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ABSTRACT

Linear instability of zonal jets are calculated within the framework of the quasi-nondivergent
potential vorticity equation. The vertical structure of the flow is treated using vertical normal
mode expansion. Three simple 1-dimensional cases are investigated. Firstly, the baroclinic flow
on the B-plane, where instability is seen as function of the shape and strength of a jet mimicking
the vertical structure of a typical zonal jet in the atmosphere. The study shows that the jet is
most unstable for a low-lying jetmaximum. Secondly, a purely barotropic flow on a $-plane,
with fixed boundaries in north and south and with periodic boundaries in east-west, mimicking
the west wind belt is investigated. In this simple case, the linearized instability equation is solved
both spectrally and using finite differences in order to illustrate the dependence on resolution.
The stability of the jet is independent on the position within the channel. Finally, for each
vertical normal mode, equivalent to a barotropic flow, the stability of a typical west-wind jet
on the sphere is calculated. In this case, the jet is more stable the further away from the equator,
thus the Coriolis force stabilizes the flow. These very simple examples are in general agreement
with findings from full 3-dimensional stability analysis.

1. Introduction

The quasi-geostrophic approximation has,
although far from having predictive power, proven
itself capable of reproducing and explaining quite
well the general dynamics and energetics of the
atmosphere.

The main mechanisms for maintaining the gen-
eral circulation in the atmosphere can to a large
extent be understood in terms of classical linear
instability analysis.

In the atmosphere, the dominant flow-pattern
in the midlatitudes, is energetically maintained
by the pole-ward transportation of heat and
momentum. This transport is maintained by the
Rossby waves of the west-wind belt.

There are basically 2 possible instability mech-
anisms responsible for this transport, the baro-
clinic instability, depending on the thermal, or
vertical, wind-shear, and the barotropic instability
depending on the horizontal wind-shear.
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The classical “constant thermal shear” models
by Eady (1949) and Charney (1947) show, by a
linear stability analysis, that the unstable atmo-
spheric waves in the east-west direction are of
wavenumbers 5-10, corresponding to a wave-
length of 2000-4000 km. Green (1960) and Burger
(1962) showed that there are in fact unstable
modes everywhere in the considered phase space,
but still dominated by the Charney instabilities.

The barotropic instability of a horizontal
“cosine jet” on a f-plane was investigated by Kuo
(1979). It was found that with realistic values of
the zonal jet the growth rate of the unstable modes
are slower than that for the baroclinic models. It
was also found that the S-effect tends to stabilize
the flow.

Kasahara and Tanaka (1989) have studied the
baroclinic instability of a flow with a linear vertical
wind profile using the vertical normal expansion.
Their findings are in good agreement with the
much simpler Charney model.
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The dominating waves seen in the west-wind
belts are wavenumbers 3—6. This is also seen in
the numerical circulation models. So in this scen-
ario it is conjectured that the interaction between
the unstable modes, wavenumbers 6—10, and the
longer waves, wavenumbers 3—6, will dominate
when the linear expansion is no longer valid, and
the energy will flow from the short waves to the
long waves. The long waves will, when they have
build up, be more efficient in the pole-ward heat
transfer than the short waves.

A vast literature on instabilities in the atmo-
sphere exists, for a review see Grotjahn (1984).
Some classical references for modern 3-dimen-
sional instability analysis are Frederiksen (1978),
Simmons and Hoskins (1976) and Grotjahn
(1987). A good textbook also treating Reynold
and other criteria for instability is Pedlosky (1987).

The work presented in this note is by no means
pretended to contribute to the detailed and accur-
ate 3-dimensional instability analysis performed
by others. It should also be noted that more
modern approaches to growth of perturbations
and predictability, like singular vector analysis
(Palmer et al, 1994) and breeding vectors (Toth
and Kalney, 1993) is beyond any simple instability
analysis. The motivation for this study is merely
to see within the framework of the simple
1-dimensional calculations the roles of baroclinic
versus barotropic instabilities of typical zonal
flows. The simplicity of the 1-dimensional case
makes it easy to understand exactly which instabil-
ity mechanism is at play. We will consider the
stability of zonal jets as a function of the shape of
the jet. Firstly, we consider baroclinic instability
of a jet as determined by the height and width of
the jet, and secondly, the equivalent barotropic
instability of a midlatitude zonal flow on the
sphere also as a function of the shape of basic
flow. In both cases we assume the static stability
to be simply inversely proportional to the square
of the pressure, which has been shown to be a
fair approximation to the real atmosphere
(Wiin-Nielsen and Marshall, 1990).

In order to illustrate the sensitivity of the numer-
ical solution to the resolution, we solve the baro-
tropic case of a simple channel stream both
spectrally and by finite differences. we find that
the convergence, as a function of resolution,
is rather slow in the finite differences case.
Furthermore, we find, in both cases differences in
convergence depending on whether we truncate at
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an odd or an even number, called an odd/even
oscillation.

2. Linear instability analysis

In the quasi-geostrophic approximation, the
basic equations are, by eliminating o between the
vorticity equation and the thermodynamic equa-
tion, combined to the usual equation of conserved
quasi-nondivergent potential vorticity (Kasahara
and Tanaka, 1989):

g d fooy
2o sr )

where d/dt = d/0t + vV, v is the horizontal non-
divergent wind. Data studies of the atmosphere
show that the static stability can be approximated
with

o=—0—— =" (2)

where a=1/p and p, =p/p,. We will in the
following omit the subscript ,, so that 0 <p<1
is the normalized pressure.

In order to investigate the stability of a given
stationary flow, ¥,(x, p), fulfilling (1), x being the
horizontal coordinate, we apply a perturbation of
the form, y, =, (x, p) exp(—ict), and linearize (1)
around 1, by neglecting second-order terms in
the perturbation . From this linear equation we
seek solutions that grow exponentially in time,
that is solutions with Im(c) > 0. If such solutions,
¥y, exist, the basic flow, Y,, will be unstable,
feeding energy into iy, as long as the linear
approximation holds (i) < |¥,|).

The linear differential equation is solved spec-
trally, by expanding the stream functions in a
normal mode basis,

Y(x, p) = X ¥i(x)ai(p). (3)

The vertical structure functions, ¢;(p), we will
use are the normal modes obtained by imposing
the simplest possible boundary conditions, namely
 vanishing at the top and bottom of the atmo-
sphere, to the following vertical mode structure
equation,

f0d8 d d
lz_ /12_
(G dp)+ qd < p>+ =0

—=0, p=1p:

4)
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pr > 0 is the pressure at the top of the atmosphere
(arbitrarily close to zero), and g% = f3/o,p2. The
normal mode solutions to (4) are,

eo(&)=1/~1—exp(—&p),  13=0,

&,(8) = /2);6 es? <sin <n7r €£>
nST T
2£cos<nné)) (5)
ne\? 1
2=(z) +%

with £ =log(p). &, is called the external mode, and
&,(p), n> 0 are the internal modes. From (5) it is
seen that we need to specify the (arbitrary) top
level pressure py >0, at which « = 0. This corre-
sponds to having a “lid” on the atmosphere. The
choice of vertical normal mode basis is in principle
arbitrary, it only influences the result of the ana-
lysis through the convergence as function of the
number of modes included. Kasahara and Tanaka
uses a slightly different basis, governed by the
lower boundary condition de/dz =0 at z=0. The
first few vertical eigenmodes are shown in Fig. 1.

3. Baroclinic instability

Firstly we will study the stability of a jet in the
vertical wind profile. For this purpose we take the
horizontal geometry to be a plane, where we apply
the f-plane approximation at the midlatitude,
f=fo+ B(y—yo) This treatment follows closely
the model used by Kasahara and Tanaka, where
a linear vertical wind profile was investigated.

Vertical Eigenmodes
~10g(p ;) o

m = 0 1

0

Fig. 1. The external and the first six internal vertical
eigenmodes.
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The stream function is specified as,

Y= —U(p)y + Y(p) =", (6)

where — U(p)y is the basic state stream function,
U(p) = — 0y/0y, trivially fulfilling (1), and the last
term is the perturbation. This form is then inserted
into (1), and we get,

£ (p2))
op p op

0 0
+o- V(V21p+f+q ap< 2;}6))

=(ick3|// lck3q  dp <p Zﬁ)

_ 3 h .73 1 =
ik>Uy + ik Ukde(p

9 (w2 2
a:(v y+f+q

ICL
SRS

)

B - q U\\ .._
21,3 3 ik(x—ct) _
+ ik 2 zp ik 2 l// dp d e 0,

(7)

where second order terms in i are neglected. The
stream functions are expanded in vertical normal
modes,

¥(p)=

D..
’G

Swep,  Up=YUap).  (8)

Then (7) becomes, by use of (4),

Mk
z (l + - iz /E) YiUje;— cR'l’i) & =0,

©

where we have defined the Rossby speed, cg = B/k%.
By multiplying (9) by ¢; and integrating vertically,
utilizing the orthonormality of the vertical modes,
we finally arrive at the eigenvalue equation,

1+ (q/ky (2 — 43)

e 10D

5(x

i i

R 6) Y=y, (10)
1+ (gl 22

0, is the Kronecker symbol, and the interaction
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integral is defined as,

P

I(G, j, k)= J €€y dp
1

33
= J e fei(&)es(©)en($) dL. (11)
0
3.1. The basic state profile
The U profile is taken to be of the form,
p(1—p)
Up)=Uo— (12)

® P (1= po)r=’
where p, = o, o, + o,) is the pressure level of the
wind maximum. The parameters Uy, «; and a, are
then varied such that the instability of the jet is
calculated as a function of the strength, the broad-
ness and the position of the jet independently.
The constants we use in the calculations are,

B=16x10""m s '=138L"'day!
. fo

= > =125 1072 m~%2=125L"2
GoDo

a=637 x10°m =6.37L
Q=729%x10"°s"1'=2nday!

with a natural length scale, L = 1000 km.

The cigenmode expansion (8) is truncated at
N =36, where the results are fairly converged as
a function of the truncation. The growth rate,
k Im(c), for the most unstable mode, is shown in
Fig. 2. The results shown in the uppermost panel
is quite similar to what is found in the case of a
linear wind profile (Kasahara and Tanaka, 1989).
This indicates that the instability is governed by
the linear shear on the bottom side of the jet. The
middle panel shows that there is little influence
on the stability from having a narrower jet around
200 hPa, on the contrary we find that the broad
jet is the most unstable. This is due to the fact
that the broad jet indeed has a large shear in the
lower part of the atmosphere, which dominates
the behavior. The third panel clearly shows that
the lower the jet maximum the more unstable it
becomes. So we find that the baroclinic instability
is largest for a low-lying jet. This is what one
would expect from the fact that the static stability
increase with height.

Green (1960) found, by re-examining Charney’s
model, instabilities, although weak, also in the
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areas that Charney found to be stable. It was
shown rigorously by Burger (1962) that the
Charney problem did have instabilities every-
where, except for a discrete set of points in the
parameter space. In Fig. 2, we have for clarity
only shown the Charney type of instabilities. These
are anyway the only ones with relevance for
development of baroclinic waves in the atmo-
sphere. Fig. 3 shows the separation between the
Charney- and the Green types of instability. By
examining the most unstable eigenmode we find
that it will in general grow on the upper side of
the jet.

4. Barotropic instability

4.1. Channel stream

Before turning our attention to the problem of
barotropic instability on the sphere, we will con-
sider the much simpler case of a periodic chan-
nel geometry with the f-plane approximation.
Neglecting any vertical structure we have,

4

d 0 0
G CHA=5,Q+J0 0+ f7°=0, (13)

where J is the Jacobian. The stream function is
chosen as,

¥y
Y=oty =— J Uo(7) 4 + Y1y (3) =0,
(14)
With the boundary condition that the stream
function, ¥,(y), vanishes on the northern and

southern boundaries, the basis in spectral space is
simply taken to be,

Emn(%, §) = sin my ™%, (15)

with y=yn/D and X=xn/L, D and L are the
width and length of the channel, respectively. With
&¢=cL/2n, k=2kD/L and B = fD*n, we obtain
the eigenvalue equation:

NN Ry
) ( ) 2<WI(J} I, m)U?>
=1 \i=1

(7)o e

with UY being the spectral components of the
basic state wind, U,. The interaction integrals are

(16)
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Fig. 2. Baroclinic instability: The growth rate, k Im(c), as function of wavenumber and basic state wind profile, in
days~'. Top panel: changing wind maximum at 200 hPa, keeping the curvature at the maximum constant, y-axis
coordinate is U, (m/s). Middie panel: changing shear at wind maximum with a constant wind maximum at 200 hPa,
y-axis coordinate is (negative) curvature at wind maximum. Bottom panel: changing position of wind maximum with
a constant curvature, y-axis coordinate is pressure level of wind maximum. The right panels show the basic state wind
profiles corresponding to the parameter values at the top, the middle and at the bottom of the left side panels.

given by,

T

1
I(l,j,m)=;f
(V]
1/1- —j—
1 cos(l. j m)7z+
4z l—j—m

l—cos(I+j—mn 1 —cos(l+j+m)n)

sin ly sin jy sin my dy I+j—m I+j+m
(17)

In order to see the influence of the numerical

1—cos(l—j+mn
I—j+m
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Fig. 3. Growth rate for Charney and Green instability
types.

scheme and the truncation, we rewrite the eigen-
value equation using finite differences in the j
direction. Defining ¥, = y(nA), with A = D/N, we
substitute,

i 1
6y l//n_’i(‘//n+1 —llln—l)’

62

. (18)
a—y;_‘//n—)P(wn+l +l//n~1 -2l//n)
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The eigenvalue equation equivalent to (16) then
becomes,

(BA* = URyy = Up_ + 2UDA,,

+ U0 um) Xon = c X, (19)
where we have used the transformation,
Xy =0+ - — 2+ KAy, (20)

A,., is the (symmetric) transformation matrix:
Xm = Amn ‘//n'

Fig. 4 shows the values of the imaginary part of
the eigenvalues of the most unstable mode, corres-
ponding to meridional wavenumber 5. It is seen
that they have converged for a truncation around
N = 60. The ways the two methods converge are
quite different, and the results should not be
trusted before the convergence is reached. Even
when convergence is reached the two results devi-
ate by approximately 5%.

The basic state wind profile, U,, is taken to be
of the form,

Uo(y) = Uoy* (1 — y?)=. (21)

The parameters U, a4, o, are then chosen such
that (1) wind maximum, (2) curvature at wind
maximum and (3) position of wind maximum are
varied independently. Fig. 5 shows the growth rate
of the most unstable mode. We see that wave-
numbers 3—7 are the most unstable with respect to
increasing zonal wind speed (top panel). In case of
narrowing zonal wind profile (middle panel) we
find that the wavenumber of the most unstable
mode increases slightly with increasing wind shear.
Finally, we see that the instability is very little
influenced by the position of the zonal wind jet
(bottom panel), this means that, in this case, the
effect plays little role in stabilizing the flow.

1 ]

% 0 o 1.0j

o [

K=l e ]

£ ]

05 %05

[} o 4

° e ]

(6] [CRE-
0.0++——+—rr1rr1 0.0+

0 25 50 0- 25 50
Truncation Truncation

Fig. 4. The imaginary part of the most unstable modes
as a function of truncation, N, for a given basic state
wind profile. The left panel shows the result in spectral
space. The right panel shows the result using finite
differences.
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Fig. 5. Barotropic instability in Channel: the growth rate, k Im(c), as function of wavenumber and basic state wind
profile (days ~*!). Top panel: changing wind maximum, keeping the curvature at the maximum constant; y-axis coordinate
i8S Upax (m/s). Middle panel: changing shear at wind maximum with a constant wind maximum,; y-axis coordinate is
curvature at wind maximum. Bottom panel: changing position of wind maximum with a constant curvature.

4.2. Equivalent barotropic instability on the sphere

In this section, we consider the stability of a
typical westerly jet on the sphere. Firstly the
equation (1) is expressed in spherical coordinates,
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noting that in the non-divergent case we have for

Y(x, p) =¥ (x)e,(p),
Vv

a (o a(,0
— ) . . 2
V6p<p ap) kxVy 6p<p op 0 (2)
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with dy/0y = a, § the latitude, 3y/04 =0, dx/d) =
0, 0x/0A =a cos Y, and p=sin ¢, (1) becomes,

9K 2,00/,
a T T 5\ \P

l(%% ko
T2\ " daon

20 0y

Za-0 (23)

The last term is the Coriolis term, using f=
2Q sin .

Let the basic stream function be independent of
pressure and longitude, thus trivially a stationary
solution to (1). Expanded in the Legendre polyno-
mials we have,

Y =3 ¥uPu(). (24)
The perturbation field is defined as,
Y0, 12, 0)= Y uen(p)Pr(1) €m0, (25)

where m is a specific zonal wavenumber and &,(p)
is a vertical eigenmode. Inserting into (23), neg-
lecting second order terms in ,, using the ortho-
gonality of the spherical harmonics, and
integrating out the pressure dependency, we obtain
the eigenmode equation:

nn+1)—I(I+1)
22y )

1 n
2

T kk+ 1)+ g2 A2 (26)

5k1> ‘/;z = c'!;ks
where we have scaled; Y —a’Qy, q—aq, and
¢ —Qc. The interaction integral is defined as,

! dP,(w)

P?(#)PT(H)?dM- (27)

J™k, 1, n)= f
-1

With this form of the stream function, we can
see from (26) that the pressure dependency
becomes trivial. We can rescale the static stab-
ility factor as g, =ag,4, % such that higher ver-
tical normal modes correspond to less stable

stratification.

4.3. The basic state profile
For the basic state wind we use the simple form,

#2‘11(1 _ ﬂZ)zx2+1/2

o= o g gy o
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where o= o (ot + oy +%) is the location of the
wind maximum and U, = U(y,) is the maximum
wind. The parameters Uy, o, «, are chosen such
that (1) the strength, (2) the width and (3) the
position of the jet are varied independently. The
truncation is N = 60. Fig. 6 shows the growth rate
where the vertical component of the perturbation
is the external mode, that is, there is no pressure
dependency. The situation is rather similar to the
case of a channel stream, except for the case shown
in the bottom panel. Here we observe that the
zonal jet becomes more unstable with respect to
position towards the equator, so in this case we
see that the Coriolis force stabilize the flow. This
is in agreement with the findings of Kuo (1973)
in case of a Cosine jet on the f-plane.

Calculationes for the internal vertical modes,
r=1,2,..., shows that the higher vertical wave-
number of the perturbation, the more stable the
fluid becomes, and it changes little on which zonal
modes are the most unstable. In general the most
barotropically unstable modes have zonal wave-
numbers 5-10. The form of the most unstable
eigenmode shows that the perturbation grows near
the jet maximum and on the pole-ward side of the
jet. The perturbation will lower the shear of the
jet, thus make the flow more stable.

5. Summary

The instability of zonal jet has been investigated
in 3 cases. The baroclinic flow on a f-plane, the
barotropic flow in a channel and the equivalent
barotropic flow on the sphere. The vertical jet
profile is more unstable the lower the jet max-
imum, this means that the (linear) wind-shear on
the bottom side of the jet, where the static stability
is smallest, dominates the stability properties of
the jet. In case of a barotropic jet on the sphere
we find the flow to be more unstable the larger
the shear. The flow is more stable the more pole-
ward the jet, which indicates that the Coriolis
force tends to stabilize the flow.

In all 3 cases, it was found that the most
unstable modes have zonal wavenumbers 5-10,
corresponding to wavelengths of 2000-4000 km.
This is in agreement with the findings from the
simpler models by Eady, Charney, Kuo and others.
The baroclinic jet is more unstable than the baro-
tropic for conditions realistic to the atmosphere.
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Fig. 6. Barotropic instability: same as Fig. 5 for the flow on the sphere. The perturbation vertical wavenumber is 0,

corresponding to the external mode.

It is remarkable that the results from such simple
1-dimensional models investigated here are in very
good agrement with the general picture obtained
from much more complicated 3-dimensional ana-
lyses. The simplicity of this study enables us to
clearly investigate the isolated effect of baroclinic
or barotropic instabilities of typical jets.
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