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Symmetries, invariants, and cascades in a shell model of turbulence
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Reduced wave number models of turbulence, namely shell models, show cascade processes and anomalous
scaling of correlators which might be analogous to what is observed in Navier-Stégsurbulence. The
scaling properties of the shell models depend on the specific symmetries and invariants of the models. A shell
model is investigated. It is argued that this model might have a closer resemblance than the standard Gledzer-
Ohkitani-Yamada model to the NS turbulence. The shell model investigated here coincides with the Sabra
model proposed by L'voet al.[Phys. Rev. E58, 1811(1998] for a specific choice of the free parameters of
their model. For this choice of parameters, besides the energy and the “helicity,” the model has a cubic
inviscid invariant.

PACS numbdis): 47.27.Ak

[. INTRODUCTION nents with high accuracy, which is still an undoable task for
the NS equation. So in this sense shell models might prove
The connection between Kolmogorovs 19441) scal-  useful as the starting point for exact results regarding calcu-
ing theory of turbulence and the Navier-Stok&S) equa- lating scaling exponents. The introduction of the Sabra
tion is through the four-fifth law1]. The four-fifth law is model [6] as superior to the Gledzer-Ohkitani-Yamada
one of the few rigorous result regarding three-dimensiona(GOY) model[7,11] was motivated by improvements in ac-
(3D) hydrodynamic turbulence, connecting the second- anguracy with respects to numerical determination of scaling
third-order longitudinal velocity structure functions. The exponents. Here the emphasis will be on the similarity with
equation is not closed, but in the inertial rangesr<L, »  the NS equation and the cascade properties of the third-order
being the innefKolmogoroy scale and. the outer(integra) invariant. In fact, the model will not exhibit a cascade of the
scale, we haveS;(r)=— (4/5)er, wheree is the mean en- third-order quantity, which is easily seen from a scaling ar-
ergy dissipation. This implieg(3)=1, where/(p) is de- gument and confirmed in a numerical simulation. Thus it will
fined from the scaling of the longitudinal structure functions,be shown that the scaling exponent obtained4is irrel-
Sp(r)=(dv|(r)P)~riP). The scaling of all other structure €vant.
functions is observed to deviate from the K41 prediction,
which from dimensional counting would impl§(p) = p/3. Il. THE GOY MODEL
The deviation from the K41 prediction is called anomalous
scaling exponents, referring to the intermittent nature of the The GOY model has built in the K41 scaling in the sense

energy dissipation, where the energy is inhomogeneousithat the K41 scaling is a fixed point of the model. Further-
dissipated. more, it has an unfortunate modul(® symmetry in shell

As was noted recently2], the inviscid conservation of Nnumbers which has no resemblance in the NS equation and
helicity leads to another exact scaling law for a third-orderwhich makes a precise numerical determination of scaling
correlator associated with the flux of helicity, provided anexponents difficult{8,4]. The modulus(3) symmetry, fur-
inertial range for helicity flux exist§3]. Similarly for any  thermore, introduces artificial long-range k spacg corre-
inviscid invariant an exact scaling law can be derived for thdations with no analogs in the NS equation. The GOY model
correlators associated with the spectral flux of such a quarhas two inviscid invariants, the energy and a second nonposi-
tity provided there is an inertial range separating sources anive definite quantity dimensionally equivalent to the helicity
sinks for this quantity. This is the case for the shell modelin 3D NS turbulence. This “helicity” only vaguely re-
investigated here, where the existence of a third-order invissembles the helicity in the NS fluid, and it has been argued
cid invariant leads to a scaling law for a fourth-order cor-that it leads to an anomalous scaling behavior of the GOY
relator. This has been argued to be a calculation of amnodel different from the mechanisms for intermittency in
anomalous scaling exponefd]. This is, however, not an NS turbulencg9]. A review of the main differences between
anomalous scaling exponent in the aforementioned sense;the GOY model and the Sabra model is given in R6f.
would still be present in the case of &magined homoge-

neous no_nintermittent flow. On the contrary, the sc_aling of IIl. THE SHELL MODEL
this specific fourth-order correlator will be “normal” in the
same sense a&3)=1i from the four-fifth law. The shell model, defined in the following, can be regarded

The recent interest in shell models is mainly that theyas a special case of the Sabra model introduced by L'vov
show numerically the same type of intermittent behavior ast al. [6]. It has the same two quadratic inviscid invariants,
seen in 3D turbulencgs]. The simplicity of shell models energy and “helicity” as the GOY model. Furthermore, it
makes it possible to calculate the anomalous scaling expdias one cubic inviscid invariant. The energy is the only posi-
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tive invariant. As for the NS equation, and in contrast to thewhere the sum is over positive and negative momenta, and
GOY model, the K41 scaling is not a fixed point of the all the dimensionless interaction coefficients have the simple
model. o form T(1,m;n)=1(1,m;n) & i ko With I(I,m;n) =5, 5,

The model is defined in the usual way by a set of expo-g

. . . n n—l,m_(6/)\)5n—1,l5n+1,m+[(1_5)/)\]5n+1,I5n+2,m- From
nent|a!ly spaced one-dimensional wave numhe.;s Kok ™, this formulation it is clear why the complex conjugations in
for which we haveu, as the complex shell velocity for shell

this model are exactly as in Eql). They arise from the
n (n=1N). The form of the governing equation for the y 4 y

- closing of the triads in the same way as for the spectral NS

model is motivated by two demands. First, the momenta In'equation. As noted if6], this is the main difference from the

volved in the triad interactions must add up to zero as in thQ30Y model.
NS equation. Second, the complex conjugations involved in

the nonlinear term should be the same as for the terms in the

spectral NS equation involving triads, for which the moduli IV. INVISCID INVARIANTS
of the wave vectors fall within three consecutive shells. This

together with the usual construction of local interactionk in
space, inviscid conservation of energy, and fulfillment of
Liouville’s theorem gives the equation of motion for the
shell velocities,

It can easily be shown that there are only second-order
(quadrati¢ invariants of the forn= &"u,u_,,. The inviscid
conservation of these quadratic invariants is obtained from

d1

. — = Euju_
(d/dt+ vk2)up=i[KaU¥, jUnso— €kn_1UX_jUny dt2 =2 "

+ (1= €)ky—oUp—1Uy—2]+fy, (1) =i E &, (1, m;n)u U,

Ky +km=kn

where v is the viscosity and , is the external forcing. The

forcing would as in the GOY model typically be taken to be =i ;‘r 2K, [1-eé—(1—€) &
active only for some small wave numbers, efgfd, 4. 3<[n]=N

Boundary conditions can be specified in the usual way by
the assignmenti_;=uUg=Uy,; 1=Un;2=0.

The first requirement is fulfilled if the wave numbécs ) )
are defined as a Fibonacci sequenicesk,,_;+k,_,. The SO exactly as for the GOY model we obtain the equation
choice of a Fibonacci sequence for the momenta leads to a
model with the shell spacing uniquely being the golden ratio 1—eé—(1—€)&%=0 (4)
g, since for any choice ok;,k,(k;=<k,) we havek,/k,_1
—@ for n—co. So this corresponds to the usual definitions of,, ;i the two solutiong=1 and¢=1/(e—1). The first cor-
the shell wave numbers with the golden ratio as shell spacingbsponds to energy conservation, with
for k;=1k,=(\5+1)/2=g [10]. The golden ratiog=(1
+/5)/2 plays a key role in the symmetries of shell models. 1

With this formulation, the shell spacing is not a free pa- E=> E == >, UU_,, (5)
rameter of the shell model. However, using the definition by 2
L'vov et al. of k,=g" being a “quasimomentum,” we shall

X Up_oUp_1U_p=0, 3

keep the shell spacing,, as a free parametek,=\". and the second to “helicity” conservatiaffior e<1), with
If we interpret the moment&,, as representative of the
modulus of the wave vectok,,, in 2D or 3D, the triangle 1 1 \"
inequality implies k,+k,;1=k,,> so the Fibonacci se- H =2 H,=% ; (— UpU_p. (6)
o . 2 120 | (e—1)
guence corresponds in this sense to moduli of three parallel

wave vectors. Note that for a shell spacing-g (as the
usual choicex =2), the triangle inequality is violated. This ~ With the definition of negative momenta the only possible
means that we cannot interpret the usual shell-model intefpth-order invariants with terms; - - -U; must have the as-
actions as representative interactions between waves withigociated momenta summing to zero. Thus for any invariant,
three consecutive shells, since no such triplets of wave num-
bers constitute triangles.

In order to give meaning to the notion of closing the tri- > giluj IV +é&u, ---u +cc, (7)
ads, we define negative momeria,,= —k,,, and assign the i ! P ! P
velocity, u_,=uy , to these momentdThe model still only
has NN degrees of freedom, represented by kheomplex the corresponding momentum vectors must add up to zero,
velocities) Note that Eq(1) is also fulfilled for the negative kj1+ cee kjp= k|1+ St k|p=0. This can easily be seen by
momenta, which is why the prefactor must be™With this  differentiating(7) with respect to time using E@®). The only
notation we can rewrite Eq1) as possible third-order term is

(drdt+ vk Hup=iky > T(hmmuuntfy, (2 G=2, Gy=2, £"Uy 1Upl_(ni1)+CC). ()
| m n n
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3.5 ov_,
3.0 whereG(vy,,v_p) is defined as a Hamiltonian with a den-
< 25 sity Gy= (M= €)"vp_10 00— (n+1y, Which is local in wave-
number space. This relation is more a curiosity than of prac-
2.0 tical importance. For shell models it would be more natural
15 to have a Hamiltonian associated with the energy as in most
) conservative dynamical systems. The attempt to construct
1.0 this has, however, not been fruitful until nd\8].
00 02 04 06 08 1.0

VII. THE NONLINEAR FLUXES

FIG. 1. The parameter space,X) for the shell model. Energy . . . .
is always conserved by construction. The hyperbola corresponds to The ”2”"”3‘” transfers of the invariants are defined as the
conservation of dimensionally correct helicityH==, currents HE= (d/dt) 2 <nEm (v=f=0) and correspond-
(—1)"Kn|u,|%. The horizontal line is the golden ratio shell spacing ingly for H. They are
where the “triangles” closek,,_,+k,_1=k,. The vertical line
represents parameters for which G=XZ,(—\¢)" ﬁE: Ki[Dni1t+(1—e€)Dy/N],
XR[Un_1UpU_(n41)] is an inviscid invariant. At the cross, “helic-

ity” has the formH=3,(—1)"k¥qu,|2. (12)

I =ky(€=1)""(Dpy1—Dp/N),

By taking the derivative with respect to time using Ef), whereD =2 IM(U_ (_ 1)U_nUns1). For e=1/g the flux of

we obtain a set of equations similar to Ed): Gis
€6+A=0, M8=(-2\%¢)"AD,— DY\~ eDP+ D),
(12)
(1-€)&2=22=0, 9
where
1- +ex=0.
(1-e)ite D=2 Im(Up 12U (s 1)U— (n-1yU—(n—2))
Th i fulfilled if-1e— e2=0 with £&=—\/e.
ese equations are fulfilled if-1e— e“=0 with {=—\/e D®=2 IM(Up 20% U (1) (13)

The two solutions are=—g and e=1/g.
From a similar analysis it can also be seen that there are 3 5
: : - D®=2 Im(u,,ou Un—1)
no invariants withp>3. n n+2¥-(n+1)"n-1/

V. PARAMETER SPACE VIIl. STRUCTURE FUNCTIONS

With e and\>1 being the two free parameters of the Scaling exponents are obtained from expressing the trans-

model, the parameter space is represented in Fig. 1. T &S ipterms of structure fu.nctions. As found(8) Eq. (1) is
hyperbola is the curva =1/|e— 1| corresponding to the di- invariant under 'the rotatlonun—>exp6 6)un, where the
mensionally correct helicity, H=3(—1)"k,|u,|2. The phases are a Fibonacci sequengg, ,+ 6n_1=0,. This
dashed vertical lines correspond to values where the third®ymmetry is a tr|\_/|al consequence of the construction of the
order quantityG is an inviscid invariant. The pointe(\) modgl. The !mpl|cat|on of the symmetry on the structure
— (1/9,9), marked with a square, has both the usual helicifUnctions is  that (u;,-- .ujp>:exn:l(_ejl+“'—’__0jp)]
and G=E(—l)“g3“un,1unu,(n+1) conserved. The point x(ujl---ujp>. Thus only structure functions withd;
(e,\)=(2—g,9), marked with a diamond, does not ha@e +---+6; =0 can be nonzero. Since the phases fulfill the

conserved, while the pointe(\)=(1/g,g), marked with a same relations as the associated momenta, we can conclude
cross, hass conserved withi=—g® and a helicity of the  that only structure functions where the associated momenta
form H=3(—-1)"k¥qu,|?. The point €A)=(1/2,2), sum to zero are nonzero. The corresponding symmetry in the
marked with a solid ball, is the point investigated by L'vov GOY model isé,_,+ 6,,_,+ 6,=0 leading to the artificial

et al. corresponding to the values originally chosen for theslowly decaying modulus(3) correlation among distant
GOY model. In the rest of this paper we will investigate theshells. This is argued if6] to make this model superior to
case €,\)=(1/g,g?) in order to discuss the role of the cubic the GOY model.

invariantG. The nonvanishing structure functions can easily be listed,
thus we have the following second-, third- and fourth-order
VI. HAMILTONIAN STRUCTURE structure functions:
The Hamiltonian structure of the model as reported in Sy(n)=(upu_py=(E,), 14

Ref. [4] can be observed, by change of variables,
=(—e) ", S3(n) =2 IM(Un—1UnU—(n+1))=(Dn), (15
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S(n,m) = (|up|?|up|?) =(ErEp), (16) T T
25F E
Sal)(n)zz |m<un72un71un+luf(n+2)>:_<D§11)>'
17 ROF a7

—_ r &
S =21m(uy ou% Uy )=—(DP), (18 < 18¢ t ]
SEA(M) =2 Im{up_5Up U ar1))=—(D{). (19 Lo ]
05 ]
IX. EXACT SCALING RELATIONS ool
The exact scaling relations corresponding to the four-fifth ot 2 3 4 5 6 7 8

law [12] simply state that the mean nonlinear transfers P

HE'H'G=<1~TE'H'G) are independent of wave number within  FIG. 2. The anomalous scaling exponedt®) defined from
the respective inertial ranges in the high Reynolds numbefII§/k,)P®~k, ‘P for (e,\)=(1/g,g?) (diamond$ coincide

limit. TIE=¢. T1H=5. and 1= 7, where €,3,7 are the within the numerical uncertainty with the values found by L’vov
1 n ) n ) n ’ 1 Yy

mean dissipations oF,H,G, respectively. This is usually St @ for (€A)=(1/2,2) (triangles.
expressed in terms of structure functions. From E®. and

(15), we readily obtain flux is determined by the Reynolds numbiRe, which here

we just associate with the inverse of the viscosityassum-

knsg(n+l)+kn,283(n):?, (20) ing velocity at the integral scale to be of order unity. The
Kolmogorov scale is in complete analogy to the K41 theory
an3(n+1)—kn,183(n)=(—1)“kgl§ 21) determined by_balancing d.issipation and .no'nlinear flulx, o)
we haveK g~ (e/v%)Y* growing asRe®. A similar analysis
in the inertial range, with the solution can be done for the analogous Kolmogorov scale for dissi-
pation of helicity[3]. Balancing dissipation and helicity in-

2 = _ _
M= — e (=1 L3. o9y put usingu,~ (e/ky) ' givesKy~[ 8% (v%?)]Y". Thus we
Ss(n) Ka(1+N) Let (=1 "a] 22 getKy /Kg~ v 37 34=1928_.0 for y—0. This means that

. L . for high Reynolds number flow the small scales will always
The second term on the right-hand side is an oscillatory term, ipit nonhelical flow. In the shell model the helicity

which is subleading in the scaling witt, in comparison to changes sign due to the-(L)" factor. The dissipation of

the first term. This term disappears in the case of a “helicity—posiﬂve helicity at even-numbered shells and negative helic-

free” forcing where 5=0 and we recover the shell-model ity at odd-numbered shells will grow with the wave number

correspondence to thgh law expressed in terms of the third gg DM~ (= 1)"k3|un |2~ (— 1)k, consequently the shell

order structur_e fun_cti_or$3(n) =?/kn. model will show strong odd-even oscillations Hl’: from
‘The equation similar to Ec(20) for the transfer of the  balancing the positive and negative dissipations. The scaling
third-order quantityG, reads will be determined by the dissipatiofiI|~k* for ki,
>Ky . The situation for the cubic invariar® is different.
ka(— ©"INS(n+1) + eS{P(n)/ — S (n) + S ()] We can again define a Kolmogorov scale for dissipatio® of
=kﬁ+"F4(n) by equating the dissipation and the input@f
=7 (23) vk2G o~ v(— 1)"KPR Uy 1UnU* (3]~ 7. (29)

where 7 is the mean dissipation o, F,(n) denotes the Usingu,~(e/k,)Y® again gives

square bracket on the left-hand side, ame In(—e€)/In(\) o

=[im+In(e)JIn(\). This was argued by L'vowet al. [4] to Ko~ n/(ev)]?®. (25
establish a nontrivial calculation of @ubleading scaling

exponent, which in this notation readg,(n)~k;2"®  The ratio of dissipation scales is thet/Kg~p~ 2534
=kE(4):>Z(4)=2+[i7-r+ln(e)]/In()\). The imaginary part of = v 50 as for the case of helicity the small scales will
the scaling exponent comes from the 1)" factor, which hgve no net nonlinear flu?< (ﬁ There s, however, a c_ruqal
can be trivially eliminated by reformulating the model in dlffgrence b?t‘.’ve?‘” the dissipation léfand c.)fG' The dissi-

: _ = x pation of helicity is forced to be of alternating signs whereas
terms of new variables;,n=Uy, andvyn 1 =—U3,,1, @S he dissipai G be of either si t hell. Th
was done by L'vovet al. [4]. the dissipation of5 can be of either sign at any shell. Thus

one should expect the mean dissipation&fto vanish for
k,>Kg, and the dissipation would not determine the scaling
of TTS. So how would the scaling dfi be then? The non-
The validity of the exact scaling relations depends on thdinear fluxIIY is constituted of terms of the forikp ?S(n)
existence of inertial ranges separating the sources and sinkskﬁ’zuﬁ~ k;’e. This leading scaling is eliminated by detailed
for the inviscid invariants solely associated with the nonlin-cancellations between terms in an inertial range. One would
ear fluxes of the invariants. The inertial range for the energyhen expecKg to represent a decorrelation scale where the

X. INERTIAL RANGES
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FIG. 3. The nonlinear flux of enerdhl,, as a function oky . FIG. 5. The nonlinear flux of the third-order quantifif as a

T . . nction of k,. The numerics has not converged and the scaling
individual terms become independent and the scaling 0exponents 716 indicated by the line come from the standard devia-

|Hr,‘| b.ecc;/rges Qppm)'(lmately' that of Fhe deVIdL,JaI te,rms’tion of the numerical value of the difference between correlators of
which isky™. This conjecture is tested in a numerical simu-,q orderk".

lation.
we conjecture that there is a constant fluxGbf order unity
Xl. NUMERICAL SIMULATION (7~1) through the inertial range, we must calculatf as

A simulation using a simple fourth-order Runge-Kutta differences of fourth-order correlators of ord€f®, which is
scheme has been performed with the parameter valuedpout 16 at the end of the inertial range to obtain a constant
(e,\,v,N,f)=(1/g,9%,10 °,20,(1+i)8;,). The anomalous ©f order unity. So in fact the graph in Fig. 5 does not reliably
scaling exponents are defined froftl1E)”3)~k{P . The rc_apresenl'[f, itis mgrely numterigal noise. To see this con-
results for this model are shown in Fig.(8iamond$ and sider th? averagh(lﬂn?(t)|=|f0Hn(T)d7.| ag a function of
coincide within the numerical accuracy of the simulationt: S€€ Fig. 6. The line is the curvd \t which is expected for
with the exponents found by L'vost al.for the Sabra model an independent random process. The standard deviatahn
with (e,\)=(1/2,2) (triangle3. The nonlinear fluxes for the process is of the ordés,®. The main justification for
E,H,G are shown in Figs. 3, 4, and 5. The fluxes Fband studying shell models is the possibility of accurate numerical
G fluctuate between positive and negative values, so thagalculations of correlators and scaling exponents for high
only the absolute values are shown. The scaling indicated bizeynolds number flow. Here we see that even the shell
the straight lines confirms the conjectures made in the prénodel can been pushed to the limit where the determination
ceding section. However, even though the simulation is lon@f correlators by numerical simulation is impractical.
enough and numerically accurate enough to determine the
anomalous scaling exponents reliably, the nonlinear Fifx XIl. SUMMARY

can only be determined using extreme numerical precision. If . ) . .
To summarize, it has been argued why this model is a

. ; ; . natural choice for a shell model of turbulence. For the choice

6L i
| 107
- " .
=
%
% 1
(U L
1072 ¢ 1
1074L i ;
10° 10* 108 108 i
k, 10% . e
1 10

FIG. 4. The nonlinear flux of helicityiI"| as a function ok, .
An inertial range with coexisting cascades of both energy and he-
licity is seen for the first few shells, after which the dissipation of ~ FIG. 6. The averaggIIS)(t)|=|/5TIS(7)d | as a function of.
helicity dominates the spectrum. The sign of the flux alternates foiThe straight line has the slopel/2 as for an independent random
even and odd shells corresponding to dissipation of positive andariable. This shows that the quantity shown in Fig. 5 is dominated
negative helicity. The straight line indicates the scaling exponenby noise. Note that the sampling time is long enough to determine
7/3 as is expected from the dissipation. the anomalous scaling exponents.

time
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of parameters which conserves both energy, dimensionallguired to determine this correlator, the numerical simulations
correct helicity, and the third-order quanti@, the anoma- presented here are not conclusive in the determination of this
lous scaling exponents are the same as for the Sabra modebrrelator.

which conserves energy and dimensionally correct helicity

but not G. So even though the model has a Hamiltonian

structure, t_he_ nonpositive_ Hamiltonig@, seems not relevant ACKNOWLEDGMENTS
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