated with a simple bifurcation can,
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close to the bifurcation point, be categorised into one of a few possible categories,
thus analysing the transitions in the observed climatic records could potentially give
insight into the governing physical mechanisms.

The governing equations (5) are believed to describe the essential dynamics of
the studied phenomenon. It is thus assumed that the remaining variables in the full
system can be dealt with as either simply decoupled from the phenomenon, thus
neglected, or as varying on time scales very different from the time scales in the
equations. If these not included variables change on much slower time scales they
are incorporated as parameters. If they change on much faster time scales they need
to be taken into account.

Assume now, rather than by (5), the system is described by a more complete
set of governing equations for the system variables that can be split in separate
variables represented by the vectors xi = (x1, ...xN) and yi = (y1, ..., yM). Here we
can associate a typical timescale τyi

and τxj
respectively to each variable such that

τyi
� τxj

for all (i, j). Note that this assumption of time scale separation does
not in general hold for the climate system. Several rigorous strategies have been
applied (Majda et al., 2003; Papanicolaou & Kohler, 1974). These would typically
involve some expansion in a small parameter ε, defined from the autocorrelation
times: τyi

= ετxj
. Empirical comparisons show that even in the case ε ≈ 1 the

strategies seems to work surprisingly well in describing observations.
For brevity we drop vector notation, and consider x as a slow and y as a fast

scalar variable. The extension to more variables is mostly straight forward. With
this the governing equations can be written

ẏ = f(x, y, µ) (6)

ẋ = g(x, y, µ) (7)

where again µ is a parameter. Here we shall give a non-rigorous derivation: Equation
(7) describes the dynamics of the large scale, or slow variables. In the effective
dynamics for x we can write the fast variable as y = 〈y|x〉 + y′, where the brackets
denote the average of y conditioned on x. Inserting this into the second equation,
using that y varies much faster than x, we can approximate

ẋ = g(x, 〈y|x〉+ y′, µ) ≈ g(x, 〈y|x〉, µ) + ∂yg(x, 〈y|x〉, µ)y′

= geff(x, µ) + σ(x)η (8)

For the short time correlated variations y′(t) we have substituted a stochastic white
noise η(t).
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Equation (8) is called a Langevin equation. In the simplest form we will assume
the noise intensity to be independent of the climate state x. Writing F (x, µ) for
geff(x, µ) we have

ẋ = F (x, µ) + ση (9)

Thus the effect of the unresolved fast variables y on the variables x is simply the
addition of a stochastic term to (5).

A bifurcation is associated with a structural change in the stable states (fixed
points) of the dynamics as one or more parameters are changed. Obviously, the
climate system is never at a steady state of rest. This corresponds to (9) not having
any fixed points (ẋ = 0), due to the fluctuating noise term. We should thus consider
equation (5) when examining for steady state solutions. Assume that the transition
away from a steady state observed is due to slow changes in a single parameter
µ. In the case of the AMOC this would be the freshwater forcing, in case of the
global energy balance the control parameter µ could be the atmospheric greenhouse
gas concentration, for glacial/interglacial transition, it could be the 65N summer
insolation and so on. In technical terms this is a co-dimension-one bifurcation. The
generic local bifurcation in this case is the saddle-node bifurcation. Beside the Hopf
bifurcation, this is the only bifurcation which is structurally stable with respect to
small perturbations in the dynamics.

The reduction of the dynamics to a single effective variable represented by the
most unstable direction in phase space carry the hope that essential insight into the
multidimensional dynamics can be obtained from observations of a single (proxy)
time series. The requirement is of course that the effective variable projects suffi-
ciently onto the observed proxy.

The stochastic dynamics

In the bifurcation analysis above, we have neglected the effect of the stochastic noise
term in (9), which we for now without loss of generality can consider to be one-
dimensional. If the noise intensity is low the x component will be close to a stable
fixed point x0 provided F (x0) = 0 and F ′(x0) = −α < 0. Note that the parameter
−α thus is identical to the largest real eigenvalue λi above. With a trivial shift of
variables we can take x0 = 0 and expand F (x) in (9) to first order

ẋ = −αx + ση (10)

A process satisfying this equation is the usual red noise process or the Ornstein-
Uhlenbeck process (Gardiner, 1985). A simulation of this stochastic differential equa-
tion for x is shown in figure 4. As first noted by Hasselmann (Hasselmann, 1976) this
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simplest possible stochastic process gives good account for many observed climatic
time series. This and the fact that all statistics for this process can be calculated ana-
lytically, makes it the natural benchmark process as the null-hypothesis for statistical
testing.

For a time series x(t) the autocorrelation function is defined as cx(τ) = 〈x(t)x(t+
τ)〉, where 〈.〉 denotes statistical mean, which for a stationary (and ergodic) process
is identical to the time mean of the process. From (10) a linear differential equation
for the autocorrelation function cx(τ) can easily be derived:

d

dτ
cx(τ) =

d

dτ
〈x(t)x(t + τ)〉

= 〈x(t)ẋ(t + τ)〉
= 〈x(t)[−αx(t + τ) + ση(t + τ)]〉
= −α〈x(t)x(t + τ)〉 + σ〈x(t)η(t + τ)〉
= −αcx(τ) (11)

The mean involving the product of x(t) and η(t + τ) vanishes for τ > 0 because
the white noise excitation η(t + τ), with zero mean, is future to the response x(t)
implying that x(t) and η(t + τ) are independent. (In a case where σ depends on x
this independence argument is only valid for the Itô interpretation of the stochastic
differential equation.)

It follows from equation (10), using 〈x(t)x(t + τ)〉 = 〈x(t − τ)x(t)〉, that cx(τ) =
c0 exp(ατ) for τ < 0, and thus

cx(τ) = c0 exp(−α|τ |) (12)

The factor c0 = cx(0) = 〈x2〉 is the variance of the process x(t) which will be
calculated shortly. The system has a typical correlation timescale α−1, which is the
time it takes for the autocorrelation to drop by a factor of e. This is also often
termed the timescale of memory. It is independent from the noise intensity thus
solely determined by the dynamics of x through F (x).

An expression for the variance of the linear stochastic process (10) is also easily
obtained. To do so it is convenient to write the governing equation in incremental
form:

dx = −αxdt + σdB. (13)

The term dB is the Brownian motion also called the Wiener process. Without going
into to much technical detail, this can be motivated to be a natural choice: By
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constructing dB as the continuous limit of a discrete process, where small random
increments are added. Each small time interval [t, t + dt] is subdivided into N
smaller steps, dt = N∆t. At each of these smaller time steps tn = t + n∆t, n =
1, ..., N a stochastic variable Xn is added. Xn’s are drawn independently from an
unknown distribution with zero mean and a finite variance Σ2. In the continuum
limit, N → ∞, the central limit theorem ensures that the cumulated noise (X1 + ...+
XN) = B̃(t, dt) will be an independent gaussian stochastic noise and by normalising,
dB(t) = B̃(t, dt) ∗ √

dt/Σ2 becomes an independent gaussian noise with 〈dB〉 = 0
and 〈dB2〉 = dt.

From this the variance can be calculated, by noting that the process is stationary,
thus:

〈x2〉 = 〈(x + dx)2〉
= ∠(x − αxdt + σdB)2〉
= (1 − 2α)〈x2〉 + σ2〈dB2〉 + O(dt2) ⇒

〈x2〉 =
σ2

2α
(14)

This is the fluctuation-dissipation theorem (FDT) connecting the variance of the
process 〈x2〉 with the noise intensity σ and the stability parameter α.

For completeness of the analysis of the red noise process, note that the power
spectrum is the Fourier transform of the autocorrelation function

Px(ω) = 2

∫ ∞

0

c0 exp(−α|t|) cos(ωt)dt

= c0

∫ ∞

0

{exp[(−α + ι ω)t] + exp[(−α − ι ω)t]}dt

= c0

(
1

α − ι ω
+

1

α + ι ω

)
= c0

2α

ω2 + α2
(15)

where ι is the imaginary unit.
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Figure 4: A simulation of the Langevin equation (10). (a) Shows the white noise
forcing η. (b) Shows the climate variable x governed by equation (10). (c) shows
the auto-correlation function and (d) the power spectrum for the process. The grey
curves are the analytic solutions according to equations (12) and (15).
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The autocorrelation function and the power spectrum are shown in figure 4. For
ω � α we have P (ω) ∼ 1, that is, x itself is a white noise signal on timescales
long in comparison to the typical timescales of the x-dynamics. For ω � α we have
P (ω) ∼ ω−2, which is a scaling red noise spectrum.

The simple linear stochastic model captures a fair amount of climatic variability
as can be seen from figure 5, where power spectra of an European atmospheric
temperature and Atlantic SST anomaly time series are shown. The correlation time
in the ocean SST is about two orders of magnitude longer. Thus on the time scale of
ocean the atmospheric forcing can be considered as the white noise forcing the ocean
SST. This is often phrased as the ocean integrating the atmospheric noise.

As a final remark before returning to detecting tipping points, it is not always a
sufficient description of climatic time series to assume fluctuations as due to gaus-
sian white noise. This could be because long term correlations are present in the
noise, which will be reflected in a different spectral slope in the power spectrum.
One way of modelling this is through fractional brownian motion, where the noise is
constructed from requiring specific scaling properties of the autocorrelation (Man-
delbrot & Ness, 1968). It could alternatively be that the noise increments have an
extreme distribution, with such a fat tail distribution that the variance is infinite. In
this case the central limit theorem is violated. If only moments of the noise variable
η to the order α are finite, i.e. 〈ηβ < ∞ for β < α < 2 a generalised central limit the-
orem states that class of distributions, the α-stable distributions will be the limiting
(attraction) distributions rather than the gaussian when adding increments, as was
done when constructing the Brownian noise dB. The latter case with α-stable noise
dL is also called a Levy-process (Uchaikin & Zolotarev, 1999). Though somewhat
exotic, the α-stable process does have some relevance for describing climatic time
series (Ditlevsen, 1999).
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Figure 5: Top panels is the annual averaged surface air temperature measured in
Vlissingen (Netherlands) (51.45N, 3.60E) obtained from the KNMI Climate explorer.
The power spectrum is for the daily data showing the annual peak on top of the
continuous spectrum. The grey curve is the red noise spectrum with correlation
time of one month. The bottom panels shows the Atlantic SST anomaly for (47.5N,
27.5W) obtained from the updated Kaplan, NCAR record (Kaplan et al., 1998). The
grey curve in the power spectrum is a red noise spectrum with correlation time of 5
years.
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Early warning signals for tipping

Equipped with the essential results for the simple linear stochastic process we can
now ask the question if there is a potential for predicting a climatic tipping point
before it is actually reached, say through a slow change of the control parameter
µ through a saddle-node bifurcation. For the present climate early warning signals
detection is obviously of high societal interest, both in terms of prevention and in
terms of mitigation. Another rationale is the attempt to use precursors to abrupt
changes observed in the paleoclimatic records to identify underlying mechanisms.
This is relevant for understanding the non-linear dynamics of the climate including
phenomena like the Dansgaard-Oeschger events, for which we have not yet identified
the cause. Consider again the dynamics of the variable x = x0 + ξ near the saddle-
node bifurcation assuming the additional stochastic noise term as in equation (9).
For the noise intensity sufficiently small equation (3) can be expanded linearly around
the stable fixed point x0(µ) (omitting subscript +):

ξ̇ = −(2
√−µ)ξ + ση = −αµξ + ση. (16)

Thus the parameter αµ = 2
√−µ will become small close to the bifurcation point

and vanish for µ = 0. The autocorrelation time 1/αµ and the variance σ2/(2αµ) will
both diverge to infinity at the bifurcation point. Increase in these two statistical
quantities are thus potential indicators for an approach to a bifurcation point. The
increase in autocorrelation close to the bifurcation point is termed critical slowdown.
It reflects the fact that when the drift term (−αµξ) in equation (16), which pulls the
system toward the steady state, becomes small, perturbations away from the steady
state can live longer. The mechanical analogy is that of a spring pulling back to the
steady state loosing it’s strength, thus the phenomenon is also termed softening. The
other consequence of softening is that perturbations, caused by the diffusion term
(ση) will be larger, and thus the variance of the process bigger. The divergence of
the variance at the bifurcation point is just a consequence of the disappearance of
the drift altogether, where the process becomes a pure diffusion process or Brownian
motion, which is not stationary. At this point the linear approximation breaks down
and the state will approach some other remote stationary state.
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Figure 6: Panel a: The bifurcation diagram for the equation ẋ = −µ−x2 −µ. Three
different values of the control parameter µ are indicated by circles in the bifurcation
diagram. Panel b: For each of the three values a realisation of the process (9) with
σ2 = 0.1 are shown; top, middle and bottom curves are for µ = −2,−0.5,−0.1
respectively. Panel c: The variances calculated from the realisations in b are shown
by the circles. Crosses are for the linearised processes equation (10) with α = 2

√−µ.
Panel d: The correlation time calculated from the autocorrelation using (12). Critical
slowdown happens as µ → 0. The curves in panels c and d are the exact results for
the linearised process, thus the differences between crosses and the curves indicates
the uncertainty in estimating variance and correlation time from the finite realization.
The difference between circles and the curve indicates the combined inaccuracy from
both linearising and calculating from a finite realisation.
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Obviously, in order for the linear theory to be valid, the change with time in
the control parameter µ must be slow enough that the process can be considered
(quasi-)stationary. Furthermore, for issuing an early warning based on a statistical
indicator, say, increased variance, a level of confidence must be decided to limit
the risks of false positives (warning, when no tipping occurs) and false negatives
(missed warning, when a tipping occurs). Assuming that N independent points
from the observed process are required for that, such that the 1/

√
N factor brings

the uncertainty in the statistical measure below the accepted level of uncertainty.
Then an observation time of the order NTc, where Tc is the correlation time of the
process, is necessary to reliably obtain the indicator. Now take the approach to a
saddle-node bifurcation to be described by equation (3). By a change in control
parameter close to the critical value µc = 0 given as µ(t) = ct, t < 0, the bifurcation
point is reached at time t = 0. For a given µ < 0 prior to the bifurcation, the
timescale of relative change is T = (−µ̇/µ)−1 = −1/c, which is also simply the time
remaining before reaching the bifurcation point. The correlation time for the quasi-
stationary process is Tc = 1/αµ = 1/(2

√−µ), thus the criterion for reliable early
warning is NTc < T . The critical slow down, which is Tc → ∞ as µ → 0 thus gives
a limitation to issuing an early warning before the tipping actually happens. Using
the relationships between the control parameter and the time scales, the criterion
above implies c < 2

√−µ/N . Thus the closer to the bifurcation point the system is
(the closer to zero µ is), the slower should the change in µ be (the smaller c) in order
to be able to warn ahead of time.

Before investigating the implications of the slow down for possibilities of early
warning, a third precursor to a bifurcation beside the increases in autocorrelation and
variance is presented here: An increased skewness in the quasi-stationary distribution
of the process is in principle also a precursor (Guttal & Jayaprakash, 2008), which
goes beyond the linear theory. Referring again to the effectively one dimensional
dynamics along the most unstable direction near the bifurcation point, the dynamics
(9) can, with Uµ(x) = − ∫ x

Fµ(x)dx, conveniently be described as a potential flow
with a stochastic noise,

ẋ = −dUµ

dx
+ ση (17)

A simple multi-state dynamics is described through the double well potential

Uµ(x) =
x4

4
− x2

2
+ µx. (18)

In this case a set of saddle-node bifurcations occur for µ± = ±2
√

3/9. When ap-
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proaching one of the bifurcation points, say x0(µ+) = (
√

3/9)1/3, the rightmost
steady state will merge with the middle unstable steady state. The potential be-
comes increasingly asymmetric with respect to perturbations away from the steady
state in the vicinity of x0(µ) as µ → µ+. Thus the drift in the direction of the other
steady state will be larger than the drift away from the other steady state, thus the
distribution becomes skewed.
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Figure 7: A set of realisations of the process (17) with 0 ≤ µ/µc ≤ 0.9 have been
simulated. For each value of µ and for each of 100 realisations of 50 time units
length (first column) and 500 time units (second column) variance, correlation time
and skewness have been calculated. The means are indicated in open circles, while
the light blue area indicates the 2-sigma confidence interval. The horizontal purple
bars indicate the 2-sigma confidence interval for µ/µc = 0. The third column shows
the shapes of the potential for µ/µ0 =0.1, 0.5 and 0.9. The steady states are indicated
by the circles.
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The effect of critical slowdown on early warning is illustrated in figure 7. The
process (17) with 0 ≤ µ ≤ 0.9µ0 has been simulated. For each value of µ, represented
by the open circles in the left columns, 100 realisations have been performed. In the
first column the processes are 50 time units long, while in the middle column the
processes are 500 time units long. In the three rows the tipping point indicators,
variance, autocorrelation, represented by the correlation time Tc and the skewness
are shown. The correlation time is obtained from fitting the autocorrelation function
to the best fit exponential according to equation (12). From the middle panels it
is seen that the length of the records corresponds to approximately 50 and 500
times the correlation time, less as µ/µc approaches 1. The means of the indicators
over the 100 realisations are plotted as open circles. The filled blue areas represent
the 2-sigma uncertainty obtained from the 100 realisations. The purple areas are
the corresponding 2-sigma uncertainty for the constant value µ = 0. We can now
consider the scenario that the control parameter µ is approaching µc linearly in time,
µ(t) = ct+µ0 for t < 0, reaching the bifurcation point at t = 0. The question is then
how close to the critical value must µ be before an early warning can be issued: In
order to avoid false positives (predicting a bifurcation when non is about to occur) at
the 2-sigma level the indicator must fall in the blue area not overlapping the purple
area, likewise in order to avoid false negatives (missing a warning for a bifurcation,
which is about to happen) at the 2-sigma level the indicator must fall in the purple
area, not overlapping the blue area. From figure 7 it is seen that for this process
skewness is not a good early warning indicator, while both variance and correlation
time can be used. In the left column the early warning can be issued when µ ≈ 0.6µ0,
while in the middle column case the early warning can be issued when µ ≈ 0.4µ0.

Noise induced tipping

A transition from one stable equilibrium to another can happen without a bifurcation
if the noise by chance brings the state across the potential barriere. This is termed
noise induced tipping (n-tipping) in contrast to the bifurcation induced tipping (b-
tipping).
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Figure 8: A realisation of the process (17), which crosses the potential barrier of
height H . The circles indicate the steady states, where the one on top of the barrier
is unstable.

In figure 8 this is illustrated by a realisation of the process described by equations
(17) and (18) for µ = 0. In this case there are no early warning signals prior to
the tipping, since the potential does not change in time. The waiting time for a
tipping, or a jump to the other stable equilibrium depends on the height H of the
potential barrier separating the two states and on the variance of the noise σ2 kicking
the system away from equilibrium. This is the usual Arrhenius time for escape
T ∼ exp(H/σ2). We shall not go into mathematical details, just give a heuristic
argument for this in the case σ2 � H , which will of course only hold sufficiently
far away from a bifurcation point. From the fluctuation-dissipation theorem for the
linear theory (14) we can estimate the mean square fluctuation within a correlation
time as 〈x2〉 ∼ σ2Tc. In order for a noise induced transition to happen n independent
increments of the order ∆x =

√〈x2〉 must all be in the same ”uphill” direction. In
this time the drift towards the equilibrium is of the order ∆x ∼ (∆U/∆x)(nTc),
thus (∆x)2 ∼ ∆U(nTc). Thus to overcome a barrier of height ∆U = H , the number
of independent noise increments can be estimated from (∆x)2 ∼ σ2Tc ∼ HnTc ⇒
n ∼ H/σ2. Thus with probability p for an noise increment towards the barrier, the
probability for n increments in that direction is pn = exp(n log p), thus with log p of
the order -1, the waiting time is of the order T ∼ 1/ exp(−n) = exp(H/σ2).

In the situation considered in the previous section with a bifurcation approached
in time, µ(t) = ct+µ0, the system will with very high probability jump away from the
equilibrium state prior to the time of the bifurcation (t = 0). This typically happens
when T ∼ exp(H(t)/σ2) becomes smaller than Tc as H(t) → 0 at the bifurcation
point. Thus only in the limit σ → 0 a pure b-tipping will occur.
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Figure 9: A section of the NGRIP ice core isotope record showing the abrupt DO
events. The vertical lines are the jumps, while the grey areas to the left of the lines
indicate 900 ka prior to the jumps.

Identifying tipping mechanism through early warn-

ing signals

The paleoclimatic record documents abrupt climate changes, which are often of un-
known origin. Most pronounced are the Dansgaard-Oeschger (DO) events (Dans-
gaard et al., 1993) during the last glacial period. These are abrupt jumps from the
cold glacial climate, the stadials, to warm interstadial states on millennial time scale
with gradual cooling until a jump back to the cold glacial climate occurs.

Different mechanisms have been proposed for the DO events: A reduction in
the freshwater input into the North Atlantic could trigger a shift of the meridional
overturning circulation (MOC) to the on-mode, leading to a strong northern warm-
ing (Clark et al., 2002). The evidence from Heinrich events of massive iceberg dis-
charge suggests the stability of the ice sheet to be important (Bond & Lotti, 1995).
Alternatively, a fast retreat of North Atlantic sea ice leading to a warming through
the ice albedo feedback mechanism (Gildor & Tziperman, 2003). An other proposed
mechanism is a fast-slow cycle of ice shelf breakup combined with sea ice retreat,
rapid warming followed by a slow rebuild of ice shelves (Petersen et al., 2013). Some
of these proposed mechanisms involve the possibility of a bifurcation triggered by
an external change of a control parameter. A millennium time scale variation in
the solar flux has been proposed (Braun et al., 2005). Alternatively, the jumping
between the two steady climate states could be noise induced without any external
change in parameters. We are thus asking if the DO events are most likely to be due
to a b-tipping or an n-tipping scenario (Ditlevsen & Johnsen, 2010). The question
is then if the climate record contains information which would discriminate between
the two scenarios. This is exactly what the early warning signals do when assuming
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the two different scenarios governed by equation (17). Firstly, the b-tipping with
µ = µct/900, where µc is the critical value where the bifurcation occurs. This means
that at time t = 0 the potential (18) is symmetric, and slowly changing such that
at time t = 900 the bifurcation occurs. First column in Figure 9 shows a realisation
of this process, where the early warning signals are calculated in windows indicated
by the bar in the middle panel. A clear increase in variance and a somewhat less
clear increase in autocorrelation are seen prior to the actual jump, which happens
by a noise induced jumping of a small barrier a short time before t = 900. It should
be noted that in the presence of any noise the escape in the b-tipping scenario will
typically happen at some time prior to reaching the bifurcation point, where the
barrier for escape is comparable with the noise level.

Secondly, the n-tipping scenario is shown in the second column as a realisation
of the process with constant µ = 0. The simulation is run long enough for a jump
to happen. Time is then a posterior reset, such that the n-tipping occurs at t = 900.
From the two lower panels it is seen that there are no early warning signals prior
to the n-tipping. In the same way the third column shows the DO events observed
in the NGRIP ice core all aligned such that the jump from the stadial state to
the interstadial state occurs at t = 900 ka. The variance and autocorrelation are
calculated in the same way as for the simulations and show no sign of increase
prior to the jump. We can thus exclude the b-tipping scenario and favour the n-
tipping scenario for the DO events. This finding implies that abrupt climate events
of DO type has very limited predictability for two reasons. Firstly, there are no
early warnings, thus the predictability is essentially the same as the predictability of
the noise, which is of the order of predictability of perhaps El Nino type variations
or even shorter time scale chaotic weather variations. Secondly, a slowly varying
parameter µ controlling the stability could in principle be predictable had it, say, a
periodic astronomical origin (Braun et al., 2005). The recurrence time for DO events
has been subject for some debate, since it was noted that there was apparently a
preferred waiting time between events of a multiple of 1470 years (Schulz, 2002).
It was later shown that the waiting time statistics for the DO events is comparable
with an exponential waiting time distribution (Ditlevsen et al., 2005; Ditlevsen et al.,
2007). Thus the apparent periodicity is by pure chance. The n-tipping scenario gives
further support to this finding.
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Figure 10: The first column shows a realisation of the b-tipping scenario, governed by
equations (17) and (18) where the control parameter change in time as µ = µct/900.
The red lines are the steady states, and the bifurcation happens at t = 900 (arbitrary
units). The lower panels show variance and autocorrelation calculated within a
running window of 100 time units indicated by the bar in the middle panel. Both
early warning signals increase prior to the tipping. In the second column an n-tipping
scenario is shown. The red lines indicates that the steady states do not change in
time. Time is reset, such that an n-tipping happens at t = 900. The variance and
autocorrelation do not increase prior to the jump, thus there are no early warnings
prior to the n-tipping. The light blue bands are obtained from a set of 100 realisations
as the 2-sigma confidence level. The last column shows the DO events in the NGRIP
ice core (sections in figure 9 marked in grey) lined up such that the jumping happens
at t = 900 ka (red lines in figure 9) . The DO events do not show increase in variance
or autocorrelation prior to the jump, indicating that they are n-tipping events.
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