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Cascades in helical turbulence
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We suggest the existence of a characteristic inner scébe helicity dissipation in a regime of hydrody-
namic fully developed turbulence and estimate it on dimensional grounds. This scale is always larger than the
Kolmogorov scaler and their ration/ ¢ vanishes in the high Reynolds number limit, so the flow will always
be helicity free in the small scales. These ideas are illustrated in a shell model of turbulence.
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Few exact results regarding fully developed turbulencepletely different scaling for two correlators that have the
have been derived as yet. The most celebrated being Kobame dimensionality but different tensorial structure. _
mogorov’s four-fifths law 1]. The four-fifths law is based on The coexistence of cascades of energy and enstrophy is

the fact that energy, which is an inviscid invariant of the Prohibited for “high Reynolds number flow in two-
flow, is transferred through the inertial range from the inte_dlmensmnaI(ZD_) turbulence. The reason for this is that t_he
gral scale to the dissipation scale. The four-fifths |aW,enstr0phy dominates at _sma_lll scale_s such th?‘t the ratio of
3 - . energy to enstrophy dissipation vanishes for high Reynolds
(6m(1)°)=—(4/5)el, states that the third order correlator nymper flow. The inner scale, * for enstrophy dissipation
associated with energy flux equals the mean energy dissipg determined from the energy spectritk)~k 3 and the

tipn.. As not.ed regentl3[2,3] in the case of hglical flqw & kinematic viscosity » by (= vkadkk4E(k)~vk§=>kz

similar relation exists for the transfer of helicity leading to = _1» —. S
. ; . .~ ~vp % where( is the mean dissipation of enstrophy. The

another scaling relation for a third order correlator assomategnergy dissipation  is il o PK2dKIRE(K) ~ v In ke

i ici . - Z

with the_zflux of _hghcny, {ou( .[u%(r).x UL(HI)_D_ —(1/2)v In v—0 for v— 0. Consequently, energy is cascaded

=(2/15)61%, where 6 is the mean dissipation of helicity. ypscale in 2D turbulence.

This relation is called the “two-fifteenths law” due to the The existence of simultaneous cascades of energy and he-

numerical prefactor. This establishes another nontrivial scallcity is a little surprising because the same type of dimen-

ing relation for velocity differences in a turbulent helical sional argument as for the cascades of energy and enstrophy

flow. in 2D turbulence applies. The helicity density his=u;w; ,

The question of cascade of helicity was first discussed byvherew; = €;;xd;u is the vorticity. The mean dissipation of
Brissaudet al. [4]. Here two possibilities were considered, helicity is Dy=v(d;u;djw;). An instructive way of repre-
either there will be coexistingforward) cascades of energy Senting this spectrally is to expand the velocity veatgk)
and helicity or there will be forward cascade of helicity ac- " & Pasis of “helical modes11]. The helical modeb.. are
companied by an inverse cascade of energy. The latter po 1mp|)_/ the (compley eigenvectors of the curl operatak
sibility seems to b'e .r'uleq out by numerical calculatiphi$]. _ UtsTné irwicbmpressibility, k-u(k)=0, we have u(k)
For the first possibility it was argued on phenomenological

- i =u,(k)h;+u_(k)h_ and the energy and helicity in the
grounds that the helicity cascade “linearly” follows the en- ,ode u(k) are  E(K)=u(k)-u(k)*/2=(u. (k)|?

ergy cascade such that the spectra has the same scaling bep_(k)[2)/2  and  H(k)=u(k)- e(k)* =k(|u. (K)|2
havior, E(k) ~&%% %% and H (k) ~ e ~ Y353 This result —|u_(k)|?).

was supported in a closure calculati#DQNM) [5] and by The spectral energy density can then be separated into the
direct numerical simulatiofi7]. The “linear” helicity cas- ~ densities of modes of positive and negative helicit#)
cade fulfills the(exaci constraint|H(k)|<kE(k) but is in = E+(k)+E_(k), and we finally arrive at the expression for

conflict with the two-fifteenths law, from which simple di- the spectral helicity dissipation,

mensional counting would givel(k)~ 6%*~*? as should
be expected in a situation of a “pure” helicity cascade. This
latter result was obtained by Moiseev and Chkhetj&hifor . )
turbulence in a stratified medium as the scaling solution in avherekg "= 7 is the Kolmogorov scale and we have used
Hopf-like equation for a characteristic functional. This ap-E(K)~k > and ke~ v~ ¥4 The scaling derived holds for
parent conflict could be related to the fact that helicity is notthe helical modes of either sign separately and would hold in
a positive quantity that can lead to very different scalinga helical fluid for the total helicity unless there is a detailed
behaviors for even and odd powers of the velocity fieldbalance between the helicities of opposite signs. This means
[9,10] We therefore have to be very careful when app|y|ngthat for hlgh Reynolds number ﬂOW, the dissipation of helic-
dimensional arguments with respect to the scaling of the hty will grow as Re*. Since the mean dissipations of energy
licity spectrum. This is most strongly manifested in the facte and helicitys are determined by the integral scale forcing,
that the four-fifths law and the two-fifteenths law have com-the growth of helicity dissipation with Reynolds number is

DH=2vkadkk3[E+(k)—E_(k)]~vk;’3~ v (1)
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apparently in conflict with the assumption of a constant entermine the scaling range in accordance with the two-
ergy and helicity dissipation in the limit of vanishing viscos- fifteenth law. A good candidate for measurements would be
ity. This is not a true problem because helicity is nonpositivethe atmospheric boundary layer, where helicity is pumped
and the integrand in Ed1) can have either sign. So in the into the system by the Earth’s rotation.

high Reynolds number limit, there must either be a detailed In order to test these ideas in a model system we investi-
balance between dissipation of positive and negative helicitgate the role of helicity and the structure of the helicity trans-
or the energy cascade is blockgk®]. In the rather artificial fer in a shell model.

case of a shell model where only one sign of helicity is Shell models are toy models of turbulence, which by con-
dissipated by hyperviscosity, the energy cascade is indeestruction have second order inviscid invariants similar to en-
prevented altogether similar to the case of forward energgrgy and helicity in 3D turbulence. Shell models can be in-

cascade of energy in 2D turbulenEs]. vestigated numerically for high Reynolds numbers, in

We suggest that in a helical flows¢ 0) the dissipation of ~contrast to the Navier-Stokes equation, and high order statis-
helicity defines a scalg different from the Kolmogorov tics are easily accessible. Shell models lack any spatial struc-
scaley. tures, so we stress that only certain aspects of turbulent cas-

Following K41, the Kolmogorov scalg is obtained from ~cades have meaningful analogies in shell models. This
e~ 60U g~ 16U/ 7P= n~(1v¥e) Y4, wheredu, is a typical sh(_)uld_ e_sp_eually b_e kept in m|r_1d when studying heI|C|_ty

T 7 . . which is intimately linked to spatial structures, and the dis-
variation of the velocity over a scaleThe inner scalé& for

dissipation of helicity is defined as the scale where the he§|pat|on of helicity to reconnection of vortex tubgk2]. So

licity dissipation is of same order as the spectral helicity flux.t[he following only concems the spectral aspects of the helic-
ity and energy cascades.

. . . . — 2 .
With dimensional counting we havé~véug/¢* and using The most well-studied shell model, the GOY mofiEs],
K41, su;~(1e)Y® we obtain is defined from the governing equation,
E~ (132 37, (2 € e—1 *

Un=1Kn| Uns2Uns1—

Xun+lunfl+ vunflunfz
Now it is clear why Eq(1) leads to a wrong conclusion
for the mean dissipation of the helicity. The integral will - ykﬁun+fn (4)
not be dominated by contributions froka but contributions
fromky=¢"1 with n=1,2, ... where theu,’s are the complex shell ve-
o locities. The wave numbers are definedkas-\", where
Dy= 6~ vk[P=ky~v 3. (3) s the shell spacing. The second and third terms are dissipa-

tion and forcing. The model has two inviscid invariants; en-

The ratio of the two inner scales is thew/¢)=(ky/kg) ergy E=3,E,==.u,/?%2 and “helicity” H=3.,H,
~p 7 3TH304= 9028 .0 for »—0. Thus for high Reynolds =3,(e—1) "|u,|2 The model has two free parametexs,
number helical flow the small scales will always be nonhe-and €. The “helicity” only has the correct dimension of
lical. helicity if |e— 1| "=k,=1/(1—€)=N\. In this work we use

The reason for the flow to be nonhelical on small scales ishe standard parameters, X)=(1/2,2) for the GOY model.
different from the reason why the flow tends to be isotropic  The energy flux is defined in the usual way HE=
on small scales even though the integral scale is nonisotro= d/dt|, (=" _,E,) whered/dt|,, is the time rate of change
pic. The reason for the small scales to be isotropic is that thge to the nonlinear term in E¢4). The helicity fluxII? is

structure functions associated with the nonisotropic sectorg§efined similarly. By a simple algebra we have the following
scale with scaling exponents that are larger than those of “’@xpression for the fluxes:

isotropic sector and thus becomes subleading for the flow at

small scales independent of the dissipafit4]. B =(e— 1A —A. . =5 5

The physical picture for fully developed helical turbu- () =(e=DAn=An-1=e, ®)

lence is thats ande are solely determined by the forcing in <HH>:2(_1)n+lk (Apsy—A )zg (6)
n n n+ n 1

the integral scale. There will then be an inertial range with
coexisting cas_cades of energy and he|ICIt¥ with third OrdervvhereAn=kn_llm<un_lunun+1>, = ands are the mean dis-
structure functions determined by the four-fifths and the two-_. .. ay . .
. L R sipations of energy and helicity, respectively. The first
fifteenths laws. This is followed by an inertial range between o . . :
. . equalities hold without averaging as well. These equations
¢ and 5 corresponding to nonhelical turbulence, where the . X
TS " . - ; are the shell model equivalents of the four-fifths and the
dissipation of positive and negative helicity vortices balancet '
, . ; wo-fifteenths law.
and the two-fifteenths law is not applicable. — . —
The inner scale for helicity has not been identified in nu- N the snhell mOdfl we haves=2,Ref,u;) and 6
merical simulations where hyperviscosity is used to extend=2Zn(—1)"K,Re(fou7). So in complete analogy with
the inertial rangé7]. For this to be done, one would need to Navier-Stokes I{-S) turbulence we havés|<2k;e, where
apply normal viscosity in a simulation. The scale could, ink; is a wave number such thit=0 for k>k; provided there
principle, be determined in experiments by measurements @§ a non-negative mean energy injection for all wave num-

the third order correlatoféuy(l)-[u, (r)Xu, (r+1)]) to de-  bersk<k;. The forcing can be chosen in many ways. A

036304-2



CASCADES IN HELICAL TURBULENCE PHYSICAL REVIEW E63 036304

0.020
i 10 =
_ : "
i 2
i 10°+ i
0.0157 - I &
= 0
; . 2, 107 F N
UED i _ P Ed 0Oy — — — — — o — — — ]
&:0.010_ m:”m 2lananannnn AAAAAAA A © |
: E/10*4; ]
0.005 ] S T e A
[ s
r 107 6% A
[ [ K .
0.000 10*8 + | N | IE
107 104 108
k

FIG. 1. The third order structure functidj in the casess>0 FIG. 3. The absolute values of the helicity fIldI")| (dia-
(crossepand =0 (diamonds. In the case of helicity free forcing  monds show a crossover from the inertial range for helicity to the
the modulus- % oscillation disappears. In the two runs we have 2%ange where the helicity is dissipated. The line has a slope of 7/3
shells, v=10"°, f,=0.01(1+i)(8,2/u3 —Ad,42u3) with A indicating the helicity dissipation. The dashed lines indicate the
=0.1 respectively. helicity input 5. The crosses are the helicity flux in the case0

0 0 where there is no inertial range aKg, coincides with the integral
natural choice isf,=f;/u}, where f; is independent on gczle. The triangles are the energy f{UE).

the shell velocities. Then we have,= Sn<n fﬂ and &
=3n<n,(—1)"k,f, wheren; indicates the end of the inte- forcing f=10"2(1+i) and 3= — A\ with A=1 andA

gral scale. By choosmg the coefficients, stochastic or deter=0, corresponding to & 6)=(0.01,0) (diamonds and

ministic functions of time, this last sum can vanish identi- (&, 8)=(0.01,0.08)(crosses

cally, which is referred to as helicity free forcing. As  Helicity is not positive and is dissipated with opposite

traditional for shell models the third order correlation func-signs for odd and even shells. If we consider the third order

tion, S3=—Im(u,_1UqUns1)=—A,/k,_, is obtained from  structure function associated with the helicity transfer as de-

Egs.(5) and(6), fined by Eq.(6) we segFig. 2) period-2 oscillations growing
with n. This period-2 oscillation is due to the dissipation.

k,So= ( 5=

The helicity flux is
The last term in the parenthesis is subleading with period-2

oscillations. Whens=0, the subleading term disappears andwhereD is the helicity dissipation at shelta<n,
the scaling from the equivalent of the four-fifths ld®) is

[a—( 1)"8/K,]. (7)
(TH)=6-(Dy), (8)

obtained, Fig. 1. The simulations are performed with the 1081 o il
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FIG. 4. Five simulations with constant viscosity=10"°, con-
inpute=0.01, and varying helicity inputé

stant energy

=(0.0001,0.001,0.005,0.01,0.08) are shown. The absolute values

FIG. 2. The helicity fluxTT"') in the cases>0. The same curve

is multiplied by 1000 and overplotted in order to see the inertialof the helicity flux|(TI)| divided by & is plotted against the wave
range. The period-2 oscillation in the helicity transfer comes fromnumber divided by(H—(V382/83) Y7 which is obtained from Eq.

the helicity dissipation.
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(2) neglectingO(1) constants. A clear data collapse is seen.
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between positive and negative helicity dissipation and does
not contribute to the dissipation of the injected helicity.

In order to verify the scaling relation betwe&h, and é,
we performed a set of simulations with constant energy
In the inertial range for energy transfer we have the Kolmog-Input ©=001 and varying  helicity  input 5
orov scalingu,~k, *, so the helicity dissipation can be —(0.0001,0.001,0.005,0.01,0.08). In Fig. 4 the spectra of the

estimated, absolute value of the helicity transfer normalized witlare
plotted versus wave number normalized withy . Ky is in

n
Di=2v 2 (= 1) kplun|? ©)

n /3 i
(—1)"\"M—1 each case calculated from E), and a clear data collapse is
D:‘NZV E (—l)mkr?n/3~7\7/3T~(_1)nk3/3- seen.
m=1 NP1 ; iy iecinafi
(10) In summary, an inner scale for helicity dissipation has

been identified. This scale is always larger than the Kolmog-
orov scale. Thus there exist two inertial ranges in helical
turbulence—a range smaller thgrwith coexisting cascades
Kolmogorov scale. Figure 3 showgIIH)| and (IIF) as  of energy and helicity where both the four-fifths and the
functions of wave number. The scalirigj0) of the helicily two-fifteenths Ia\{v appliesz and a range betwg’ea_nd 7,
dissipation is the straight line, the horizontal dashed ling is Where the flow is nonhelical and only the four-fifths law
The inertial range for helicity transfer is to the left of the @pplies. These findings could potentially be verified in obser-
crossing of the two lines. The crossing is the inner scale foi/atlons or in direct numerical simulations of helical turbu-
helicity transferk,, which does not coincide with the Kol- '€NC€:

This is the shell model equivalent of E€L) if n is at the

mogorov scal&Kg . The “pile-up” for k larger tharK, was

earlier interpreted as a bottleneck effet6]. It is a balance
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