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The vibrational properties of the (111) surface of aluminum and nickel and all the low-index surfaces of copper are examined. The 

surface phonon spectrum is calculated using the effective-medium theory to get the total energy and forces of the metallic system. A 

detailed discussion of the resulting dispersion relations and polarizations is presented together with a comparison to experimental 

data from electron energy loss and helium scattering experiments. Effective force constants at the surface are calculated and shown to 

differ from the bulk values in accordance with simple force constant model fits to experiment. We show analytically how these 

effective force constant changes are a consequence of the many-body character of the inter-atomic interactions in a metallic system. 

1. Introduction 

The inter-atomic interactions at the surface of a 
metal are in principle different from those in the 
bulk of the material. This is important for under- 
standing reconstructions and relaxations of clean 
surfaces, but also for adsorbate-induced recon- 
structions, surface diffusion, roughening, and pre- 
melting. The simplest way of measuring these dif- 
ferences is by studying the surface phonons. This 
has been done quite extensively using inelastic 
helium scattering [l-3] and inelastic electron 
scattering [4,5] techniques. The experimental data 
are usually interpreted using central-force models, 
and in general one finds that one has to change 
the inter-atomic force constants from the bulk 
values to get a reasonable fit. Such fitting schemes 
are never unique because two different fitting pro- 
cedures with different range of the interactions, 
for instance, may give very different results for the 
force constants. The prime example in this context 
is the two different fits that have been proposed 
for the Cu(ll1) surface. One group reports that 
the coupling constant k,, within the first layer 
should be decreased by 15% with respect to the 
bulk value [5]. Contrary to this it has been pro- 
posed that the coupling k,, between the first and 
second layer is only 40% of the bulk value, and 

that interactions out to 6th-nearest neighbors are 
necessary for a proper description [6]. 

There is therefore a need for an analysis of the 
surface phonons using a treatment where the 
many-body nature of the interactions in a metal is 
properly included and where at the same time the 
effective force constants can be calculated. Nelson 
et al. [7] have applied the embedded-atom method 
to a study of the (100) and (111) surfaces of 
copper and the (111) surface of silver. They con- 
clude that the method can give a good description 
of the measured relations and that the changes in 
effective force constants are modest. The noble 
metal (111) surfaces have also been studied by 
Jayanthi et al. [8] using the semi-empirical glue 
model. 

In the present paper we apply another ap- 
proximate total energy method, the effective- 
medium theory, to the problem of calculating the 
surface phonons of metals. We study the (111) 
surfaces of aluminum and nickel and all the low- 
index surfaces of copper. Dispersion relations as 
well as polarizations are calculated and compared 
to experiment. Very good agreement with experi- 
ment is found without fitting to any of the surface 
properties. The effective-medium theory is qualita- 
tively similar to the embedded-atom method, and 
where a comparison is possible the present results 
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agree with those of ref. [7j. In particular we also 
find modest changes in effective inter-atomic 
forces at the surface. The strength of the 
effective-medium theory in this context is that the 
terms entering the total energy expression have a 

clear physical interpretation, and we can therefore 
analytically derive and understand the physical 

origin of the force constant changes. Furthermore, 
the simplicity of the energy expression enables us 

to calculate the full dynamical matrix for the 
entire Brillouin zone, in contrast to the frozen 

phonon approach, taken by Ho and Bohnen [13], 
for calcuiation of the dispersion relations at the 
zone center and the zone boundary of aluminum 
from ab initio energy calculations. 

The paper is organized as follows. First, in 
section 2, we give a summary of the effective- 
medium theory and give the parameters used in 
the present calculation In section 3 we discuss the 

calculation of the dynamical matrix and the result- 
ing phonons, and compare the calculated spectra 

to experiment. Section 4 contains the discussion of 
the origin of the force constant changes at the 
surface. Finally, in section 5, we give a brief 
summary of the obtained results. 

The vibrational properties of a solid is de- 
termined by the second and (to a lesser degree) 
higher derivatives of the energy with respect to the 
atomic positions. The total energy of such a sys- 
tem can in principle be calculated from first prin- 
ciples in the adiabatic approximation. Calculating 
the total energy of a low-symmetry system, like a 
surface, is, however, computationally an enormous 
task. When the system involves hundreds of atoms 
per unit cell it is necessary to invoke simplifica- 
tions in the energy calculation. It is also often 
advantageous to simplify such calculations in order 
to gain insight into the physics of the problem. 
The effective-medium theory is an approximate 
scheme for calculating the total energy of a metallic 
system [9,10]. The p~losophy of the effective- 

medium theory is to view the atom as embedded 
in the homogenous electron gas consisting of the 
electron density tails from the neighboring atoms. 
It is a reflection of the observation that the energy 

of an atom in a metal depends primarily on the 
local environment set up by the surrounding 

atoms. The electrons screen very efficiently the 

long range interactions. The conjecture is then 
that the cohesive energy of a metallic system is to 

a first approximation, given by the sum 

E cohesive = cEc.;(zi), 

, 

(1) 

where E,,(iii) is the energy contribution from 
embedding the d th atom in a homogeneous elec- 
tron gas of density ii,. The embedding density is 

the sum of the average of the electronic density 
tails Ani of the neighboring atoms, 

iii = c (An,);. (2) 
j#i 

The average is taken over the region of space 
occupied by the atom i. This first approximation 
of the cohesive energy provides a very appealing 
picture of the metallic system. The cohesive energy 
Ec,i(n,) of an atom i, is a universal function of the 
embedding density ni and the atomic number of 
the atom. The dependence on the local environ- 
ment enters through the embedding density n,. 

The energy E,(E) of an atom embedded in a 
homogenous electron gas Cjellium) can be obtained 
in the Kohn-Sham scheme of density functional 
theory [ll]. It is composed by several parts: 

(3) 

The first three terms are the kinetic, Hartree and 
exchange-correlation energies of the electrons. 
E e_l is the energy of the electrons in the electro- 
static potential cp of the atom. When calculating 

the energy Ehom of the atom in the homogeneous 
electron gas there is an additional energy term. 
This is the electrostatic energy of the positive 
jellium background in the atomic potential 4. This 
term is not present in the real metallic system. In 
order to obtain the binding energy of the atom in 
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the real metal it must be subtracted from Ehom 
and we get, 

E,(n) = Q,,,,(E) - /dr $(r)ti = Ehom(E) - G. 

(4) 

Since E is built up by the electron density tails 
from the neighboring atoms, the last integral can 
equally well be viewed as the electrostatic energy 
contribution from the electron density tails, of the 
neighboring atoms interacting with the atomic 
potential + of the atom in question. Fig. 1 shows 
E,(n) calculated for aluminum, nickel and copper 
[9]. From this calculation a very simple picture of 
cohesion in metals emerge. Consider the embed- 
ding density fi as some (decreasing) function of 
the inter-atomic distance. The minimum of the 
E,(n) curve determines the ground state embed- 
ding density, n,, and thus the lattice constant. 
The curvature at the minimum is closely related to 
the bulk modulus of the crystal and the depth of 
the minimum gives the cohesive energy. 

2.1. The cohesive energy 

The cohesive energy functions E,(n) shown in 
fig. 1 are conveniently parameterized by a poly- 
nomial as function of the embedding density, 

E,(k)=E,+E, (~-l)2+E3(&l)3. (5) 
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Fig. 1. The cohesive energy as a function of the embedding 

density for aluminum, nickel and copper. 

The embedding density, Ti = X An,, depends on 
the positions of the neighboring atoms. The form, 
eq. (l), of the cohesive energy show that many- 
body interactions play a crucial role in describing 
cohesion in a metal. Only if E,(G) had been a 
linear function would the density of eq. (2) give 
the cohesive energy as a sum of pair potentials. 

2.2. Correction terms 

The form, eq. (l), of the energy of a metallic 
system can be derived through well-defined ap- 
proximations [9]. There will be correction terms to 
this expression, 

E = xE,(ii,) + correction terms. (6) 
I 

The embedding density Yr is the sum of the aver- 
age of the electron density tails of the neighboring 
atoms at the position of the atom (eq. (2)). The 
average is taken over a sphere centered at the 
nucleus of the atom with radius such that it con- 
tains 2 electrons, 2 being the nuclear charge of 
the atom. This is called the neutral sphere, and in 
a perfect fee crystal this is just the Wigner-Seitz 
sphere. In the perfect fee crystal the Wigner-Seitz 
cells are to a good approximation described as 
non-overlapping and space-filling spheres. This is 
the atomic-sphere approximation. In this ap- 
proximation there will be no electrostatic interac- 
tion between the Wigner-Seitz spheres since they 
are neutral. When the metal is not in the perfect 
fee structure the atomic-sphere approximation no 
longer holds. There will be an electrostatic correc- 
tion term EAs, called the atomic-sphere correc- 
tion. EAs can be split up into contributions from 
each atom [9]: 

%S = c&s(i). (7) 
I 

The term EAs(i) can be written as the term cyE, 
introduced in eq. (4), and a sum of pair-potentials: 

E,,(i) = an, - c V(rjj). (8) 
j#r 

In the fee lattice this term should vanish, so the 
pair-potentials are simply parameterized by the 
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embedding density that is obtained in the perfect 
fee lattice, 

E,,(i)=a(n,-nfcc). (9) 

The atomic-sphere correction can be viewed as the 
electrostatic energy from the repulsion of the over- 

lapping regions of the neutral spheres, see fig. 2. 

2.3. The embedding density 

In metals like the transition metals with a nar- The way of choosing the embedding densities is 

row d-band at the Fermi-level there is a one-elec- outlined in the following. The embedding density 

tron correction term E,,. This contribution comes Z, of an atom i is the average over the neutral 

mainly from the d-d hyb~dization. The E,, term sphere ai of the density tails of the neighboring 

is usually small for aluminum, since there are no atoms. The electron density of an atom must be 

d-bands, and for copper, since the d-bands are taken to be the density obtained from embedding 
filled. For nickel this term gives a contribution the atom in the homogeneous electron gas. The 

due to the unfilled d-band [9]. The form of the induced charge density of an atom in the homoge- 

one-electron term plays no significant role for the neous electron gas of density ti is, as described 

vibrational properties and it will be incorporated previously, calculated using the Kohn-Sham 

indirectly through the parameterization of the EC scheme of density functional theory. The relation 

function as discussed later in this paper. The total 
energy of the metal is then, simply, 

E= ~[E,(n,) -t-E,&)], (10) 

where the sum is over the atoms of the system. 

Fig. 2. The atomic-sphere correction to the energy comes from the electrostatic repulsion between the overlap regions of the neutral 
spheres. 
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between the density ti and the neutrality radius s 
can to a good approximation be parameterized by 
an exponential, 

G(s)=n,exp[-n(s-Q)], (II) 

where the n, is the density at which the minimum 
value of the energy is obtained, (see fig. l), s0 is 
the corresponding Wigner-Seitz radius. 

In general the average density Aii,,, of the 
electronic tail of atom j, averaged over the neutral 
sphere of radius s, around atom i depends on the 

inter-atomic distance ri, and the radius s, of the 
sphere over which the average is taken. This de- 
pendence is also parameterized by an exponential, 

An(r,,, s,) =A% exp(-~2~,+~1sj). (12) 

The sum of the average tail densities of the 
neighboring atoms inside the neutral sphere a, 

must be equal to the density corresponding to 
atom i outside the neutral sphere. This self-con- 

sistency requirement on the density determines the 
radius of the neutral sphere. For the perfect fee 
structure with Wigner-Seitz radius s this implies 

n(s) = xAn(r=Ps, s) = 12 Aii(r=ps, s). 

(13) 

p = (16~/3)“~/fi is the ratio of the nearest- 
neighbor distance and the Wigner-Seitz radius in 
an fee crystal. Then eqs. (11) and (12) imply the 
relation, 7~ = pnZ - 9,. In the fee lattice the sum- 
mation over neighboring atoms is taken to be over 
the 12 nearest neighbors. Then eq. (12) can be 

rewritten, 

Ati(r, s)=gexp[-g,(r-/?s,,)+nt(s-s,)]. 

(14) 

The embedding density ti, of atom i can now 
be determined by solving the self-consistency 
equation (13) in general with respect to s,. The 
result is: 

~,=~~(~~exp[-9;(r,-~~~)]}~“~+~“. (15) 
J 

The density nfcc entering eq. (9) is: 

pc = 
I ~Eexp[-9(r,,/B-s,)]. 

J 
(16) 

2.4. Elastic properties 

The elastic properties of a material is de- 
termined by the response to deformations away 
from the equilibrium configuration. The bulk 
modulus is given by 

B= ya2E _ 1 a2E 
av2 -- 12ns, as; ’ (17) 

where s,, is the Wigner-Seitz radius. This corre- 
sponds to a uniform volume change of the fee 
crystal. It will therefore only depend on the EC 
part of the energy. The bulk modulus is thus 

determined by the curvature of the E,(n) function 

in fig. 1. From eqs. (15) and (5) the result is, 

+I2 
B = 6ms, ’ (18) 

The other elastic constants are obtained in a simi- 
lar manner. The C, is the shear modulus, it can 
be evaluated as the force constant of a volume 
conserving deformation, 5, in the (100) direction, 

fi a2E C,=-- 
a2 a.p 

dE dii2 d2E dii,, = - - 
+ dn s + d& [ 1 d.$ 

dE d$, 
f-&-- 

fee dt2 

dEAs dii2 dE,s d&c 
=X72+=3. (19) 

The last equality follows since dG/dl and 
dZ,,/dt vanishes for a volume conserving distor- 
tion and d E,/dn = 0 in the ground state. Thus the 
cohesive part of the energy is independent of such 
a deformation and C, depend solely on the 
atomic-sphere part of the energy, EAs. From eq. 
(19) we get, 

2.5. Effective-medium theory parameters 

(20) 

The parameters of the theory can be calculated 
in the density functional formalism as outlined in 
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Table 1 
Comparison of the calculated an experimental values of lattice constants, bulk moduli, cohesive energies 1121 and maximum bulk 
phonon frequencies [9,13,3,4] (the numbers in the brackets are the frequency of the transversal phonon in the M point for alu~num) 

Metal a (Bohr-‘) B (eV/Bohr3) Goh (meV) amax tmeV) 

Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. 

Al 1.66 7.68 0.07 0.08 - 3.39 - 3.3 39.4 29.7 

(24.2) (21.0) 
Ni 6.65 6.24 0.17 0.30 - 4.44 -5.12 36.6 38.1 
Cu 6.82 6.60 0.13 0.17 - 3.49 - 3.56 30.6 29.2 

the previous sections. They only depend on the 
atomic number. The only input parameter that 
can not be obtained reliably from the calculation 
in the homogeneous electron gas is qt. This is 
usually determined from the experimental value of 
C, through eq. (20). Using 9, determined in this 
way the lattice constants, bulk moduli and cohe- 
sive energies can be calculated in the effective- 

medium theory scheme. The agreement with ex- 
perimental values are within typically 5-lo%, as is 

seen in table 1. 

The good agreement between the theory and 
experimental values of the material parameters is 
a confirmation of the validity of the approxima- 
tion scheme used in the effective-medium theory. 

The rather poor determination of the bulk mod- 
ulus for nickel seen in table 1 is mainly a conse- 

quence of the omission of contribution to the total 
energy from the one-electron correction term. 

The experimental bulk phonon dispersions for 
aluminium show a significant deviation from what 
would be expected from a simple nearest-neighbor 
force constant model. In such a model there is a 

simple fi relation between the longitudinal and 
the transversal zone-boundary phonon frequency 
in the M point. The numbers in bracket in table 1 
are the experimental and calculated frequencies of 
the transversal zone-boundary phonon for 
aluminum. This phonon is more closely related to 
the C, than the longitudinal zone-boundary pho- 
non and closer agreement between theory and 

experiment is observed. 
The surface vibrational properties depend upon 

changes in the force-fields of 5-10s at the surface 

compared to the bulk. This is the same order of 
magnitude as the approximations implied by the 
effective-medium theory. When studying these ef- 
fects quantitatively it is preferable to fit the 
parameters so that the bulk is precisely described. 
The fitting procedure is ambiguous since only the 

products E2q2 and aqnt occur in B and C,, 
respectively. The fitting is chosen to be the follow- 
ing. The electronic density n(s) is obtained from 
the calculation through eq. (11). This determines 
the parameter q. s0 is fitted by the experimental 
value of the lattice constant and E, is fitted to 

Table 2 
The effective-medium theory parameters for aluminum, nickel and copper. In the first columns (“Calc.“) only n, is fitted (to C,). in 
the second columns (“Fitted”) s0 is fitted to the lattice constant, E, to the bulk modulus, and nr to the bulk phonon frequency 

Al 

Calc. 

0.007 
3.000 
1.12 

- 0.35 

2.00 
0.24 

1280 

Fitted 

2.991 
0.99 
_ 

0.29 

Ni 

Calc. 

0.015 
2.437 
2.14 

-1.04 

2.52 
0.27 

1435 

Fitted 

2.599 
1.31 

- 
0.24 

Cu 

Calc. 

0.0115 
2.578 
1.330 

- 0.237 

2.50 
0.23 

1490 

Fitted 

2.666 
1.05 
_ 
- 

0.23 
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give the experimental value of the bulk modulus 
by the use of eq. (18). n, is then fitted to give the 
experimental maximum bulk phonon frequency in 
a harmonic calculation. For aluminum the trans- 
versal phonon frequency in the M point is used 
for fitting. How to determine the frequencies from 
the energy expression is the topic of the following 
section. The fitted parameters are listed in table 2. 

The relatively big changes in the parameter E, 
for nickel, due to the fitting, is mainly a conse- 
quence of the omission of the Ele term in the 
energy expression. The fitting procedure is another 
indirect way of inco~orating the effect of d-band 
hybridization. The qualitative aspects of the vibra- 
tional physics is described equally well both in 
bulk and at the surface by the two parameter sets. 
But in order to compare the calculations with 
experiments the fitted parameter set will be used 
in the rest of this work. 

ness of the slab is hyb~d~tion between the 
surface. states on the two surfaces observed. A 
30-layer slab turns out to be sufficient for conver- 
gence in most of the Brillouin-zone. The eigen- 
states E: of the dynamical equation are (3 x N,)- 

dimensional polarization vectors, N, is the num- 
ber of layers in the slab, and u is the polarization 
index. The dynamical matrix is symmetrical so 
that the eigenvalues are real, but the eigenvectors 
are in general complex corresponding to elliptic 
motion of the atoms in the surface. When calculat- 
ing the dynamical matrices the surface layers are 
relaxed to the equilib~um positions. The surface 
relaxations are shown in table 3. 

3.1. The copper (100) and (110) surfaces 

3. Harmonic theory 

The vibrational eigenstates of surfaces have 
been calculated in the harmonic appro~mation. 
The components of the dynamical matrix are given 
by the second derivative of the total energy of the 
system with respect to the atomic coordinates. At 
a surface the translational symmetry of the lattice 
is absent in the direction perpendicular to the 
surface. The surface phonon modes are therefore 
generalized plane waves parallel to the surface 
with a two-dimensional parallel crystal momen- 
tum. The dynamical problem is solved for a slab, 
so thick that the two surfaces do not interact. This 
reduces the dynamical problem to a finite matrix 
problem. Only near the F-point, where the wave- 
length of the phonon is comparable to the thick- 

Careful experimental measurements of the 
surface phonons of Cu(lO0) [I] and Cu(ll0) [2] 
has been performed. Calculated and experimental 
values of surface phonon frequencies at the zone 
boundaries are summarized in table 4, and the fuII 
dispersion relations along high symmetry direc- 
tions are shown in fig. 3. On the (100) surface 
there is only one surface phonon outside the bulk -- 
and in the I-M direction. It is the Rayleigh 
mode, for which the calculation is in good agree- 
ment with the experimental data. In the a point 
the polarization of the Rayleigh mode is particu- 
larly simple. In a nearest-nei~bor central-force 
model it is a vibration strictly in the first layer and 
the ratio of the frequency of the Rayleigh mode to 
the frequency at the bottom of the b&k band is 
l/v’?. The Rayleigh mode calculated from the 
simple nearest-nei~bor central-force model is in- 
dicated by the dashed curve. The deviation of the 

Table 3 
The first- and second-layer surface relaxation of the low-index surfaces, comparison between calculation and LEED experiments for 
aluminum [14], nickel [15] and copper [16] (the relaxations are in percent of the inter-atomic distance) 

Al Ni CU 

A& 

Calc. 

-1 

fiP. 

0.9 

Calc. 

-1 

bP. CalC. hp. 

-1.2 + 1.2 -1 
(lW Ad;; -3 
(110) Ad,, -6 

Ad,, 1 

a) HElS measurements [16]. 

0.0 -2 - 1.1 + I.1 -1 -1.lLtO.4 
- 8.6 f 0.8 -5 -4.8 + 1.6 -3 -8.5 (-5.3) a) 

5.0 1 1.1 1 0 2.3 (3.3) a) 
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Table 4 

Calculated and experimental vaiues of the frequencies of the 

surface phanons at the zone boundaries of Cu(ll0) and Cu(100) 

(the energies are in meV) 

Calc. 13.5 24.2 9.7 12.4 19.7 

Exp. =I 24.0 

(100) G x 

S, S, S, S, 

Calc. 16.3 11.4 13.4 25.4 

Exp. h, 16.3 12.9 

‘) Taken from ref. 121. 

‘) Taken from ref. [I]. 

full calculation from the I/ fi relation is a conse- 
quence of the change of the inter-atomic forces in 

the surface. 
On the Cu(ll0) surface the dispersions along 

the direction perpendicular to the close-packed 
rows are shown. A very detailed discussion of the 

Cu(ll0) surface phonon spectrum has been pre- 
sented by Zeppenfeld et al. 121. Near the ? point 
there are three bands below the bulk projected 
band. Near the r point the two become surface 

resonances. At the y point the lowest lying surface 
phonon is longitudinal in the first surface layer 

Cu( 100) 

30.0 

20.0 

2 
E 

10.0 

Cu( 110) 

Fig. 3. The dispersion curves for CuflOO) [I] and Cu(ll0) 121. Fig. 5. A comparison of the calculated and experimental dis- 

Experiments are helium scattering. The dashed curve on the persion relations for the Cu(ll1) surface. The dots are deduced 

Cu(lO0) indicates the dispersion curve expected from a from helium scattering experiments [3] and the squares from 

nearest-neighbor central-force model. EELS experiments 151. 

Al(111) 
40.0 jj 

Kijlll) 

F M 

Fig. 4. Calculated and experimental dispersion curves for 

Al(l11) [17] and Ni(ll1) (41. The aluminum surface is ex- 

amined by helium scattering, the nickel surface is examined by 

high-resolution EELS. 

and polarized perpendicular to the surface in the 
second layer. This means that the close-packed 

rows move collectiveiy forth and back while the 

second-layer atoms between the rows are pushed 
up and down. The discrepancy between the calcu- 
lation and the experiment for this mode seen in 
fig. 3 originates from the approximation that only 
nearest neighbors contribute to the density sum in 

30.0 

20.0 

2 
E 

10.0 

0.0 

Cu(ll1) 
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Table 5 
Comparison of the calculated and experimental values of the frequencies of the surface phonons at the tone boundaries of the (111) 
surfaces of aluminum, nickel and copper (the energies are in mev) 

% SZ 
Calc. Exp. Calc. 

Al *) 15.8 16.8 29.6 
Ni ” 17.1 17.2 32.3 
cu f, 14.0 13.4 27.4 

a’ Experimental values taken from ref. (171. 
b, Experimental values taken from ref. 141. 
c’ Experimental values taken from refs. [3,5]. 

Exp. 

_ 
32.3 
26.3 

S, 
Calc. 

17.0 
18.5 
14.9 

Exp. 

18.2 

14.4 

% 
Calc. 

24.8 
26.9 
22.8 

Exp. 

d 

b e 

Fig. 6. The projected DOS in the first (left) and second (right) layer as a function of surface momentum and frequency in the F-a 
direction. The top panels, (a) and (d), shows the transversal poIarization perpendicular to the surface. the middle panefs, (h) and (e), 

shows the shear polarization and the bottom panels, (c) and (f), shows the lon~tudina~ polarization. 



eqs. (15) and (16). The first layer atoms are mov- 
ing directly toward the second nearest neighbor 
atoms in the surface, therefore one expects the 
second nearest neighbor effects to be important in 
the determination of the frequency of that mode. 
The second phonon is concentrated in the first 
layer with in-plane transverse polarization. This 
means that the close-packed rows have a shear 
motion. The third phonon is the Rayleigh phonon, 
where the first layer moves pe~endicul~ to the 
surface. The second layer has, as a consequence, 
in-plane longitu~nal motion. Besides the three 
low-lying surface there is a higher-lying gap mode. 
This is mostly longitudinal. 

3.2. The (I I I) surfaces of aluminum, nickel and 
copper 

Calculated and experimental values of surface 
phonon frequencies at the zone boundaries are 
summarized in table 5, and the full dispersion 
relations along the (211) direction for Al(ll1) are 
shown in fig. 4. The dispersion relations of the 
Cu(‘J.11) surface are shown in fig. 5. The calculated 
dispersions are seen to be in good agreement with 
He-scattering and EELS experiments for all three 
metals. The deviations between the experiments 
and the calculation for the Al(lll) surface is a 
reminiscence of the fact that the approximate 
method can not account for the anomalous rela- 

I .o 

0.8 

0.6 

0.4 

0.2 

0.0 

1. Layer 

- - - - shear horizontal 
- longitudinal 
----transversal 

frequency /meV 

tion between the frequencies of the bulk longitudi- 
nal and transversal modes of aluminum as men- 
tioned earlier. The effect of very-long-range inter- 
actions is not taken into account in this approxi- 
mation where only the electronic density of the 
nearest neighbors is included in the energy and 
force calculation. More accurate calculations has 
been performed for the Al(110) surface by Eguiluz 
et al. [18] and it has been demonstrated that 
very-long-range interactions are important in the 
case of alu~num. The surface phonons of the 
Cu(ll1) surface have previously been calculated 
using the embedded-atom method [7]. This calcu- 
lation is in good agreement with the results ob- 
tained from the effective-medium theory. 

The projected density of states, for the whole -- 
r-M direction, is shown in fig. 6. The projected 
DOS in layer i and direction cy is defined as 
gi,(k,w) = 1 da(k) 1 2S( w - wk), where c’“(k) is the 
eigenvector corresponding to the eigenfrequency 
wk. The Rayleigh mode (S, ) is a surface mode 
polarized perpendicular to the surface below the 
bulk band, it is mostly concentrated in the first 
few surface layers, see figs. 6a and 6d. The lower- 
ing of the frequency of the Rayleigh mode, com- 
pared to the bulk transversal mode, is a conse- 
quence of the smaller coordination number of the 
surface atoms. The frequency of the Rayleigh mode 
is shifted up compared to what would be expected 
from a simple nearest-neighbor central-force model 

10.0 20.0 30.0 40.0 

frequency /meV 

Fig. 7. The projected DOS in the first and second layer for Cu(lll) at the % point. The lines has been broadened 0.5 meV by a 
Lorentzian as an aid for the eye. 
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with only one force constant, kjj = kbulk. The shift 
of this mode is mainly governed by the forces 
between first and second layer atoms. The experi- 
mental value, 13 meV at the a point, can be fitted 
well by an increase in inter-layer force constant 
between first and second layer, k,,, of approxi- 
mately 10% [5]. 

At the bottom of the projected bulk band there 
is a shear horizontal resonance with polarization 
in the surface plane, see fig. 6c. From r to ap- 
proximately f of the way from r to M, where a 
gap in the projected bulk band opens, there is a 
broad resonance. This resonance is in-plane 
polarized and mostly longitudinal, see fig. 6b. It 
has substantial weight in the first surface layer. In 
the gap this mode narrows into a longitudinal 
surface mode (S,). The gap mode has most of its 
weight in the first surface layer. Below the gap 
there is an in-plane polarized resonance (S,) at 
approximately 21 meV at the M point, this reso- 
nance has very little weight on the first surface 
layer, and is mostly concentrated in the second 
and subsequent layers, see fig. 6f. The projected 
density of state at the M point for the first and 
second atomic layer is shown in fig. 7, it is seen 
that S, is a mixed resonance with second layer 
polarized both parallel and perpendicular to the 
surface at the M point. The surface phonons and 
resonances are shown schematically in fig. 8. 

The atomic motion corresponding to the polari- 
zations can be messy due to the rather com- 
plicated symmetry of the (111) face. The motion 
will in general be elliptical and the polarization 
vectors complex valued. An example is sketched in 
fig. 9. 

The good agreement between the calculated 

Fig. 8. The r-M direction on the (111) surface. The hatched 

area in the bulk band indicates the surface resonances. 

and measured dispersion relations are summarized 
in fig. 10. We have not made detailed calculations 
of the EELS intensities, but the changes in effec- 
tive force constants we find are of the same order 
of magnitude as those used in a simple central- 
force model calculation [5] and consequently the 
polarizations must be rather similar. The good 
detailed agreement between calculated and meas- 
ured electron energy loss intensities found in ref. 
[5] can therefore be assumed also to hold for the 
present calculation of the phonons. Such calcula- 
tions will, in the case of Ni(lll), be presented 
elsewhere [19]. 

Regarding the helium scattering measurements, 
we show in fig. 11 a comparison of a distorted- 
wave Born-approximation (DWBA) calculation of 
the time of flight spectrum with the measured one 
[20]. The DWBA calculation has been performed 

Fig. 9. Atomic motion (exaggerated) of the Rayleigh phonon at the G point of the Cu(ll1) surface. The left panel shows the motion 

of the first and second layer atoms in the xz-plane and the right panel shows the motion in the surface plane. 
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Fig. 10. Helium scattering [3] (dots) and EELS [S] (squares) 
measurements of the Cu(ll1) surface phonons and resonances. 

The curves are the calculated dispersions. 

according to the theory of Bortolani et al. [6]. It is 
clear that while the low-energy (Rayleigh mode) 
peaks are well described, the intensities of higher- 
energy peaks in the experiment are not reproduced 
by the theory. This may be due to an inadequate 

description of the phonons, or to a too simple 
description of the helium scattering process. We 
will discuss this further in a forthcoming paper 

WI. 

4. Inter-atomic forces at surfaces 

The interesting aspect of the the study of the 
surface phonons is the changes of the effective 
inter-atomic force constants due to the presence of 
the surface. This is what determines the shifts of 
the surface-induced modes in the phonon spectra, 
but also, of cause, the relaxations and in some 
cases reconstructions that occur at metal surfaces. 
We will therefore use this section to further under- 
stand the reason why the effective interactions 
changes from the bulk. 

Given the total energy, E({ i }) of the metal as 
a function of atomic positions {i} the effective 
force constants are defined in the following way. 
If the energy is a sum of harmonic pair-potentials, 

then the dynamical @,] = k,,&, . (u, - u,)12/Z 

-20.0 

Energy Loss / meV 

Fig. 11. A comparison of the experimental He TOF spectra (histogram) [3] with those calculated from the one-phonon distorted-wave 
Born-approximation (full curve). The curves are normalized to the experimental intensity of the Rayleigh mode, and the instrumental 

broadening is the one reported in ref. [3]. 
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matrix is particularly simple, D$ = ki,i?:,8$, and 
the inter-atomic force constant between atom i 
and atom j is, 

k = I):“,x + D,?’ + D’=_ 
‘I II ‘I ‘/ (21) 

This is the definition of the effective force con- 

stant where DPp= a2E,4up auf and E is the 
effective-medium theory energy. The most im- 

portant forces determining the surface phonon 
spectrum is the nearest-neighbor forces in the first 

layer, k, ,, and the nearest-neighbor forces be- 
tween first- and second-layer atoms, k,,, they are 
only moderately changed compared to the bulk 

value, kbulkr at the (111) surfaces of aluminum, 

nickel and copper as shown in table 6. This is very 
reasonable since these surface are close packed, 
and they do not reconstruct. 

The change in the force constants at the surface 
of metals is a consequence of the many-body 

interactions in the metal. It can be rather simply 
understood in the effective-medium theory. The 

forces given by eq. (21) are proportional to the 
second derivative of the energy with respect to a 
particular deformation of the crystal. Consider a 
distortion 1: corresponding to a zone boundary 
phonon, then the second derivative of the cohesive 
part of the energy, eq. (lo), is given by, 

(22) 

In the bulk, at equilib~um, the cohesive energy, 
E,(n), takes its minimum value and dE/dn = 0. 
For a zone boundary phonon dn/dc = 0 by sym- 

metry, making both terms zero. EAs thus de- 
termines the zone boundary phonons as described 
earlier. This will not be true at the surface. The 
EAs term will still determine a large fraction of the 

effective force constants, but the contribution from 

Table 6 

Effective force constants in the surface layer and between first- 

and second-layer atoms on the (111) face (the force constants 

are normalized with respect to the bulk force constant) 
-- 
Metal kl, k,, 

Al 0.89 1.04 

Ni 0.90 1 .lO 

cu 0.95 1.09 

eq. (22) will no longer vanish. For a distortion 
parallel to the surface the first term in eq. (22) will 
stili be zero due to symmetry, but for the atoms at 
the surface d E,/d n is non-zero because the surface 
atoms have less nearest neighbors than the bulk 
atoms. The electron density that these atoms are 
embedded in is smaller than the optimum value 
no. From fig. 1 it follows that dEJdn is negative 
for the surface atoms. The force constant k,, 

between atoms in the first layer is therefore smaller 

than in the bulk kbulk. For a distortion perpendic- 

ular to the surface this is still true, but here dn/dr 
is no longer zero and the first term in eq. (22) will 
give a large and positive contribution to the force 
constant. Therefore the force constant between 

first- and second-layer atoms, /c,~ is larger than 

k bu,k. This effect is not due to the inward relaxa- 
tion of the surface but enhanced by it. It is the 

many-body properties of the EC function that give 
this effect. A par-potential description of a metal 

corresponds in the effective-medium theory to a 
linear E,(n) function. Since n is a sum of contri- 
butions from the neighbors E,(n) will only be a 
pair sum if it is linear in n. 

5. Summary 

We have applied the effective-medium theory 
to calculate the vibrational properties of the (111) 
surface of aluminum and nickel and all the low-in- 

dex surfaces of copper. The calculated frequencies 
of the Rayleigh and gap modes are in good agree- 

ment with the values determined by helium and 

electron scattering for all surfaces. By calculating 
the local density of states of the polarization am- 

plitudes in the surface layers, we have a clear 
picture of the surface phonon and resonance spec- 
trum of the Cu(ll1) surface. The calculated 
polarizations of the Cu(ll1) surface accounts for 
the measured EELS spectra. The surface phonon 
spectrum is determined by the effective inter- 
atomic force constant at the surface. We have 
shown that the effective-medium theory provides a 

simple picture of the mechanisms governing the 
changes in the inter-atomic forces at the surface. 
These effects are consequences of the many-body 
nature of the interactions in the metal. 



214 P.D. Ditleosen, J. K. Nwskov / Vibrational properties of AI, Ni and Cu surfaces 

Acknowledgements 

Many helpful discussions with N. Chetty, K.W. 
Jacobsen, O.H. Nielsen, and P. Stoltze are grate- 

fully appreciated. The research has been sup- 
ported financially by the Danish Research Coun- 

cils through the Center for Surface Reactions. 

References 

[l] M. Wuttig, R. Franchy and H. Ibach, Z. Phys. B 65 (1986) 

71. 

[2] P. Zeppenfeld, K. Kern, R. David, K. Kuhnke and G. 

Comsa, Phys. Rev. B 38 (1988) 12329. 

[3] U. Harten, J.P. Toennies and Ch. Wlill, Faraday Disc. 

Chem. Sot. 80 (1985) 137. 

[4] W. Menezes, P. Knipp, G. Tisdale and S.J. Sibener, Phys. 

Rev. B 41 (1990) 5648. 

[5] M.H. Mohamed, L.L. Kesmodel, B.M. Hall and D.L. 

Mills, Phys. Rev. B 38 (1988) 5856. 

[6] V. Bortolani, A. Franchini, F. Nizzoli and G. Santoro, 

Phys. Rev. Lett. 52 (1984) 429; 

G. Santoro, A. Franchini and V. Bortolani, preprint. 

[7] J.S. Nelson, M.S. Daw and E.C. Sowa, Phys. Rev. B 40 

(1989) 1465. 

[8] C.S. Jayanthi, H. Bilz, W. Kress and G. Benedek, Phys. 

Rev. Lett. 59 (1987) 795. 

[9] K.W. Jacobsen, J.K. Norskov and M.J. Puska, Phys. Rev. 
B 35 (1987) 7423. 

[lo] K.W. Jacobsen, Comments Condensed Maters. Phys. 14 

(1988) 129. 

[ll] W. Kohn and L. Sham, Phys. Rev. 140 (1965) A1133. 

[12] C. Kittel, Introduction to Solid State Physics (Wiley, New 

York, 1976). 

[13] K.M. Ho and K.P. Bohnen, Phys. Rev. Lett. 56 (1986) 

934. 

[14] J.R. Noonan and H.L. Davis, Phys. Rev. B 29 (1984) 

4349. 

[15] J.E. Demuth, P.M. Marcus and D.W. Jepsen, Phys. Rev. B 
11 (1975) 1460. 

[16] D.L. Adams, H.B. Nielsen, J.N. Andersen. 1. Stensgaard, 

R. Feidenhans’l and J.E. Sorensen, Phys. Rev. Lett. 49 

(1982) 669; 

H.L. Davis and J.R. Noonan, Surf. Sci. 126 (1983) 245. 

[17] A. Lock, J.P. Toennies, Ch. W611, V. Bortolani, A. 

Franchini and G. Santoro, Phys. Rev. B 37 (1988) 7087. 

[18] A.G. Eguiluz, A.A. Maradudin and R.F. Wallis, Phys. 

Rev. Lett. 60 (1988) 309. 

[19] W. Menezes, P. Knipp, G. Tisdale, S.J. Sibener and P.D. 

Ditlevsen, to be published. 

[20] P.D. Ditlevsen and J.K. Norskov, in: Proc. of Vibrations 

at Surfaces VI, J. Electron Spectrosc. Relat. Phenom., 

special edition. 

[21] P.D. Ditlevsen, N. Chetty and J.K. Nerskov, to he pub- 

lished. 


