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Cascades in helical turbulence
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We suggest the existence of a characteristic inner scalej for helicity dissipation in a regime of hydrody-
namic fully developed turbulence and estimate it on dimensional grounds. This scale is always larger than the
Kolmogorov scaleh and their ratioh/j vanishes in the high Reynolds number limit, so the flow will always
be helicity free in the small scales. These ideas are illustrated in a shell model of turbulence.
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Few exact results regarding fully developed turbulen
have been derived as yet. The most celebrated being
mogorov’s four-fifths law@1#. The four-fifths law is based on
the fact that energy, which is an inviscid invariant of t
flow, is transferred through the inertial range from the in
gral scale to the dissipation scale. The four-fifths la

^dm i( l )3&52(4/5)«̄ l , states that the third order correlat
associated with energy flux equals the mean energy diss
tion. As noted recently@2,3# in the case of helical flow a
similar relation exists for the transfer of helicity leading
another scaling relation for a third order correlator associa
with the flux of helicity, ^dui( l )•@u'(r )3u'(r 1 l )#&
5(2/15)d̄ l 2, where d̄ is the mean dissipation of helicity
This relation is called the ‘‘two-fifteenths law’’ due to th
numerical prefactor. This establishes another nontrivial s
ing relation for velocity differences in a turbulent helic
flow.

The question of cascade of helicity was first discussed
Brissaudet al. @4#. Here two possibilities were considere
either there will be coexisting~forward! cascades of energ
and helicity or there will be forward cascade of helicity a
companied by an inverse cascade of energy. The latter
sibility seems to be ruled out by numerical calculations@5,6#.
For the first possibility it was argued on phenomenologi
grounds that the helicity cascade ‘‘linearly’’ follows the e
ergy cascade such that the spectra has the same scalin

havior, E(k);«̄2/3k25/3 andH(k);d̄«̄21/3k25/3. This result
was supported in a closure calculation~EDQNM! @5# and by
direct numerical simulation@7#. The ‘‘linear’’ helicity cas-
cade fulfills the~exact! constraintuH(k)u<kE(k) but is in
conflict with the two-fifteenths law, from which simple d

mensional counting would giveH(k);d̄2/3k24/3 as should
be expected in a situation of a ‘‘pure’’ helicity cascade. Th
latter result was obtained by Moiseev and Chkhetiani@8# for
turbulence in a stratified medium as the scaling solution i
Hopf-like equation for a characteristic functional. This a
parent conflict could be related to the fact that helicity is n
a positive quantity that can lead to very different scali
behaviors for even and odd powers of the velocity fie
@9,10#. We therefore have to be very careful when applyi
dimensional arguments with respect to the scaling of the
licity spectrum. This is most strongly manifested in the fa
that the four-fifths law and the two-fifteenths law have co
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pletely different scaling for two correlators that have t
same dimensionality but different tensorial structure.

The coexistence of cascades of energy and enstroph
prohibited for high Reynolds number flow in two
dimensional~2D! turbulence. The reason for this is that th
enstrophy dominates at small scales such that the rati
energy to enstrophy dissipation vanishes for high Reyno
number flow. The inner scalekZ

21 for enstrophy dissipation
is determined from the energy spectrumE(k);k23 and the
kinematic viscosity n by z̄5n*kZdkk4E(k);nkZ

2⇒kZ

;n21/2, where z̄ is the mean dissipation of enstrophy. Th
energy dissipation is «̄5n*kZdkk2E(k);n ln kZ;
2(1/2)n ln n→0 for n→0. Consequently, energy is cascad
upscale in 2D turbulence.

The existence of simultaneous cascades of energy and
licity is a little surprising because the same type of dime
sional argument as for the cascades of energy and enstr
in 2D turbulence applies. The helicity density ish5uiv i ,
wherev i5e i jk] juk is the vorticity. The mean dissipation o
helicity is DH5n^] jui] jv i&. An instructive way of repre-
senting this spectrally is to expand the velocity vectorui(k)
in a basis of ‘‘helical modes’’@11#. The helical modesh6 are
simply the ~complex! eigenvectors of the curl operator,ik
3h656kh6 .

Using incompressibility, k•u(k)50, we have u(k)
5u1(k)h11u2(k)h2 and the energy and helicity in th
mode u(k) are E(k)5u(k)•u(k)* /25„uu1(k)u2
1uu2(k)u2

…/2 and H(k)5u(k)•v(k)* 5k„uu1(k)u2

2uu2(k)u2
….

The spectral energy density can then be separated into
densities of modes of positive and negative helicitiesE(k)
5E1(k)1E2(k), and we finally arrive at the expression fo
the spectral helicity dissipation,

DH52nEkE
dkk3@E1~k!2E2~k!#;nkE

7/3;n23/4, ~1!

wherekE
215h is the Kolmogorov scale and we have us

E(k);k25/3 and kE;n23/4. The scaling derived holds fo
the helical modes of either sign separately and would hold
a helical fluid for the total helicity unless there is a detail
balance between the helicities of opposite signs. This me
that for high Reynolds number flow, the dissipation of hel
ity will grow as Re3/4. Since the mean dissipations of ener
«̄ and helicityd̄ are determined by the integral scale forcin
the growth of helicity dissipation with Reynolds number
©2001 The American Physical Society04-1
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apparently in conflict with the assumption of a constant
ergy and helicity dissipation in the limit of vanishing visco
ity. This is not a true problem because helicity is nonposit
and the integrand in Eq.~1! can have either sign. So in th
high Reynolds number limit, there must either be a deta
balance between dissipation of positive and negative heli
or the energy cascade is blocked@12#. In the rather artificial
case of a shell model where only one sign of helicity
dissipated by hyperviscosity, the energy cascade is ind
prevented altogether similar to the case of forward ene
cascade of energy in 2D turbulence@13#.

We suggest that in a helical flow (d̄Þ0) the dissipation of
helicity defines a scalej different from the Kolmogorov
scaleh.

Following K41, the Kolmogorov scaleh is obtained from
«̄;duh

3/h;nduh
2/h2⇒h;(n3/ «̄)1/4, wheredul is a typical

variation of the velocity over a scalel. The inner scalej for
dissipation of helicity is defined as the scale where the
licity dissipation is of same order as the spectral helicity flu
With dimensional counting we haved̄;nduj

2/j3 and using

K41, dul;( l «̄)1/3, we obtain

j;~n3«̄2/ d̄3!1/7. ~2!

Now it is clear why Eq.~1! leads to a wrong conclusio
for the mean dissipation of the helicityd̄. The integral will
not be dominated by contributions fromkE but contributions
from kH5j21

DH5 d̄;nkH
7/3⇒kH;n23/7. ~3!

The ratio of the two inner scales is then (h/j)5(kH /kE)
;n23/713/45n9/28→0 for n→0. Thus for high Reynolds
number helical flow the small scales will always be nonh
lical.

The reason for the flow to be nonhelical on small scale
different from the reason why the flow tends to be isotro
on small scales even though the integral scale is noniso
pic. The reason for the small scales to be isotropic is that
structure functions associated with the nonisotropic sec
scale with scaling exponents that are larger than those o
isotropic sector and thus becomes subleading for the flow
small scales independent of the dissipation@14#.

The physical picture for fully developed helical turb
lence is thatd̄ and «̄ are solely determined by the forcing i
the integral scale. There will then be an inertial range w
coexisting cascades of energy and helicity with third or
structure functions determined by the four-fifths and the tw
fifteenths laws. This is followed by an inertial range betwe
j and h corresponding to nonhelical turbulence, where
dissipation of positive and negative helicity vortices balan
and the two-fifteenths law is not applicable.

The inner scale for helicity has not been identified in n
merical simulations where hyperviscosity is used to exte
the inertial range@7#. For this to be done, one would need
apply normal viscosity in a simulation. The scale could,
principle, be determined in experiments by measurement
the third order correlator̂dui( l )•@u'(r )3u'(r 1 l )#& to de-
03630
-

e

d
ty

ed
y

-
.

-

is
c
o-
e
rs
he
at

h
r
-
n
e
e

-
d

of

termine the scaling range in accordance with the tw
fifteenth law. A good candidate for measurements would
the atmospheric boundary layer, where helicity is pump
into the system by the Earth’s rotation.

In order to test these ideas in a model system we inve
gate the role of helicity and the structure of the helicity tran
fer in a shell model.

Shell models are toy models of turbulence, which by co
struction have second order inviscid invariants similar to
ergy and helicity in 3D turbulence. Shell models can be
vestigated numerically for high Reynolds numbers,
contrast to the Navier-Stokes equation, and high order sta
tics are easily accessible. Shell models lack any spatial st
tures, so we stress that only certain aspects of turbulent
cades have meaningful analogies in shell models. T
should especially be kept in mind when studying helic
which is intimately linked to spatial structures, and the d
sipation of helicity to reconnection of vortex tubes@12#. So
the following only concerns the spectral aspects of the he
ity and energy cascades.

The most well-studied shell model, the GOY model@15#,
is defined from the governing equation,

u̇n5 iknS un12un112
e

l
un11un211

e21

l2
un21un22D *

2nkn
2un1 f n ~4!

with n51,2, . . . where theun’s are the complex shell ve
locities. The wave numbers are defined askn5ln, wherel
is the shell spacing. The second and third terms are diss
tion and forcing. The model has two inviscid invariants; e
ergy E5(nEn5(nuunu2/2 and ‘‘helicity’’ H5(nHn
5(n(e21)2nuunu2. The model has two free parameters,l
and e. The ‘‘helicity’’ only has the correct dimension o
helicity if ue21u2n5kn⇒1/(12e)5l. In this work we use
the standard parameters (e,l)5(1/2,2) for the GOY model.

The energy flux is defined in the usual way asPn
E5

2d/dtunl((m51
n Em) whered/dtunl is the time rate of change

due to the nonlinear term in Eq.~4!. The helicity fluxPn
H is

defined similarly. By a simple algebra we have the followi
expression for the fluxes:

^Pn
E&5~e21!Dn2Dn115 «̄, ~5!

^Pn
H&52~21!n11kn~Dn112Dn!5 d̄, ~6!

whereDn5kn21Im^un21unun11&, «̄ andd̄ are the mean dis-
sipations of energy and helicity, respectively. The fi
equalities hold without averaging as well. These equati
are the shell model equivalents of the four-fifths and
two-fifteenths law.

In the shell model we have«̄5(nRê f nun* & and d̄
52(n(21)nknRê f nun* &. So in complete analogy with

Navier-Stokes (N-S) turbulence we haveud̄u<2kf «̄, where
kf is a wave number such thatf k50 for k.kf provided there
is a non-negative mean energy injection for all wave nu
bers k<kf . The forcing can be chosen in many ways.
4-2
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natural choice isf n5 f n
0/un* , where f n

0 is independent on

the shell velocities. Then we have,«̄5(n,nf
f n

0 and d̄

5(n,nf
(21)nknf n

0 , wherenf indicates the end of the inte
gral scale. By choosing the coefficients, stochastic or de
ministic functions of time, this last sum can vanish iden
cally, which is referred to as helicity free forcing. A
traditional for shell models the third order correlation fun
tion, Sn

3[2Im^un21unun11&52Dn /kn21 is obtained from
Eqs.~5! and ~6!,

knSn
35

2

~22e!
@ «̄2~21!nd̄/kn#. ~7!

The last term in the parenthesis is subleading with perio
oscillations. Whend̄50, the subleading term disappears a
the scaling from the equivalent of the four-fifths law~5! is
obtained, Fig. 1. The simulations are performed with

FIG. 1. The third order structure functionSn
3 in the casesd̄.0

~crosses! and d̄50 ~diamonds!. In the case of helicity free forcing
the modulus-2 oscillation disappears. In the two runs we have
shells, n51029, f n50.01(11 i )(dn,2 /u2* 2Adn,3/2u3* ) with A
50,1 respectively.

FIG. 2. The helicity flux̂ Pn
H& in the cased̄.0. The same curve

is multiplied by 1000 and overplotted in order to see the iner
range. The period-2 oscillation in the helicity transfer comes fr
the helicity dissipation.
03630
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forcing f 2
051022(11 i ) and f 3

052A f2
0/l with A51 andA

50, corresponding to («̄,d̄)5(0.01,0) ~diamonds! and
( «̄,d̄)5(0.01,0.08)~crosses!.

Helicity is not positive and is dissipated with opposi
signs for odd and even shells. If we consider the third or
structure function associated with the helicity transfer as
fined by Eq.~6! we see~Fig. 2! period-2 oscillations growing
with n. This period-2 oscillation is due to the dissipatio
The helicity flux is

^Pn
H&5 d̄2^Dn

H&, ~8!

whereDn
H is the helicity dissipation at shellsm<n,

5

l

FIG. 3. The absolute values of the helicity fluxu^Pn
H&u ~dia-

monds! show a crossover from the inertial range for helicity to t
range where the helicity is dissipated. The line has a slope of
indicating the helicity dissipation. The dashed lines indicate

helicity input d̄. The crosses are the helicity flux in the cased̄50
where there is no inertial range andKH coincides with the integral
scale. The triangles are the energy flux^Pn

E&.

FIG. 4. Five simulations with constant viscosityn51029, con-

stant energy input «̄50.01, and varying helicity input d̄
5(0.0001,0.001,0.005,0.01,0.08) are shown. The absolute va

of the helicity fluxu^Pn
H&u divided by d̄ is plotted against the wave

number divided byKH5(n3«̄2/ d̄3)21/7, which is obtained from Eq.
~2! neglectingO(1) constants. A clear data collapse is seen.
4-3
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Dn
H52n (

m51

n

~21!mkm
3 uumu2. ~9!

In the inertial range for energy transfer we have the Kolm
orov scalingun;kn

21/3, so the helicity dissipation can b
estimated,

Dn
H;2n (

m51

n

~21!mkm
7/3;l7/3

~21!nl7n/321

l7/311
;~21!nkn

7/3.

~10!

This is the shell model equivalent of Eq.~1! if n is at the
Kolmogorov scale. Figure 3 showsu^Pn

H&u and ^Pn
E& as

functions of wave number. The scaling~10! of the helicity
dissipation is the straight line, the horizontal dashed line isd̄.
The inertial range for helicity transfer is to the left of th
crossing of the two lines. The crossing is the inner scale
helicity transferKH , which does not coincide with the Kol
mogorov scaleKE . The ‘‘pile-up’’ for k larger thanKH was
earlier interpreted as a bottleneck effect@16#. It is a balance
03630
-

r

between positive and negative helicity dissipation and d
not contribute to the dissipation of the injected helicity.

In order to verify the scaling relation betweenKH and d̄,
we performed a set of simulations with constant ene
input «̄50.01 and varying helicity input d̄
5(0.0001,0.001,0.005,0.01,0.08). In Fig. 4 the spectra of
absolute value of the helicity transfer normalized withd̄ are
plotted versus wave number normalized withKH . KH is in
each case calculated from Eq.~2!, and a clear data collapse
seen.

In summary, an inner scale for helicity dissipation h
been identified. This scale is always larger than the Kolm
orov scale. Thus there exist two inertial ranges in heli
turbulence—a range smaller thanj with coexisting cascade
of energy and helicity where both the four-fifths and t
two-fifteenths law applies, and a range betweenj and h,
where the flow is nonhelical and only the four-fifths la
applies. These findings could potentially be verified in obs
vations or in direct numerical simulations of helical turb
lence.
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