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Introduction and abstract. It has almost become a standard in stochastic
mechanics applications of stochastic differential equations that the driving forces
are modeled as Gaussian white noises, that is, as scalar or vector Brownian mo-
tion increments. However, this modeling may not always lead to responses that
comply well with observed data. In particular the tails of the observed response
distributions may even for linear systems be more fat than the tails obtained for
Gaussian white noise input. Also the excitation may show jumps that cannot be
modeled by Gaussian white noise. The paper supports the possibility of using
the larger class of so-called a-stable white noises (Lévy noises for 0 < a < 2,
Gaussian white noise for & = 2) to provide a better fit [4]. Lévy noise driven
linear systems have responses that possess a-stable distributions with the same
value of a as defined by the Lévy noise input. For @ < 2 the absolute moments
exist only up to the order a—, that is, the second order moment is infinite for
any a < 2 and the mean does not exist if o < 1.

Alpha-stable noise and discussion of relevance. It is an elementary fact
that any linear combination of n independent copies X1,..., X, of a Gaussian
random variable X is a Gaussian random variable. One may ask whether also
some non-Gaussian distribution types satisty the condition Vay,... ,a, € Rdc €
R:ai1 X +...+a,X, =% cX, where =% means equal in distribution. A distribution
with this property is said to be strictly stable. The characteristic function ¢ (u) =
Ele™X] obviously must satisfy the condition []7_, ¥ (aju) = t(cu). It is directly
seen that a solution is ¥(u) = exp(—o®*|ul®) with [c¢|* = |a1|* + ... + |an|?,
0> 0,and 0 < o < 2. It can be shown that ¥ (u) is a characteristic function
only for 0 < a < 2 [3, 6], and that no other solutions exist. The parameter «
is called the stability index and the corresponding random variables are said to
be a-stable (in short: SaS for symmetric a-stable). In particular, for a = 2
we obtain the Gaussian random variables of zero mean. The parameter o is
called the scale parameter. It is seen that cX has the scale parameter |cloc =
(la1|* + ... + |an|®)*/*o. The variance of X is finite only for & = 2 and is then
equal to 202. It can be shown [3, 6] that the tail probability P(X > z) for a < 2
asymptotically decreases proportional to x7*. For o = 1 the tail probability
is P(X > z) = 3 — LarctanZ (Cauchy distribution). No explicit expressions
for SaS-distribution functions exist for « different from 1 or 2. From the tail
behavior it follows that E[|X |P] < oo if and only if p < a when o < 2.
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The Brownian motion process (Wiener process) plays a fundamental role in
standard stochastic dynamics as the formal source of the stochasticity of the ex-
citation of almost any kind of system under study. The flexibility is large. In
fact, the drift term and the diffusion term of a first order stochastic differential
equation can in principle be constructed such that any prespecified marginal dis-
tribution of its stationary response is obtained. This includes distributions with
power function tails down to the power —(1 + €) for any positive . For € > 1
the drift term may be chosen to be linear [1], in which case it is necessary to
have a non-constant diffusion coefficient to get a non-Gaussian distribution. Dis-
tributions with power function tails turn out to be applicable modeling tools for
representing observed data series e.g. in geophysics. This is also so for powers
for which the distribution has no variance or even no mean. It may rightfully be
claimed that real physical data measured on the earth come from a population
with finite bounds. Surely, if the expectation, say, does not exist in a suggested
theoretical model for such data, the expectation will in any case exist in the cor-
responding lower and upper truncated model. The point is that a model without
mean reflects that the sequence of averages corresponding to an increasing sample
of independent observations will exhibit fluctuations that stabilize towards the
expectation the more slowly the smaller the truncation probability. The central
limit theorem is valid, of course, but the convergence towards the normal distri-
bution may be so slow that its predictions do not comply well with the empirical
evidence. Taking the Cauchy distribution as an example, the average of any
sample of any size has the same Cauchy distribution as the single observations.

From this it is clear that in itself the task of modeling fat distribution tails
for the stationary solution process X (t) to a stochastic differential equation does
not motivate the generalization of the Brownian motion increment dB to the a-
stable increment dL,. The essential reason for making the generalization is that
a convincingly good fit to the observed increment dX (¢) may be obtained only
if a value of a less than 2 is used in the model. Moreover a model with a@ < 2
gives sample functions that may exhibit jumps. For a dynamic system governed
by a second order stochastic differential equation such jumps may take place in
the velocity sample function. Thus these jumps correspond to force impulses
generated directly dy the a-stable noise model.

The central limit theorem is often used as an argument for the application of
the Brownian motion as the stochasticity source in stochastic mechanics. It is
argued that Nature provides addition of many independent small random noise
contributions of the same order of size, and that this leads asymptotically to
Gaussian noise. However, this is only valid if the small contributions come from
distributions of finite variance. In fact, the central limit theorem can be gener-
alized to embrace the a-stable distributions as possible asymptotic distributions
(theory of domains of attraction [3]). This also implies that it physically makes
sense to work with coupled systems of two or more stochastic differential equa-
tions driven by a vector of a-stable noises with different values of o €]0, 2].

Focusing on applications, it is unfortunate that the theory of a-stable noise



driven systems is more complicated than in the Gaussian case o = 2. The pow-
erful tools of covariance and linear regression are not available. Lost is also
the property that the square of the Brownian motion increment dB(t) can be re-
placed by the deterministic time increment dt leading to the standard It6 calculus
and the associated Fokker-Planck equation. However, the Chapman-Kolmogorov
equation for Markov processes is valid also for o < 2, and this equation gives a
generalized Fokker-Planck equation for the characteristic functions of the response
distributions obtained when the Brownian motion increment dB(t) = dLs(t) in
the stochastic differential equation dX = m(X,t) + o(X,t) dB(t) is replaced by
the Lévy noise dL,(t) for v < 2. Per definition the random increment dL,(t) has
the SaS-distribution with the stability index « and the time increment dt'/¢ as
scale parameter. This Fokker-Planck equation is [5]
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where p(u,t) = f_oooo p(z,t)e™® dz is the characteristic function corresponding to

the transfer probability density p(z,t), m(u,t) = lim._o % ffooo m(z, 15)6’0%2”'“‘1c

dz, and 0®(u,t) = lim. o 5= [* 0%(z,t)e <%
e~ is needed to ensure the existence of the Fourier integrals. Inverse Fourier
transformation of (1) leads to the equation dp(z,t)/0t = —0[m(z,t)p(x,t)]/0x +
~0%[0(x, t)p(x,t)]/0z®, which for o = 2 becomes the usual Fokker-Planck equa-
tion. The symbolic fractal derivative in the last term is defined as 0 f(z,t)/0z* =
—o= 7 ul*f(u)e ™ du where f(u) = [ f(z)e™® dz [= [7 o®(v—u,t)p(v,1)
dv for f(x) = 0®(x,t)p(x,t)]. For the even integer values « = 2(n — 1),n € N,
this fractal derivative equals (—1)"~' times the usual derivative of order 2(n—1).

Explicit stationary solutions to (1) can be obtained for « = 1 with o(z,t)
independent of ¢ and proportional to 22”9 n € N, and m(z,t) independent of ¢
and proportional to an odd degree polynomial in x with negative coefficient to the
largest power. Formally (1) has an infinity of time invariant characteristic func-
tion solutions that are mixtures of a finite number of Cauchy distributions. The
number of these and their parameters are determined exactly by the roots in a
polynomial defined by m(z) and o(z). However, only one of the mixtures actually
fits with simulations of sample functions generated on the basis of the differential
equation dX = m(X) + o(X)dL;. As indicated above the generalized Fokker-
Planck equation associated to the equation dX = e X’ [m(X) + o(X)dL,)] is
formally used to obtain a limit Fokker-Planck equation associated to the actual
stochastic differential equation as obtained for ¢ — 0. Thus this puzzling am-
biguity problem seems to come from applying a dubious limit operation. The
authors have not found any mention of this behavior in the literature, and they
do not know whether the same shows up for other values of o < 2.

Considering that computer simulations provide conceptionally easy analysis
also of systems driven by a-stable noise, the mathematically difficult issues of the
topic should not prevent the inclusion of these stochastic processes in the modeling
tool box of the applied sciences. For realization in the computer, the driving noise
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dL, can be approximated by a sequence of independent and identically distributed
impulses, equidistantly separated in time by At¢. For any « €]0, 2] each impulse
can be generated from the Sa.S-distribution with scale parameter (At)Y/* by the
formula dL, = [(At)Y*sin alU/(cos U)Y*][(cos(1 — a)U)/ W]~/ where U and
W are independent random variables, U with uniform distribution on |—7/2, 7/2],
and W with exponential distribution of unit mean [4].

Geophysical example. An extensive vectorial data time series is available
from a pointwise chemical analysis along an ice core drilled out from the top of the
Greenland ice cap down to the base rock [2]. This ice core embraces about 250 kyr
of snow fall. ;From about 90 kyr to 10 kyr bp the data series covers the last glacial
period with stationary appearance. The Ca variation measured with a resolution
of one year may be taken as a so-called proxy for the climate variation. The series
shows jumps between two populations corresponding to cold glacial periods and
warmer interstadials, and statistical analysis shows that these jumps occur as
points in a Poisson process with a mean waiting time of 1430 years between
consecutive jumps [2]. To a good approximation the dynamics of the time series
can be modeled by a pair of nonlinear first order stochastic differential equations
driven by independent Brownian motion and Lévy noise with o = 1.75 (together
representing the short time scale weather phenomena such as strong storms).
With X = logCa, Y an auxiliary process, and a,b constants, these differential
equations are dX = —[dU(z)/dx]dt+a X dL,+bdY,dY = =Y dt++/1+ Y2 dB.
The diffusion terms are obtained by comparing simulated increment distributions
to the empirical increment distribution of the log Ca data series. Attempts to use
Brownian motion alone were not succesful. U(x) is a numerically given potential
function with two local minima. A first estimate of U(x) was obtained from the
stationary bimodal one-dimensional density function of the log Ca data by use of
the Fokker-Planck equation (1) [2]. This example shows that natural phenomena
may very well be modeled by systems driven by Lévy noises.
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