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ABSTRACT

A spherical harmonic analysis is made of the stationary and transient rotational motions during
14 winter and 15 summer seasons from the reanalyses of the European Centre for Medium-
Range Weather Forecasts (ECMWF) for the northern hemisphere. Vertically-integrated kinetic
energy, enstrophy, rotational non-linear interactions and the baroclinic source term are dia-
gnosed as a function of total wavenumber n. The contributions to the non-linear transfers from
triads involving wavenumber and frequency bands of meterological relevance are mapped. The
inter-seasonal and intra-seasonal variability are computed. The non-linear energy and enstrophy
tendencies and fluxes are examined and compared to existing geophysical turbulence theories.
The transient divergent kinetic energy is less than the rotational energy. The spectral energy
slope seen in the range n~10–40 is roughly −2.5~−2.6. Based on the variability of the slope
on seasonal and 10-day time scales, this slope is significantly different than −3. There is no
indication of the −5/3 mesoscale energy regime seen in observations. A broad enstrophy dissipa-
tion regimes is seen for n>40. Non-linear terms transfer transient energy from a band centered
at n~15 to one at n~7, with the latter predominantly associated with non-zonal (zonal wave-
number m≠0) flow. Non-linear terms transfer mean energy from n=7 to the mean zonal flow
m=0, n=3 and n=5. The non-linear transfer of transient energy is quite variable, with about
16% of 10-day periods yielding a tendency twice the mean, and 16% showing no upscale
tendency whatever. This variability is greatly reduced when interactions involving only synoptic
scales (n~10–40) are retained. The latter set of interactions are associated mostly with triads
involving both high and low frequencies, with associated periods in the 1–9 day and 11–90
range, respectively. Non-local planetary wave advective interactions play an important rôle in
the downscale transfer of enstrophy. More local interactions involving synoptic scales dominate
the non-linear energy transfers. The main seasonal effects are a weakening in summer of the
total energy and shifting to higher wave number of the peak, and a distinct shift to smaller
scales in the transition between the large-scale and synoptic-scale regimes in the energy budget.
The predominant time scale for non-linear maintenance of the planetary waves (about 9 days)
is roughly the same as that of the baroclinic support of larger synoptic scale waves. The time
scale of baroclinic conversion which maintains the smaller synoptic waves (n~20–40) is shorter
(about 4 days).

1. Introduction (Fjørtoft, 1953) is responsible for widespread inter-
est in the application of 2-dimensional turbulence
to the general circulation of the atmosphere. SinceThe strong tendency of non-linear 2-dimen-
the upscale transfer of energy from synoptic tosional dynamics to transfer energy to large scales
planetary scales is a potentially important process
in understanding large-scale atmospheric variabil-* Corresponding author.

e-mail: straus@cola.iges.org ity, early studies focused on the diagnosis of this
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transfer from atmospheric data (Saltzman and the nature of the non-linear turbulent interactions
(Shepherd, 1987b). In the more general baroclinicFleisher, 1960; Steinberg and Wiin-Nielsen, 1971;

Chen and Wiin-Nielsen, 1978; Lambert, 1981). case, the interplay between the development of

transients in a mean vertical shear (baroclinicWith the recognition that quasi-geostrophic
dynamics share a fundamental property with instability) and quasi-geostrophic turbulence was

studied in fairly idealized contexts by Salmon2-dimensional incompressible dynamics (they both

conserve forms of energy and vorticity), it became (1980), Haidvogel and Held (1980), Hoyer and
Sadourny (1982), Vallis (1983) and Hua andclear that quasi-geostrophic turbulence was highly

relevant to geophysical fluid dynamics in general Haidvogel (1986). Utilizing the vertical mode

framework first introduced by Charney (1971),and the atmosphere in particular (Charney, 1971;
Rhines, 1979). Salmon (1981), Hoyer and Sadourny (1982), and

Hua and Haidvogel (1986) arrived at the sameAt the same time, the critical importance of the

energy spectrum in understanding atmospheric qualitative picture. The transfer of total (kinetic
plus available potential ) energy to larger scales ispredictability (first pointed out by Lorenz, 1969)

provided another link between atmospheric achieved entirely by the first vertical (barotropic)

mode, with the transfer of enstrophy to smallerdynamics and those of turbulence. Lorenz pointed
out that an energy spectrum proportional to k−3 scales achieved both by the barotropic and higher

(baroclinic) modes. At the Rossby radius of(with k being horizontal wavenumber) formed a

significant regime boundary with regard to pre- deformation, baroclinic processes transfer energy
primarily from the first baroclinic mode to thedictability. A spectrum associated with a slope of

−3 or steeper was associated with a flow whose barotropic mode. Thus in the context of barotropic
dynamics, baroclinic instablity provides the inputpredictability at any fixed range could be increased

indefinitely by reducing the initial error. However, for the turbulent energy and enstrophy cascades.

Recent observational studies of aircraft dataa spectrum whose slope was less steep than −3
implied a flow which was fundamentally less pre- (Nastrom and Gage, 1985, hereafter NG;

Högström et al., 1999) have re-energized the dis-dictable, for the error at any fixed range could no

longer be reduced below a (finite) value no matter cussion by finding not only a −3 spectral range
for kinetic energy and temperature at synoptichow small the initial error was made. Not only

does the simplest scaling theory of 2-dimensional scales (~1000–4000 km) but a −5/3 spectral

range at mesoscales (~100–800 km). Kraichnan(and quasi-geostrophic) turbulence predict a −3
spectrum (see the review of Orszag (1977)), but a (1967, 1971) gave strong arguments that isotropic

homogenous 2-dimensional turbulence forced atnumber of early observational studies suggested

that this spectrum holds approximately for the ‘‘intermediate’’ wavenumbers can support an
energy cascade towards larger scales (‘‘upscale’’)synoptic to large scales in the atmosphere (Horn

and Bryson, 1963; Wiin-Nielsen, 1967, 1972; Julian associated with a −5/3 spectrum and no

enstrophy transfer, and at the same time anet al, 1970; Kao and Wendell, 1970). Leith (1971)
and Leith and Kraichnan (1972) put these ideas enstrophy cascade towards smaller scales (‘‘down-

scale’’), associated with a −3 spectrum and noon a firm theoretical base with the use of turbu-

lence closure models in the context of atmospheric- energy transfer. But in this scenario the −5/3
spectrum appears at larger scales than the −3like forcing.

These early successes stimulated a very large spectrum, which is inconsistent with the observa-

tions. Isotropic and homogeneous 3-dimensionalnumber of theoretical papers exploring the rela-
tionships between 2-dimensional and quasi-geo- turbulence predicts a −5/3 spectrum, but is

expected to come into play only at much smallerstrophic turbulence and atmospheric transient

flow (Rhines, 1975; Salmon, 1980; Basdevant et al, scales than the mesoscales. A number of investi-
gations have attempted to theoretically explain1981; Hoyer and Sadourny, 1982; Holloway, 1982;

Vallis, 1983). Of course interactions with the time the observations by suggesting the presence of two
sets of 2-dimensional turbulence inertial rangesmean flow are also known to be of great impor-

tance in determining the structure of the transients (Lilly, 1983, 1989; Gage and Nastrom, 1986;

Gifford, 1988; Bartello, 1995; Vallis, 1997). The(Hoskins, 1983). Even in the barotropic case, the
effects on the transients of a mean zonal jet distorts large scale kinetic energy source associated with
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baroclinic conversion from available potential for 2-dimensional turbulence arguments in con-
junction with a baroclinic energy source nearenergy gives rise to the downscale −3 enstrophy

cascading range, while a source associated with n~15. The fluxes are by no means constant over

any range of wavenumbers, indicating the absencelatent heat release at scales ~100 km gives rise to
a combination of gravity wave propagation and of a true inertial range. A caveat to this conclusion

is that only global scales n<40 were analyzed.2-dimensional upscale energy propagation, the

dimensionality of the latter suggested by the highly Higher resolution data sets were examined by
Trenberth and Solomon (1993), who computedstratified nature of convective outflows. While

there is some agreement that the spectrum of the kinetic energy and temperature spectra for

several Januaries from analyses at spectral reso-vertical velocity is characteristic of gravity wave
propagation, while the horizontal wind and tem- lution of T106. In agreement with the work

of Boer and Shepherd, they found slopesperature spectra are more characteristic of turbu-

lence (see Högström et al. (1999) for a discussion), approaching −3 only in the upper troposphere,
with more shallow spectra below and in the strato-the interplay of waves and turbulence in this

context is not well understood. sphere. These slopes held over a wavenumber

range of n~20–60. At smaller scales dissipationThe extensive use of atmospheric analyses based
on 4-dimensional data assimilation to study the takes over and the spectra become much steeper.

Koshyk and Boer (1995) explored the resolutionenergy spectra and the non-linear energy and

enstrophy fluxes in terms of total wavenumber n dependence of the energy and enstrophy transfers
for very high global resolution analyses (up towas enhanced by the work of Boer (1983), Boer

and Shepherd (1983), Shepherd (1987a) and Boer n=213). Increasing resolution leads to a larger
upscale energy transfer and a larger downscale(1994). Building on earlier work of Wiin-Nielsen

(1967, 1972) and Baer (1972), they developed a enstrophy transfer, although again there is little

evidence for true energy or enstrophy cascades.complete barotropic framework for the discussion
of the rotational energy and enstrophy transfers The lack of an upscale energy cascading inertial

range is hardly surprising. On the one hand theof the mean flow, the transient flow, and their

interaction, and used this framework to analyze theoretical arguments of Kraichnan (1967, 1971)
require the presence of an asymptotically infiniteglobal data from January and July of 1979. In the

barotropic framework the baroclinic energy con- range of scales larger than the energy injection

scale; even a large but finite range gives rise toversion resulting from baroclinic development is
treated as a source term for kinetic energy, competing energy (and enstrophy) transfers in the

‘‘wrong’’ direction (Terry and Newman, 1993). Inalthough it must be recognized that this source is

in fact determined by the flow itself. the real atmosphere, on the other hand, the injec-
tion scale corresponds to n~15, so there is a veryBoer and Shepherd (1983) show a spectral slope

of −3 for the transient kinetic energy near the jet small available range for up-scale transfer, a con-

figuration far from that assumed by Kraichnan.stream level (200–300 hPa), but a smaller slopes
at other levels. They also present evidence that Yet the upscale energy transfer that does exist in

the atmosphere is of intrinsic interest, for it pro-the transient eddy statistics for n>10 are consist-

ent with isotropy and homogeneity to a surprising vides a source of large scale (and potentially low
frequency) variability. (Conditions in the oceandegree, in apparent contradiction to the work of

Hoskins et. al. (1983) distinguishing between the are quite different, where the far smaller ratio of

the radius of deformation to the largest scalesshape of low- and high-frequency transient eddies.
Shepherd (1987a) stressed that the turbulence makes the cascade theory more applicable, as for

example in Hoyer and Sadourny, 1982).paradigm is most applicable to the transient inter-

actions, and that the interactions between transi- The main purpose of this paper is to study the
properties of this upscale energy transfer in aent and mean flow are best understood by studying

each zonal wavenumber m separately. A flux of realistic representation of the real atmosphere.
While turbulence theory would suggest that thetransient rotational kinetic energy upscale from

n~15 to lower values, and a downscale enstrophy interactions that give rise to this transfer are non-

local in wavenumber space, it is of interest totransfer from n~15 to larger values are found.
These transfers are consistent with those expected understand the spatial and temporal scales that
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participate in these interactions, for this may mode analysis for quasi-geostrophic turbulence
(as for example in Hua and Haidvogel, 1986).suggest what meteorological phenomena are

In this study, we utilize 14 winter and 15 summerinvolved. Another question of interest relates to
seasons (each of 90 days), so that the total size ofthe robustness of the upscale energy transport on
the data base is 45× that of previous studiesboth intraseasonal and interannual time scales.
which have examined a single winter and summerThe climatological differences between winter and
month (30 days). We concentrate on the northernsummer energy transports are also relevant in
hemisphere so that the question of seasonality canunderstanding this source of large scale atmo-
be meaningfully addressed.spheric variability. In the theory of (nearly invis-

In terms of spatial scales, we consider severalcid) 2-dimensional turbulence, the downscale
groups of wavenumbers which encompass broadenstrophy cascade is based to a large extent on
meterological categories: (1) The planetary waveinteractions which are non-local in wavenumber
group encompassing the largest scales (total wave-space, i.e., interactions involving groups of waves
number n=1–10) which are forced by topo-with very different n. It is of interest to examine
graphy, land–sea heat contrast, and sea surfacethe local and non-local interactions between vari-
temperature anomalies, and whose variability isous meterological scales.
related to global Rossby waves, regime-like tran-The representation of the real atmosphere which
sitions in mid-latitude flow, and large scale tropicalwe use to address these questions is the set of
waves. (2) The synoptic wave group, whichreanalyses of the European Centre for Medium-
includes scales of total wavenumbers n=10–40.Range Weather Forecasts (ECMWF, Gibson et al.,
The larger scales in the group (n=10–20) describe1997). This set of reanalyses was carried out
in broad terms important stationary Rossby waveconsistently for 15 years, and nominally retains
propagation and baroclinic development, while

all scales n∏106. Given this degree of resolution,
the smaller scales in this group (n=20–40) give

we might expect some indication of a change from
the signature of fronts and more detailed structures

an approximately −3 ( large-scale) spectrum to
in cyclones. (3) The true small-scale group (n=

the mesoscale −5/3 spectrum. However, it is not
40–106) describes more local circulations which

clear that scales smaller than 1000 km can really
are likely to be most sensitive to model para-

be resolved (Lander and Hoskins, 1997). Further,
meterizations of dissipation and heating. The com-

the dissipative nature of the semi-Lagrangian
position of these groups is motivated by the

numerical scheme used in the forecast model, and
behavior of the energy spectrum, to be discussed.

the possible involvement of mesoscale gravity
The temporal scales for the transient flow are

waves in the dynamics of the −5/3 regime (see
described by two components: a high-frequency

earlier cited references) makes it unlikely that this component which includes fluctuations with
spectrum will be seen in the reanalyses. The work periods of 1 to 9 days, and a low-frequency
of Trenberth and Solomon (1993) using the component including fluctuations of about 11 to
ECMWF operational analyses certainly gives no 90 days. The high-frequency component is gener-
hint of a shallower spectrum at small scales. It is ally associated with mobile atmospheric disturb-
nevertheless of interest to examine the spectrum ances which tend to be concentrated in the storm
for all resolved wavenumbers. track regions, while the low-frequency fluctuations

The diagnostic method we apply to the re- describe the environment in which the disturb-
analyses is based on 2-dimensional turbulence ances grow, propagate, and decay. The non-linear
theory (as in Boer and Shepherd, 1983), in which interactions between different spatial scales (see
baroclinic development enters the barotropic vor- above) will be further studied in terms of self-
ticity equation via the kinetic energy source term. interactions of the high-frequency components,
However, since we vertically integrate all terms in self-interactions of the low-frequency components,
the 2-dimensional energy (E) and enstrophy (Z) and interactions between the two frequency
budgets, correlations between baroclinic modes groups.
which contribute to the vertically averaged E and The outline of this papers is as follows: Section 2
Z equations are taken into account. Thus our briefly describes the reanalysis data set and the

data processing. A full account of the equationsapproach is equivalent to a complete barotropic
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of the turbulence (spherical harmonic) framework v the polynomial preserved the first derivative at
5°N but vanished at the equator.as applied to the transient and stationary flow is

given in Section 3. In Section 4 we give the results The groups of spatial scales are based on total

wavenumber n, and are given in detail in the nextfor the transient and mean flow kinetic energy
spectra for rotational and divergent flow, and for section. In terms of temporal scales, the annual

cycle was calculated from a parabolic fit for eachwinter and summer, and in Section 5 discuss the

upscale energy transfer and the downscale 90-day season separately (as in Straus, 1983). For
each season, the turbulence diagnostics to beenstrophy transfer. A summary (Section 6) and

discussion (Section 7) follow. presented below were calculated for the stationary

(time mean flow); for the transient flow we used
four separate definitions.

2. Data processing
(i) T otal transients — deviations from current

seasonal mean.
The ECMWF Re-Analysis Project (ERA) pro-

(ii) Annual cycle transients — deviations from
duced a validated 15-year data set of assimilated

current annual cycle.
data for the period of 1979 through 1993 (Gibson,

(iii ) Low-frequency transients — low-frequency
et al., 1997). The data assimilation system used

deviations from current annual cycle.
the Integrated Forecast System version of the

(iv) High-frequency transients — high-fre-
ECMWF forecast model with 3-dimensional semi-

quency deviations from current annual
Lagrangian advection, a spectral truncation of

cycle.
triangular 106 (T106), and 31 vertical hybrid

The low- and high-frequency transients werelevels. Prognostic equations for cloud water, ice
calculated from a discrete Fourier transform incontent and cloud cover were included. Data were
time, with the former comprising fluctuations ofassimilated with an intermittent statistical optimal
periods 90 down to 11.25 days, and the latterinterpolation technique using a 6 h cycling time.
periods of 9 days down to 1 day. The interactionsOne-dimensional variational physical retrieval of
between low- and high-frequency transients (to bethe TOVS* cloud cleared radiances was used
discussed below) were obtained from (ii)–(iv). Allbelow 100 hPa. For further details consult Gibson
the terms kept in the turbulence analysis wereet al. (1997).
computed separately for every 10-day period. TheWe utilized twice-daily time series of the spectral
inter-seasonal variability of any quantity is thencoefficients of vorticity and divergence at the
given by s21 , the variance of seasonal means aboutfollowing 10 analysis levels: 850, 700, 600, 500,
climatology, while the intra-seasonal variability is400, 300, 250, 200, 150 and 100 hPa. The winter
given by s22 , the variance of 10-day means about(summer) season was defined as the 90-day period
the current seasonal mean.commencing on 00 UTC 21 December (June). For

each analysis time the northern hemisphere data
were reflected about the equator to produce 3. Spherical harmonic turbulence analysis
‘‘global’’ data. Since the u (v) wind has even (odd)

parity with respect to reflection about the equator,
This analysis recapitulates the development of

the following procedure was used to insure a
Boer and Shepherd (1983), Shepherd (1987a) and

smooth wind field in the immediate vicinity of the
Boer (1994). We start from the mean and transient

equator: Between 5°N and the equator at each
vorticity equations:

longitude the zonal wind u was replaced by a
polynomial in latitude which preserved the first ∂f:

∂t
=f: (L)+f: (N)+S9 , (1)

derivative of the field at 5°N but had vanishing
derivative at the equator. For the meridional wind ∂f∞

∂t
=f∞(L)+f∞(N)+S∞ , (2)

* The TIROS Operational Vertical Sounder (TOVS)
where f is the vorticity, an overbar denotes themeasures multi-spectral radiances, which are related
seasonal mean, and the prime denotes a transientto the temperature and humidity structure in the

atmosphere. departure from that seasonal mean, corresponding
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to the total transient designation of the previous we also have:
section. The linear terms f: (L) and f∞(L) are:

f
n,m

=−
n(n+1)

a2
y
n,m

, (11)
f: (L)=−VΩ (v: f ) , (3)

f∞(L)=−VΩ(v:f∞)−VΩ(v∞f: )−VΩ(v∞ f ) , (4)
D
n,m

=−
n(n+1)

a2
x
n,m

, (12)
with f =2V sin (w), where w is latitude and V the

where a is the radius of the earth.rotation rate of the earth. In general the velocity
The globally averaged kinetic energy is givenfield vE is written in the usual way as the sum of

by:the rotational and divergent parts as:

v= k̂×Vy+Vx . (5)
E=−

1

2

yf�=−

1

2

y: f:�−

1

2

y∞f∞ � (13)

Here y is the streamfunction, x the velocity poten-
tial, and k̂ the unit vector in the vertical direction. =−

1

4
∑
n=N
n=0

∑
m=n
m=−n

(y:
n,m

f:*
n,m

+y∞
n,m

+f∞*
n,m

) (14)
We include only the rotational part of the velocity
in the mean and transient vorticity equation. (To

=+
1

4
∑
n=N
n=0

n(n+1)

a2
∑
m=n
m=−n

(y:
n,m

y: *
n,m

+y∞
n,m

y∞*
n,m

)consistently include the divergent part, we would

also have to include terms involving the vertical
(15)

velocity, according to standard quasi-geostrophic

scaling.) = ∑
n=N
n=0

(E9 n+E∞
n
) . (16)

The non-linear terms f: (N) and f∞(N) are:

E9 n and E∞
n

can be written as:f: (N)=−VΩ(v:f: )−VΩ (v∞f∞)=f: (N
1
)+f: (N

2
), (6)

f∞(N)=−VΩ (v∞f∞)+VΩ(v∞f∞) . (7) E9 n=
1

2

n(n+1)

a2 A12 y: 2
n,0

+ ∑
m=n
m=1

y:
n,m

y: *
n,mB , (17)

In eq. (6) we have explicitly labeled the non-linear
contribution of the mean flow (N1 ) and that due E∞

n
=

1

2

n(n+1)

a2 A12 y∞2
n,0

+ ∑
m=n
m=1

y∞
n,m

y∞*
n,mB . (18)

to the transient flow effect on the mean flow (N2 ).
In eq. (7) the mean correction due to the transients
(second term) plays no rôle in the kinetic energy

In these equations, the angular brackets denote a
and enstrophy budgets.

global average, and the asterisk denotes complex
The residual (or source) terms S9 and S∞ include

conjugate. The extra factor of 1
2

in eq. (14) arises
all effects of the divergent component of the flow,

from the choice of normalization of the Legendre
including vertical advection and the ‘‘tilting’’ term,

polynomials. An entirely analagous development
frictional effects, and since we are applying the

holds for the divergent kinetic energy, with x
vorticity equation to analyses, a source term due

replacing y and D replacing f.
to insertion of the observational data.

The globally averaged enstrophy Z can be
We expand the scalar fields (y, x, f, and the

written as:
divergence D) in terms of spherical harmonics, as

for example: Z=
1

2

ff�=

1

2

f: f:�+

1

2

f∞f∞� (19)

y(l, m)= ∑
n=N
n=0

∑
m=n
m=−n

P
n,m

(m) eimly
n,m

, (8)
=

1

4
∑
n=N
n=0

∑
m=n
m=−n

(f:
n,m

f:*
n,m

+f∞
n,m

f∞*
n,m

) (20)

where l is longitude, w latitude, m=sin (w), n the

total wave number, and m the zonal wave number. =
1

4
∑
n=N
n=0 An(n+1)

a2 B2 ∑
m=n
m=−n

(y:
n,m

y: *
n,m

+y∞
n,m

y∞*
n,m

)
P
n,m

is the associated Legendre polynomial, and
y
n,m

is a complex coefficient. See Boer and (21)
Shepherd (1983) for more details. Since the pairs
(y, f ) and (x, D) are related by: = ∑

n=N
n=0

n(n+1)

a2
(E9 n+E∞

n
) (22)

f=V2y , (9)

= ∑
n=N
n=0

(Z9 n+Z∞
n
) , (23)

D=V2x , (10)
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so that the enstrophy components are simply the where each term in eqs. (29), (30) and (31) is
related to the corresponding terms in eqs. (26),corresponding energy components multiplied by

the factor n(n+1)/a2. Now eqs. (1) and (2) can be (27) and (28) by the factor n(n+1)/a2.
Kinetic energy is conserved not only by thetransformed into spectral space to yield:

globally averaged adiabatic tendency terms, but
also by the globally averaged non-linear terms;

df:
n,m

dt
=f: (L)

n,m
+f: (N)

n,m
+S9 n,m

the terms involving the Coriolis parameter vanish
when summed over n. Thus the sum over all=f: (L)

n,m
+f: (N

1
)

n,m
+f(N

2
)

n,m
−S9 n,m , (24)

wavenumbers n of each of the following terms

vanishes: XN
1n
, T N

n
, and T L

n
+XN

2n
, where the third

df∞
n,m

dt
=f∞(L)

n,m
+f∞(N)

n,m
+S∞

n,m
(25)

term includes all non-linear (mean/transient) inter-
action terms. Enstrophy conservation similarlywith equivalent equations for y

n,m
. Here we have

leads to the vanishing of the sum of: Y N
1n
, QN

n
, andused the notation of eq. (6).

QL
n
+Y N

2n
.From the time derivative of eqs. (17) and (18),

For each conserved quantity we can define autilizing eqs. (24) and (25) we have:
corresponding flux, which gives the rate at which
that quantity is transferred from wavenumbers

dE9 n
dt

=XL
n
+XN

n
+XS

n
(26)

less than n to wavenumbers greater than n.

Corresponding to T N and QN we have the transient=XL
n
+ (XN

1n
+XN

2n
)+XS

n
, (27)

energy and enstrophy fluxes, F
n

and H
n

respect-

ively):dE∞
n

dt
=T L

n
+T N

n
+T S

n
. (28)

F
n+1=−

1

a
∑
n∞=n
n∞=1

T N
n∞

(32)Here XL is the mean flow energy tendency due to
the Coriolis term, XN

1
is due to non-linear inter-

actions of the mean flow and XN
2

due to the
H
n+1=−

1

a
∑
n∞=n
n∞=1

QN
n∞

(33)
transient feedback on the mean flow. T L is the
rate of transient energy change due to interactions

so that
with the mean flow and T N the rate of energy

T N
n
=−a(F

n
−F

n−1) , (34)change due to transient non-linear interactions.
The terms labeled with S are the source terms

QN
n
=−a(H

n
−H

n−1) . (35)
including vertical flux terms, baroclinic conver-

The triad interactions implicit in T N
n

and QN
nsion, dissipation and analysis increments.

are mapped in terms of broad categories by theFor use in the later development, it is helpful
following scheme. First the transient vorticity isto note that since the term f∞(N)

n,m in eq. (25) is itself
divided into wave groups. In position space thisnon-linear in the transients, the term T N is a triple
division is written as:moment composed of triad interactions. Thus if

the transients are partitioned into low- and high- f∞=fP+fS+fs , (36)
frequency components (see the previous section),

where the subscripts are:the time rate of change of energy in each compon-

ent due to the non-linear interactions will involve
$ P planetary waves (global wave number

not only that component but interactions with the 0∏n∏10)
other component.

$ S synoptic waves (global wave number
From eqs. (23) and the equivalent to eqs. (17) 11∏n∏40)

and eqs. (18) for Z9 n and Z∞
n
we can also write

$ s small-scale waves (global wave number
41∏n∏106)dZ9 n

dt
=Y L

n
+Y N

n
+Y S

n
(29)

Based on this division, the term f∞(N)
n,m in eq. (25)

can then be written as the sum of 6 terms:=Y L
n
+ (Y N

1n
+Y N

2n
)+Y S

n
, (30)

f∞(N)=f(N)P/P+f(N)S/S+f(N)s/s+f(N)P/S+f(N)P/s+f(N)S/s (37)dZ∞
n

dt
=QL

n
+QN

n
+QS

n
, (31)

where we have suppressed the indices n and m,
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and this breakdown details the interactions within energy. For n>10, the rotational energy is at least
an order of magnitude larger than the divergenteach group and between groups. Substituting this

expansion into eq. (25) leads to a similar expan- energy. The entire transient divergent kinetic

energy spectrum is dominated by the high-sion for T N
n

in eq. (28):
frequency component (not shown), suggesting the

T N
n
=T N

n(P/P)+ (T N
n(P/S)+T N

n(P/s) ) importance of the divergent circulation forced by

latent heat release. The dominance of the transient+T N
n(S/S)+T N

n(S/s)+T N
n(s/s)

spectrum by the rotational part for all but the
=T N

n(P/P)+T N
An
+T N

Bn
+T N

Cn
+T N

n(s/s) , (38)
largest scales motivates the focus on the rotational

kinetic energy and enstrophy budgets.where we have found it useful to regroup the
The rotational mean flow spectrum (Fig. 1b) isterms so that

remarkably similar in form to that presented by
T N
An
=T N

n(P/S)+T N
n(P/s) (39) Boer and Shepherd (1983) for both winter and

summer. The dominance of wavenumbers 1 and 3represents planetary wave interaction with synop-
(especially in winter) can be shown to be a resulttic and small scales,
of the broad structure of the sub-tropical jet which

T N
Bn
=T N

n(S/S) (40) in our (northern hemisphere reflected) case is
symmetric about the equator. For wavenumbers

represents all the interactions of synoptic waves,
n>8 the transient spectrum dominates the mean

and
spectrum, in agreement with Boer and Shepherd

(1983).T N
Cn
=T N

n(S/s) (41)
The distinct shift of the peak of the summer

represents the interactions of synoptic waves with transient rotational spectrum to higher wave-
truly small-scale waves. Note that an analogous numbers compared to winter (Fig. 1a), as well as
decomposition can be made of the enstrophy the overall lower level of energy in summer are
transfer QN

n
. evidence of the seasonal dependence of the (north-

This scheme was implemented for both energy ern hemisphere) general circulation. Specifically,
and enstrophy transfers by making the decomposi- in summer the mid-latitude baroclinic zone, char-
tion of eq. (36) in spectral space, transforming acterized by strong mean vertical wind shear and
back into position space, and using the various meridional temperature gradient, is both weaker
interactions within each group and between and shifted poleward compared to winter, resulting
groups in the non-linear terms of eq. (7). in a lower level of baroclinic generated eddy
Transforming the results back to spectral space activity and a shift in spatial scale (White, 1982;
accomplishes the decomposition of eq. (37) and Blackmon and White, 1982).
allows calculation of the terms in eq. (38). The frequency dependence of the transient rota-

tional kinetic energy in winter is explored in
Fig. 2a, which shows the total transient energy
(solid curve), the annual cycle transient energy4. Kinetic energy spectra
(the short dashed curve), the low-frequency
energy transient energy (dotted curve) and theThe kinetic energy of the total transient flow is

summarized in Fig. 1a. The rotational kinetic high-frequency transient energy (dash-dotted

curve). By construction, the low- and high-fre-energy for winter (summer) is given by the solid
(short dashed) curves, while the divergent kinetic quency transient energies sum to the annual cycle

transient energy (Section 2). The high-frequencyenergy for winter (summer) is given by the dotted

(dash-dotted) curves. The corresponding results energy dominates the low-frequency energy for
the synoptic and small-scale waves, while thefor the kinetic energy of the mean flow are given

in Fig. 1b in the same form. All curves represent reverse is true for the planetary waves (except for
n=1).vertical integrals averaged over all years, and the

log of the energy is plotted against the log of the The variability of the total transient energy is

illustrated in Fig. 2b which compares the standardwavenumber. The large-scale divergent transient
kinetic energy is less than the rotational kinetic deviation s1 of the seasonal values of energy
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Fig. 1. (a) Log of transient vertically-integrated kinetic energy (J m−2 ) plotted versus log of wavenumber n. Average
of 14 winters (15 summers) rotational kinetic energy given by solid (short dashed) curve. Average of 15 winters
(summers) divergent kinetic energy given by dotted (dash-dotted) curve. (b) Log of vertically-integrated mean kinetic
energy (J m−2 ) plotted versus log of wavenumber n. Otherwise as in (a).

(short-dash curve) and the standard deviation s2 The spectral slope b is computed from the

spectrum as a least-squares fit of the energy to theof 10-day mean energies about the seasonal mean
(dotted curve) with the total transient energy (solid form n−b for 10 values of the wavenumber n at a

time, with the slope plotted as a function of thecurve). Near the peak of the spectrum s1 is about
15% of the total energy, and s2 is about 30%. lowest wavenumber in the range. The results are

shown in Fig. 3 for winter (solid curve) andHowever, beyond the planetary scale range the

uncertainty drops rapidly compared to the aver- summer (dashed curve), plotted against log of
wavenumber. The thin curves indicate the uncer-age energy.
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Fig. 2. (a) Log of vertically-integrated transient kinetic energy (J m−2 ) plotted versus log of wavenumber n. Average
of 14 winters. Solid curve gives results from total transients, short dashed curve from transients about the annual
cycle, dotted curve from low-frequency transients, and dash-dotted curve results from high-frequency transients.
(b) Solid curve as in (a), short dashed curve gives log of interannual standard deviation of transient kinetic energy,
dotted curve gives log of intraseasonal standard deviation, obtained from individual 10-day means.

tainty based on the interannual variability. In of Boer and Shepherd (1983), although the earlier
results of Baer (1972) and Chen and Wiin-Nielsenwinter, b lies consistently in the range of 2.5 to 2.7

over a broad range of wavenumbers (10 to 35); (1978) suggest a slope nearer 3.0. The results in
Fig. 3 for the spectral slope motivated the defini-this is true in summer over a slightly narrower

range and for slightly larger values of b. The tions of the wave groups given earlier.

The high wavenumber regime (n>40) is charac-values for b of 2.5 to 2.7 for the vertically-integ-
rated winter energy are consistent with the results terized by a very steep drop-off in the spectrum
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Fig. 3. Best fit slope b of energy spectrum, from E~n−b as a function of log of wavenumber n. For each n the fit
was done over the range n to n+10. Winter average (solid), summer average (short dashed). The interannual
standard deviations are indicated by thin lines.

(rapidly increasing value of b), in agreement with term due to analysis increments (insertion of
observational data in the forecast/analysisthe results of Trenberth and Solomon (1993). This

is clearly inconsistent with the observations of NG scheme). The very broad maximum extending over
wavenumbers n~10–50 is consistent with a baro-and Högström et al., 1999, in which b~5/3 in the

mesocale range. Apparently the analysis/forecast clinic source, while the sink apparent at low n is

assumed to be due to friction*.system used in the reanalyses is heavily damped
for these scales. The linear term T L

n
represents barotropic inter-

actions between the mean flow and the transients,

and is linear only if the mean flow is considered
fixed. The transient loss to the mean flow is5. Energy and enstrophy transfers
greatest at n=8, while for larger scales there is a

slight gain from the mean flow. The transient5.1. Energy transfers
energy transfer given by the transient/transient

The total transient winter vertically-integrated
interactions is from higher to lower wavenumbers,

energy balance (eq. (28)) is given in Fig. 4a. Here
with the energy from a band centered on n~15

the non-linear term T N
n

(solid curve), the linear
being transferred to one centered on n~7, the

term T L
n

(short-dashed curve) and the source term
scale at which the energy peaks.

T S
n
(dotted curve, obtained as a residual ) are given.

A summary of the mean flow kinetic energy
As with all the plots in this section, the total

transient results are presented unless otherwise
stated, and it is the wavenumber n times the term * The calculation of the separate components of the
T that is plotted against log of wavenumber, source term is beyond the scope of this study. It would

have to be done using the precise formulation of theensuring that the area under the curve represents
numerical forecast model used by ECMWF in the re-the total energy change. The source T S

n
agrees

analyses, and also using the analysis increments due toqualitatively with early estimates of Leith and
data insertion. Its feasibility would depend upon what

Kraichnan (1972), and consists of baroclinic con-
model data were stored and are available. We are not

version (available potential to kinetic energy), aware of any estimates of the wavenumber dependence
dissipation, upward vertical flux of kinetic energy of these quantities which would be of sufficient accuracy

to be useful here.out of the 1000–100 hPa layer considered and a
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Fig. 4. (a) Winter vertically-integrated energy transfer terms for the total transient motion. The non-linear term T N,
the linear term T L, and the source term T S are given by the solid, short dashed, and dotted curves respectively.
Units: (W m−2 ). The transfer terms are multiplied by wavenumber n, and plotted against log n. (b) Vertically-
integrated energy transfer terms for the mean motion. The contribution to the non-linear term XN due to mean flow
interactions XN

1
is given by the short dashed curve, that due to transient flow feedback XN

2
by the dotted curve,

and their sum by the solid curve. Otherwise as in (a).

budget (eq. (27)) is given in Fig. 4b. Here the linear mean/mean interaction term is shown as the short
dashed curve, the transient/transient interactionterm XL

n
(not shown) is truly linear and is very

small; the mean budget is dominated by the term as the dotted curve, and their sum as the
solid curve. The transient/transient term domin-mean/mean non-linear interactions X(N

1
)

n
and the

transient/transient interactions X(N
2
)

n
whose sum ates, and transfers energy from n=7 to n=3, the

latter related to the structure of the northernis balanced by friction and analysis increments
(see Section 3 for precise definitions). The hemisphere jet as discussed above.
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In order to study the scale interactions in the ponent giving transfer only to the m=0 flow
(dash-dot curve). Clearly the energy transferredterm T (N)

n
which are responsible for the upscale

energy transfer, we show in Fig. 5a the total annual upscale by non-linear interactions in the mean

flow predominantly ends up in the zonal flow.cycle T (N)
n

(short-dashed curve) and the contribu-
tion to this term of interactions involving synoptic This upscale transfer is seen to lie entirely within

the planetary scale range, with energy loss at n=(n=11–40) scales (solid curve)*. This set of inter-

actions T N
Bn
, given in eq. (40), is responsible for 7 and gain at n=3 and n=5. In the context of

the zonal flow, the total wavenumber n measuresmost of the energy increase at scales smaller than
n~10. In fact these interactions tend to increase the meridional scale of the flow. The mean zonally

symmetric jet structure in the atmosphere is main-the energy also for smaller scales (up to n~15),
but between wavenumbers 10 and 15 are offset by tained by non-linear terms only at the broadest

meridional scales.the synoptic wave/planetary wave interactions (not

shown). While the high-frequency transients con- The variability of the upscale energy transfer
T N
n

is explored in Fig. 6a, 6b. The solid line givestribute a modest amount to this positive tendency
of large-scale energy, the major contribution to the total transient results, the short dashed lines

define confidence levels based on s1 , and theT N
Bn

comes from the interactions between low and
high frequencies (dotted curve). The interaction dotted lines confidence levels based on s2 . The

uncertainty of the total transient term T N
n

giventerm is simply the difference between T N
Bn

calcu-

lated with the annual cycle transients and the sum in Fig. 6a is large. Approximately 16% of 10-day
periods yield an upscale energy tendency almostof T N

Bn
calculated with low-frequency transients

and (separately) with high-frequency transients. It twice the mean, while an equal number show no
upscale energy transfer whatever. However, if wecontains all triple product terms which contain

both high- and low-frequency components as well limit the scale interactions to those involving

synoptic scales only (term T N
Bn
), the variability isas wavenumbers within the synoptic range.

The appearance of zonal jets in quasi-geo- significantly smaller as shown in Fig. 6b. The
upscale nature of the energy transfer from triadsstrophic turbulence simulations (Panetta, 1993)

raises the question of how much of the energy involving synoptic scales is fairly robust.
transfer seen in Fig. 4a, 5a results in energy cre-
ation at the zonal wavenumber m=0 component.

5.2. Enstrophy transfers
Fig. 5b compares the transient transfer T N

n
(now

based on total transients) with the components Fig. 7a gives the enstrophy (mean squared vorti-
city) of the total transients, annual cycle transients,representing non-linear transfer to the zonal flow

(m=0; short dashed curve) and to the very long and low- and high-frequency transients, multiplied
by a2. Here removing the annual cycle has littlezonal planetary waves (m=1, 2; dot-dashed

curve). Transfer to the zonal flow is seen to be effect, while the low-frequency contribution is rela-

tively small beyond n~15. The non-linear termvery small, and that to m=1 and m=2 about
25% of the total. QN

n
and the source term QS

n
from the enstrophy

budget eq. (31) are shown (multiplied by a2) inHowever, the situation is very different with

regard to the non-linear maintenance of the mean Fig. 7b. The non-linear terms transfer enstrophy
from a broad source regime (n~10–55) predomi-flow. Fig. 5c compares the transient/transient

mean flow tendency XN
2n

(solid curve) with the nantly to small scales (n>55). A small degree of

upscale transfer is also noted, and shall be discus-component yielding transfer only to m=0 (dashed
curve). Also shown are the non-linear mean flow sed later on. The linear term (not shown) is

relatively quite small, so that the dominant balanceinteraction term XN
1n

(dotted curve) and the com-

is between non-linearity and the source term.
The planetary wave (P) part of the non-linear

* The results for the total transients and annual cycle enstrophy tendency QN
n
, defined in analogy to

transients are very similar in character, with the latter
eq. (39), consists of separate sets of interactions

being slightly less intense. Since the low- and high-
between the P and synoptic wave (S) component,frequency transients are defined using departures from
and between the P and the small-scale componentthe annual cycle, they are best compared to the full set

of annual cycle transients, and not the total transients. (s). Each of these is plotted in Fig. 8a. The inter-
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Fig. 5. (a) Winter vertically-integrated energy transfer terms. The non-linear term T N based on the transient departure
from the annual cycle is given by the short dashed line, the contribution to this term from interactions involving
synoptic motions is given by the solid line, while the contribution to the synoptic interactions between low and high
frequencies is given by the dotted curve. Units: (W m−2 ). The transfer terms are multiplied by wavenumber n, and
plotted against log n. (b) The non-linear term T N based on the total transient motion is given by the solid curve,
the part yielding energy to zonal wavenumber m=0 is given by the short dashed curve, and the contribution to T N
from m=1 and m=2 by the dash-dotted curve. Otherwise as in (a). (c) The non-linear term XN

2
giving the transient/

transient feedback onto the mean flow is given by the solid curve. The mean/mean non-linear term XN
1
is given by

the dotted curve. The components of these terms corresponding to changes in the mean zonal flow (m=0) are given
by the dashed and dot-dashed curves for the transient/transient and mean/mean interactions, respectively.
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Fig. 6. (a) Winter vertically-integrated energy transfer term for the total transient motion T N (solid line). The short
dashed curves indicate one standard deviation departure based on variations between winters, the dotted curves one
standard deviation departure based on variations within a season. Units: (W m−2 ). The transfer terms are multiplied
by wavenumber n, and plotted against log n. (b) As in (a), but for the contribution to T N due to interactions involving
synoptic waves.

action between P and the larger scale synoptic The three sets of interactions form a chain:

P/larger scale S interactions remove enstrophywaves 11∏n∏20 is given by the long-dash curve,
the interaction between P and the smaller scale from n~5–15 and transfer it to the range

n~15–30, from which P/smaller scale S inter-synoptic waves 21∏n∏40 is given by the short-
dash curve, and the interaction between the P and actions transfer the enstrophy further downscale

to n~30–50. The P/small-scale interactions takethe small-scale waves 41∏n∏106 by the dash-

dotted curve. The figure also shows the sum of all the enstrophy in the latter range and transfer to
n>50, this final transfer accounting for aboutthree terms (plus the small P self-interactions).
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Fig. 7. (a) Log of winter vertically-integrated enstrophy (×a2, where a is the earth’s radius), plotted against log of
wavenumber n. Units: (J m−2 ). Solid curve gives total transient result, short dashed curve is from transient departure
from annual cycle, dotted curve from low-frequency fluctuations, dash-dotted curve from high-frequency fluctuations.
(b) Winter vertically-integrated enstrophy transfer term a2QN (solid curve). Dotted curve gives enstrophy source term
a2QS. Units: (W m−2 ). The transfer and source terms are multiplied by wavenumber n, and plotted against log n.

30% of the total small-scale enstrophy tendency can be contrasted to the more local transfers
within the synoptic scales and between the synop-shown in Fig. 8b. The transfers depicted in Fig. 8a

are consistent both with simple advection of tic and smaller scales, analogous to the energy
transfers given in eqs. (40) and (41). These areenstrophy by the longest scales (Lorenz, 1969)

and with the dynamics described by Kraichnan given in Fig. 8b. The interactions between larger

and smaller synoptic scales transfer enstrophy out(1971).
The behavior of these large P wave transfers of the larger scale portion (n~15–32) of the
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Fig. 8. (a) Contributions to the vertically-integrated winter total transient enstrophy non-linear transfer term a2QN.
The total contribution involving planetary waves is given by the solid curve, the contribution from planetary/larger
synoptic wave (11∏n∏20) interactions by the long-dash curve, the contribution from planetary/smaller synoptic
wave (21∏n∏40) interactions by the short-dash curve, and the contribution from planetary/small-scale interactions
by the dash-dotted curve. Units: (W m−2 ). The transfer terms are multiplied by wavenumber n, and plotted against
log n. (b) Contribution to a2QN from interactions between synoptic scales is give by the solid curve, the contribution
due to smaller synoptic/small-scale interactions by the dash-dotted curve. The total a2QN is given by the dotted line.
Otherwise as in (a).

overall source of Fig. 7b, with both strong down- transfer enstrophy to n>60, providing about 2/3
of the total enstrophy tendency there. These rela-scale and weak upscale transfer apparent. The

increase in enstrophy in the range n~33–55 due tively local interactions are dominated by high-

frequency transients (not shown), in contrast toto this transfer is offset by the interactions between
smaller synoptic scales and small scales which the upscale energy transfer, for which interactions
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between high and low frequencies dominate. It is bility of the non-linear tendency for summer
reproduces the main conclusions from winter: thenoteworthy that the non-local (advective) inter-

actions given in Fig. 8a play a much more import- synoptic non-linear tendency shows less variability

than the tendency calculated with all terms,ant rôle in the enstrophy budget than in the
energy budget. particularly for the large scales.

Because the enstrophy balance weights higher

wavenumbers, there is less of a seasonal depend-
5.3. Seasonal dependence

ence as depicted in Fig. 9b. The enstrophy source
QS
n

is nearly as great in summer as in winter. ThisThe seasonal dependence of the basic kinetic

energy balance is similar to that of the kinetic is also true of the non-linear transfer out of the
source region to small scales. Only the (muchenergy spectrum. Fig. 9a shows that the summer

non-linear tendency peak is half the winter peak, weaker) transfer to larger scales shows a summer

increase in the transition wavenumber. The overalland is shifted to slightly higher n. These comments
also apply to the total kinetic energy source T S

n
. properties of the separate components of the non-

linear enstrophy transfer (interactions amongAs discussed in the previous section, the decrease

in magnitude and scale of the energy transfers is different wave groups) are remarkably similar
between summer (not shown) and winter, the mainrelated to the seasonal change in the general

circulation. The dominance of the large positive difference being the summertime overall weakness

of the planetary wave interactions.non-linear tendency at large scales by interactions
involving synoptic scales, and the importance of

interactions between low and high frequencies are
5.4. Energy and enstrophy fluxes

also seen in the summer results (not shown). As
in winter, the transient zonal flow (m=0) is not For a truly inertial sub-range of wavenumbers,

the forcing and dissipation (source term) vanishesstrongly forced by the non-linear tendencies, while
the forcing of the planetary waves (m=1, 2) is and hence in equilibrium the energy tendency

must also (Batchelor, 1953). In this picture theabout 1/4 of the total tendency. Finally, the varia-

Fig. 9. (a) Vertically-integrated energy tendency terms T N and T S, based on total transients. Solid curve is T N for
winter, dotted curve is T S for winter, short-dash curve is T N for summer, and dot-dash curve is T S for summer.
Units: (W m−2 ). The transfer terms are multiplied by wavenumber n, and plotted against log n. (b) Vertically-
integrated enstrophy tendency terms a2QN and a2QS based on total transients. Solid curve is a2QN for winter, dotted
curve is a2QS for winter, short-dash curve is a2QN for summer, and dot-dash curve is a2QS for summer. Otherwise
as in (a).
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flux of energy or enstrophy is constant, and is even approximately constant. Futhermore, there
is a broad range (n~20–40) in which both fluxestermed a cascade. The energy and enstrophy

fluxes, calculated according to eqs. (32) and (33) are non-zero. In agreement with previous studies,

we find that the available wavenumber rangein Section 3, are given in Figs. 10a,b. While the
negative energy flux denoting upscale energy between the forcing due to baroclinic energy con-

version (at n~10–20) and the largest scales istransfer and the positive enstrophy flux denoting

downscale transfer are expected on the basis of small, precluding a true upscale energy cascade.
For the enstrophy flux, the broad range of2-dimensional turbulence arguments, there is no

range of wavenumbers over which either flux is enstrophy dissipation seen in Fig. 7b (inconsistent

Fig. 10. (a) Energy flux aF based on vertically-integrated winter (solid) and summer (short-dash) total transient non-
linear tendencies plotted against log of wavenumber n. See text for details. Units: (W m−2 ). (b) As in (a), but for
enstrophy flux a3H.
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with the nearly inviscid limit of classical turbulence 6. Summary
theory) inhibits a true enstrophy cascade.

We have the following general conclusions

based on the reanalyses:
5.5. T ime scales

The energy balance depicted in Fig. 9 indicates (1) The spectral slope of kinetic energy in the

range n~10–40 is roughly −2.5~−2.7. Basedtwo basic regimes: a planetary scale regime (n=
0–10) in which the non-linear tendency maintains on the variability of the slope on seasonal and

10-day time scales, this slope is significantly differ-the flow against dissipation, and an intermediate

scale regime in which the net baroclinic conversion ent than the classical turbulence theory prediction
of −3. Further discussion of this point is given in(surplus of baroclinic conversion over dissipation)

maintains the energy against non-linear transfer. the Discussion section.

(2) There is no indication of the −5/3 meso-Consider the energy contained in planetary scales,
large synoptic scales (11∏n∏20) and small syn- scale energy regime seen in observations, in

agreement with previous work (Trenberth andoptic scales (21∏n∏40), labeling them EP , ES
and ESS respectively, and consider the processes Solomon, 1993).

(3) The broad distribution of enstrophy dissipa-that maintain them at these scales, namely non-
linear transfer (NP ), and net conversion (CS and tion for these scales is far from the nearly inviscid

limit in which dissipation only occurs at theCSS ) respectively. (These are defined formally in
Section 9). From each energy and maintenance highest wavenumbers.

(4) The non-linear energy flux is upscale, andcomponent we derive a corresponding time scale:
tP=EP/NP , tS=ES/CS and tSS=ESS/CSS . Each the non-linear enstrophy flux is downscale, but a

true cascade is not seen in either case. The lack oftime scale is simply the time that would be required

for the source to replenish the corresponding available wavenumber space between the baro-
clinic forcing and the planetary scale precludesenergy. For summer, we shift the definitions of the

regimes slightly to take into account the shift in the upscale energy cascade, while the lack of

enstrophy cascade is consistent with point (3) andoverall energy balance to smaller scales as in
Fig. 9a: n=0–13 (planetary), n=14–23 ( large syn- the lack of available wavenumber space between

the baroclinic forcing and the dissipation.optic) and n=24–43 (small synoptic). The results

for winter and summer characteristic time scales (5) The (positive) non-linear transient tendency
at large scales is quite variable, with very roughlyare given in Table 1.

That tP shows so little difference between winter 16% of 10-day periods yielding a tendency twice

the mean, and 16% showing no upscale tendencyand summer in spite of large differences in the
energy indicates the relative strength of the non- whatever. This variability is greatly reduced when

only triads involving synoptic scales are retained.linear terms is about the same in each season.

Further, the net baroclinic conversion into synop- Much of the energy transferred by these triads
involves interactions between high- and low-fre-tic scales is of roughly the same strength compared

to the appropriate kinetic energy as is the non- quency components of the flow. The planetary

scale energy supported by these transients is pre-linear tendency. It is only in the smaller synoptic
scales that the relative magnitude of the net baro- dominantly in the non-zonal m≠0 flow. However,

the mean zonal flow m=0 is supported by non-clinic conversion increases dramatically.

linear transient/transient and mean/mean inter-
actions for the largest meridional scales (n=3 and
n=7), but loses energy to these interactions forTable 1. Characteristic time scales (days) for the
n=7.planetary, large synoptic and small synoptic waves

(6) Non-local planetary wave advection ofin winter and summer
smaller scales plays an important rôle in the

Season tP tS tSS downscale transfer of enstrophy, being responsible
for about 1/3 of the total tendency at very small

winter 9.4 8.0 3.8
scales in winter. More local interactions also play

summer 8.5 9.4 4.0
a rôle in the enstrophy transfer.
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(7) The main seasonal effects are a dramatic nature. The upscale energy transfer of synoptic
interactions is highly robust, for it occurs inweakening in summer of the total energy and

shifting to higher wavenumber of the peak energy, a great majority of individual 10-day periods.

Furthermore, circulations with these scales shouldand a distinct shift to higher scales in the transition
between the large-scale and synoptic-scale regimes be well represented by the reanalyses, suggesting

that this source of large-scale variability is funda-in the energy budget.

(8) The time scale of non-linear maintenance mental to the atmosphere.
A synthesis of our results relating to the classicalof planetary waves is roughly the same (~9 days)

as that of baroclinic maintenance of the larger turbulence theory is presented in Fig. 11, which

shows the energy flux F
n
, enstrophy flux H

n
,synoptic waves. The baroclinic support of the

smaller synoptic scales is associated with a more energy source T S
n
, and the spectral slope b, all

scaled to fit on one plot. Enstrophy is transferredrapid time scale (~4 days).

downscale, while energy is transferred upscale,
with a resulting approximately −2.5 energy spec-
trum. The source term, determined to a large7. Discussion
extent by the flow itself, encompasses a very broad
range of wavenumbers and in fact is largest atThe finding that the upscale energy transfer is

not only dominated by synoptic scale interactions, scales for which the energy flux is largest. The

degree to which this picture can be interpreted inbut also by interactions between fluctuations with
periods of ~1–9 and 11–90 days helps to inter- terms of the classical scaling theory (Orszag, 1977),

which assumes a localized source and a very widepret the turbulence diagnostics in the context of
meteorological phenomena. In particular it indi- range of wavenumbers both above and below that

of the source, is severely limited. The weak down-cates the importance of highly structured flows in

which higher frequency smaller synoptic scales scale energy cascade accompanying the dominant
enstrophy cascade seen in Fig. 11, as well as thestrongly interact with lower frequency, larger

scales. Blocking is one example which may be of weak upscale enstrophy cascade accompanying

the dominant energy cascade can be understoodimportance during the winter season (Nakamura
and Wallace, 1993). The circulation supported by as corrections due to the large scale nature of the

source and the narrow range of available smallerthese interactions is predominantly non-zonal in

Fig. 11. Composite plot of winter vertically-integrated energy flux F, enstrophy flux H, energy source T S and best-
fit spectral slope b. Solid curve is 10aF, short-dashed curve is 10−2a3H, dash-dotted curve is 5nT S, and dotted curve
is slope b. Units: (W m−2) for all curves but b, which is dimensionless.
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wavenumbers (Terry and Newman, 1998). The Analysis of the higher vertical (baroclinic) modes
is not expected to fundamentally change theeffects of having a source which is determined by

the flow itself and which has a very wide spectral upscale energy transfer picture, but will paint a

richer picture of the baroclinic (mode to mode)extent are hard to understand (Panetta, 1993) in
terms of simple scaling. A more comprehensive conversion, as well as the downscale enstrophy

transfer.theory taking into account the nature of the

interactive baroclinic source term is needed.
The energy spectrum falls off with an exponent

of about −2.5 in the energy cascading range
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isolated coherent vortices and a great deal of
intermittency (Basdevant, et al., 1981; McWilliams
and Chow, 1985). Charney (1971) points out that 9. Appendix
a −4 spectrum is predicted for a series of discon-
tinuities. Non-local interactions give only very We here define various terms used in calculating
weak logarithmic corrections to the −3 spectrum Table 1. The planetary wave energy, large synoptic
(Kraichnan, 1971). Nor are rotating dishpan wave energy and small synoptic wave energy are
experiments helpful, as they give a very wide range given by:
of spectra depending on the forcing (see Morita

and Uryu (1989) for recent results). It is note- EP= ∑
n=p
n=0

E∞
n
,

worthy that a spectrum characterized by a −8/3
slope (which is close to our results) is predicted

ES= ∑
n=s

n=p+1
E∞
n
,

by semi-geostrophic theory in association with the
formation of fronts (Andrews and Hoskins, 1978).
While it is not clear physically that the presence ESS= ∑

n=t
n=s+1

E∞
n
,

of strong fronts would dominate the large-scale
spectrum, they are likely to play a rôle at sub- where p, s and t are integers which have the values
synoptic scales. 10, 20 and 40 for winter (respectively) and 13, 23

The rapid steepening of the spectrum in the and 43 for summer.
enstrophy cascading regime n>40 is highly incon- The planetary wave non-linear tendency Np is
sistent with the observational results of NG which given by
clearly indicate a continuous flattening as the scale
is decreased. Along with the broad region of NP= ∑

n=p
n=0

T N
n
,

enstrophy dissipation seen at these wavenumbers,

this evidence strongly suggests that the numerical whereas the large and small synoptic wave conver-
model and data assimilation scheme incorporate sion tendencies CS and CSS are given by
excessive damping for scales smaller than n~40.

The diagnosis of the barotropic mode in this CS= ∑
n=s

n=p+1
T S
n
,

paper, while it includes the vertically averaged

effects of higher baroclinic modes, is but a first
CSS= ∑

n=t
n=s+1

T S
n
.

step in the more complete non-linear analysis.
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