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Symmetries, invariants, and cascades in a shell model of turbulence

P. D. Ditlevsen
The Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30,

DK-2100 Copenhagen O” , Denmark
~Received 27 January 1999; revised manuscript received 4 February 2000!

Reduced wave number models of turbulence, namely shell models, show cascade processes and anomalous
scaling of correlators which might be analogous to what is observed in Navier-Stokes~NS! turbulence. The
scaling properties of the shell models depend on the specific symmetries and invariants of the models. A shell
model is investigated. It is argued that this model might have a closer resemblance than the standard Gledzer-
Ohkitani-Yamada model to the NS turbulence. The shell model investigated here coincides with the Sabra
model proposed by L’vovet al. @Phys. Rev. E.58, 1811~1998!# for a specific choice of the free parameters of
their model. For this choice of parameters, besides the energy and the ‘‘helicity,’’ the model has a cubic
inviscid invariant.

PACS number~s!: 47.27.Ak
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I. INTRODUCTION

The connection between Kolmogorovs 1941~K41! scal-
ing theory of turbulence and the Navier-Stokes~NS! equa-
tion is through the four-fifth law@1#. The four-fifth law is
one of the few rigorous result regarding three-dimensio
~3D! hydrodynamic turbulence, connecting the second-
third-order longitudinal velocity structure functions. Th
equation is not closed, but in the inertial range,h!r !L, h
being the inner~Kolmogorov! scale andL the outer~integral!
scale, we haveS3(r )52(4/5)er , wheree is the mean en-
ergy dissipation. This impliesz(3)51, wherez(p) is de-
fined from the scaling of the longitudinal structure function
Sp(r )5^dv i(r )p&;r z(p). The scaling of all other structur
functions is observed to deviate from the K41 predictio
which from dimensional counting would implyz(p)5p/3.
The deviation from the K41 prediction is called anomalo
scaling exponents, referring to the intermittent nature of
energy dissipation, where the energy is inhomogeneo
dissipated.

As was noted recently@2#, the inviscid conservation o
helicity leads to another exact scaling law for a third-ord
correlator associated with the flux of helicity, provided
inertial range for helicity flux exists@3#. Similarly for any
inviscid invariant an exact scaling law can be derived for
correlators associated with the spectral flux of such a qu
tity provided there is an inertial range separating sources
sinks for this quantity. This is the case for the shell mo
investigated here, where the existence of a third-order in
cid invariant leads to a scaling law for a fourth-order co
relator. This has been argued to be a calculation of
anomalous scaling exponent@4#. This is, however, not an
anomalous scaling exponent in the aforementioned sens
would still be present in the case of an~imagined! homoge-
neous nonintermittent flow. On the contrary, the scaling
this specific fourth-order correlator will be ‘‘normal’’ in the
same sense asz(3)51i from the four-fifth law.

The recent interest in shell models is mainly that th
show numerically the same type of intermittent behavior
seen in 3D turbulence@5#. The simplicity of shell models
makes it possible to calculate the anomalous scaling ex
PRE 621063-651X/2000/62~1!/484~6!/$15.00
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nents with high accuracy, which is still an undoable task
the NS equation. So in this sense shell models might pr
useful as the starting point for exact results regarding ca
lating scaling exponents. The introduction of the Sab
model @6# as superior to the Gledzer-Ohkitani-Yama
~GOY! model@7,11# was motivated by improvements in ac
curacy with respects to numerical determination of scal
exponents. Here the emphasis will be on the similarity w
the NS equation and the cascade properties of the third-o
invariant. In fact, the model will not exhibit a cascade of t
third-order quantity, which is easily seen from a scaling
gument and confirmed in a numerical simulation. Thus it w
be shown that the scaling exponent obtained in@4# is irrel-
evant.

II. THE GOY MODEL

The GOY model has built in the K41 scaling in the sen
that the K41 scaling is a fixed point of the model. Furthe
more, it has an unfortunate modulus~3! symmetry in shell
numbers which has no resemblance in the NS equation
which makes a precise numerical determination of sca
exponents difficult@8,4#. The modulus~3! symmetry, fur-
thermore, introduces artificial long-range~in k space! corre-
lations with no analogs in the NS equation. The GOY mo
has two inviscid invariants, the energy and a second nonp
tive definite quantity dimensionally equivalent to the helic
in 3D NS turbulence. This ‘‘helicity’’ only vaguely re-
sembles the helicity in the NS fluid, and it has been argu
that it leads to an anomalous scaling behavior of the G
model different from the mechanisms for intermittency
NS turbulence@9#. A review of the main differences betwee
the GOY model and the Sabra model is given in Ref.@6#.

III. THE SHELL MODEL

The shell model, defined in the following, can be regard
as a special case of the Sabra model introduced by L’
et al. @6#. It has the same two quadratic inviscid invarian
energy and ‘‘helicity’’ as the GOY model. Furthermore,
has one cubic inviscid invariant. The energy is the only po
484 ©2000 The American Physical Society
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PRE 62 485SYMMETRIES, INVARIANTS, AND CASCADES IN A . . .
tive invariant. As for the NS equation, and in contrast to
GOY model, the K41 scaling is not a fixed point of th
model.

The model is defined in the usual way by a set of ex
nentially spaced one-dimensional wave numberskn5k0ln,
for which we haveun as the complex shell velocity for she
n (n51,N). The form of the governing equation for th
model is motivated by two demands. First, the momenta
volved in the triad interactions must add up to zero as in
NS equation. Second, the complex conjugations involved
the nonlinear term should be the same as for the terms in
spectral NS equation involving triads, for which the mod
of the wave vectors fall within three consecutive shells. T
together with the usual construction of local interactions ik
space, inviscid conservation of energy, and fulfillment
Liouville’s theorem gives the equation of motion for th
shell velocities,

~d/dt1nkn
2!un5 i @knun11* un122ekn21un21* un11

1~12e!kn22un21un22#1 f n , ~1!

wheren is the viscosity andf n is the external forcing. The
forcing would as in the GOY model typically be taken to
active only for some small wave numbers, e.g.,f n5 f dn,4 .

Boundary conditions can be specified in the usual way
the assignmentu215u05uN115uN1250.

The first requirement is fulfilled if the wave numberskn
are defined as a Fibonacci sequence,kn5kn211kn22. The
choice of a Fibonacci sequence for the momenta leads
model with the shell spacing uniquely being the golden ra
g, since for any choice ofk1 ,k2(k1<k2) we havekn /kn21
→g for n→`. So this corresponds to the usual definitions
the shell wave numbers with the golden ratio as shell spa
for k151,k25(A511)/2[g @10#. The golden ratiog5(1
1A5)/2 plays a key role in the symmetries of shell mode

With this formulation, the shell spacing is not a free p
rameter of the shell model. However, using the definition
L’vov et al. of kn5gn being a ‘‘quasimomentum,’’ we shal
keep the shell spacing,l, as a free parameter,kn5ln.

If we interpret the momenta,kn , as representative of th
modulus of the wave vector,kn , in 2D or 3D, the triangle
inequality implies kn1kn11>kn12 so the Fibonacci se
quence corresponds in this sense to moduli of three par
wave vectors. Note that for a shell spacingl.g ~as the
usual choicel52), the triangle inequality is violated. Thi
means that we cannot interpret the usual shell-model in
actions as representative interactions between waves w
three consecutive shells, since no such triplets of wave n
bers constitute triangles.

In order to give meaning to the notion of closing the t
ads, we define negative momenta,k2n[2kn , and assign the
velocity, u2n5un* , to these momenta.~The model still only
has 2N degrees of freedom, represented by theN complex
velocities.! Note that Eq.~1! is also fulfilled for the negative
momenta, which is why the prefactor must be ‘‘i .’’ With this
notation we can rewrite Eq.~1! as

~d/dt1nkn
21 !un5 ikn (

kl,km

Ĩ ~ l ,m;n!ulum1 f n , ~2!
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where the sum is over positive and negative momenta,
all the dimensionless interaction coefficients have the sim
form Ĩ ( l ,m;n)5I ( l ,m;n)dkn1kl1km,0 with I ( l ,m;n)5dn22,l

dn21,m2(e/l)dn21,ldn11,m1@(12e)/l#dn11,ldn12,m. From
this formulation it is clear why the complex conjugations
this model are exactly as in Eq.~1!. They arise from the
closing of the triads in the same way as for the spectral
equation. As noted in@6#, this is the main difference from the
GOY model.

IV. INVISCID INVARIANTS

It can easily be shown that there are only second-or
~quadratic! invariants of the form(jnunu2n . The inviscid
conservation of these quadratic invariants is obtained fro

d

dt

1

2 (
unu<N

jnunu2n

5 i (
kl1km5kn

jnknI ~ l ,m;n!ulumu2n

5 i (
3<unu<N

jn22kn22@12ej2~12e!j2#

3un22un21u2n50, ~3!

so exactly as for the GOY model we obtain the equation

12ej2~12e!j250 ~4!

with the two solutionsj51 andj51/(e21). The first cor-
responds to energy conservation, with

E5( En5
1

2 ( unu2n , ~5!

and the second to ‘‘helicity’’ conservation~for e,1), with

H5( Hn5
1

2 (
unu<N

S 1

~e21! D
n

unu2n . ~6!

With the definition of negative momenta the only possib
pth-order invariants with termsui 1

•••ui p
must have the as

sociated momenta summing to zero. Thus for any invaria

(
i

j i
1uj 1

•••uj p
1•••1j i

lul 1
•••ul p

1c.c., ~7!

the corresponding momentum vectors must add up to z
kj 1

1•••1kj p
5kl 1

1•••1kl p
50. This can easily be seen b

differentiating~7! with respect to time using Eq~2!. The only
possible third-order term is

G5(
n

Gn5(
n

jn~un21unu2(n11)1c.c.!. ~8!
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486 PRE 62P. D. DITLEVSEN
By taking the derivative with respect to time using Eq.~2!,
we obtain a set of equations similar to Eq.~4!:

ej1l50,

~12e!j22l250, ~9!

~12e!j1el50.

These equations are fulfilled if 12e2e250 with j52l/e.
The two solutions aree52g ande51/g.

From a similar analysis it can also be seen that there
no invariants withp.3.

V. PARAMETER SPACE

With e and l.1 being the two free parameters of th
model, the parameter space is represented in Fig. 1.
hyperbola is the curvel51/ue21u corresponding to the di
mensionally correct helicity, H5((21)nknuunu2. The
dashed vertical lines correspond to values where the th
order quantityG is an inviscid invariant. The point (e,l)
5(1/g,g2), marked with a square, has both the usual helic
and G5((21)ng3nun21unu2(n11) conserved. The poin
(e,l)5(22g,g), marked with a diamond, does not haveG
conserved, while the point (e,l)5(1/g,g), marked with a
cross, hasG conserved withj52g2 and a helicity of the
form H5((21)nkn

1/2uunu2. The point (e,l)5(1/2,2),
marked with a solid ball, is the point investigated by L’vo
et al. corresponding to the values originally chosen for t
GOY model. In the rest of this paper we will investigate t
case (e,l)5(1/g,g2) in order to discuss the role of the cub
invariantG.

VI. HAMILTONIAN STRUCTURE

The Hamiltonian structure of the model as reported
Ref. @4# can be observed, by change of variables,vn
5(2e)2n/2un ,

FIG. 1. The parameter space (e,l) for the shell model. Energy
is always conserved by construction. The hyperbola correspond
conservation of dimensionally correct helicityH5(n

(21)nknuunu2. The horizontal line is the golden ratio shell spaci
where the ‘‘triangles’’ close,kn221kn215kn . The vertical line
represents parameters for which G5(n(2l/e)n

3R@un21unu2(n11)# is an inviscid invariant. At the cross, ‘‘helic
ity’’ has the formH5(n(21)nkn

1/2uunu2.
re

he

d-

y

v̇n52 i
d@lG/~2e!#

dv2n
, ~10!

whereG(vm ,v2m) is defined as a Hamiltonian with a den
sity Gn5(lA2e)nvn21vnv2(n11) , which is local in wave-
number space. This relation is more a curiosity than of pr
tical importance. For shell models it would be more natu
to have a Hamiltonian associated with the energy as in m
conservative dynamical systems. The attempt to const
this has, however, not been fruitful until now@8#.

VII. THE NONLINEAR FLUXES

The nonlinear transfers of the invariants are defined as

currents P̃n
E5(d/dt)(m<nEm (n5 f 50) and correspond-

ingly for H. They are

P̃n
E5kn@Dn111~12e!Dn /l#,

~11!
P̃n

H5kn~e21!2n~Dn112Dn /l!,

whereDn52 Im(u2(n21)u2nun11). For e51/g the flux of
G is

P̃n
G5~2l2/e!n~lDn11

(1) 2eDn
(1)/l2eDn

(2)1Dn
(3)!,

~12!

where

Dn
(1)52 Im~un12u2(n11)u2(n21)u2(n22)!,

Dn
(2)52 Im~un12u2n

2 u2(n21)!, ~13!

Dn
(3)52 Im~un12u2(n11)

2 un21!.

VIII. STRUCTURE FUNCTIONS

Scaling exponents are obtained from expressing the tr
fers in terms of structure functions. As found in@6# Eq. ~1! is
invariant under the rotation,un→exp(iun)un , where the
phases are a Fibonacci sequence,un221un215un . This
symmetry is a trivial consequence of the construction of
model. The implication of the symmetry on the structu
functions is that ^uj 1

•••uj p
&5exp@i(uj1

1•••1ujp
)#

3^uj1
•••ujp

&. Thus only structure functions withu j 1

1•••1u j p
50 can be nonzero. Since the phases fulfill t

same relations as the associated momenta, we can con
that only structure functions where the associated mome
sum to zero are nonzero. The corresponding symmetry in
GOY model isun221un211un50 leading to the artificial
slowly decaying modulus~3! correlation among distan
shells. This is argued in@6# to make this model superior to
the GOY model.

The nonvanishing structure functions can easily be list
thus we have the following second-, third- and fourth-ord
structure functions:

S2~n!5^unu2n&5^En&, ~14!

S3~n!52 Im^un21unu2(n11)&5^Dn&, ~15!

to
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S4
(0)~n,m!5^uunu2uumu2&5^EnEm&, ~16!

S4
(1)~n!52 Im^un22un21un11u2(n12)&52^Dn

(1)&,
~17!

S4
(2)~n!52 Im^un22u2n

2 un11&52^Dn
(2)&, ~18!

S4
(3)~n!52 Im^un22un21

2 u2(n11)&52^Dn
(3)&. ~19!

IX. EXACT SCALING RELATIONS

The exact scaling relations corresponding to the four-fi
law @12# simply state that the mean nonlinear transf

Pn
E,H,G5^P̃n

E,H,G& are independent of wave number with
the respective inertial ranges in the high Reynolds num
limit, Pn

E5 ē, Pn
H5 d̄, and Pn

G5h̄, where ē,d̄,h̄ are the
mean dissipations ofE,H,G, respectively. This is usually
expressed in terms of structure functions. From Eqs.~11! and
~15!, we readily obtain

knS3~n11!1kn22S3~n!5 ē, ~20!

knS3~n11!2kn21S3~n!5~21!nkn
21d̄ ~21!

in the inertial range, with the solution

S3~n!5
l2

kn~11l!
@ ē1~21!nkn

21d̄ #. ~22!

The second term on the right-hand side is an oscillatory t
which is subleading in the scaling withkn in comparison to
the first term. This term disappears in the case of a ‘‘helic
free’’ forcing where d̄50 and we recover the shell-mod
correspondence to the45 th law expressed in terms of the thir
order structure function,S3(n)5 ē/kn .

The equation similar to Eq.~20! for the transfer of the
third-order quantity,G, reads

kn
2~2e!n@lS4

(1)~n11!1eS4
(1)~n!/l2eS4

(2)~n!1S4
(3)~n!#

5kn
21aF4~n!

5h̄, ~23!

where h̄ is the mean dissipation ofG, F4(n) denotes the
square bracket on the left-hand side, anda5 ln(2e)/ln(l)
5@ip1ln(e)#/ln(l). This was argued by L’vovet al. @4# to
establish a nontrivial calculation of a~subleading! scaling
exponent, which in this notation readsF4(n);kn

222a

5kn
z̃(4)⇒ z̃(4)521@ ip1 ln(e)#/ln(l). The imaginary part of

the scaling exponent comes from the (21)n factor, which
can be trivially eliminated by reformulating the model
terms of new variables,v2n[u2n and v2n11[2u2n11* , as
was done by L’vovet al. @4#.

X. INERTIAL RANGES

The validity of the exact scaling relations depends on
existence of inertial ranges separating the sources and s
for the inviscid invariants solely associated with the nonl
ear fluxes of the invariants. The inertial range for the ene
h
s

er

m

-

e
ks

-
y

flux is determined by the Reynolds numberRe, which here
we just associate with the inverse of the viscosityn, assum-
ing velocity at the integral scale to be of order unity. T
Kolmogorov scale is in complete analogy to the K41 theo
determined by balancing dissipation and nonlinear flux,
we haveKE;( «̄/n3)1/4 growing asRe3/4. A similar analysis
can be done for the analogous Kolmogorov scale for di
pation of helicity@3#. Balancing dissipation and helicity in
put usingun;( «̄/kn)1/3 givesKH;@d̄3/(n3«̄2)#1/7. Thus we
get KH /KE;n23/713/45n9/28→0 for n→0. This means that
for high Reynolds number flow the small scales will alwa
exhibit nonhelical flow. In the shell model the helicit
changes sign due to the (21)n factor. The dissipation of
positive helicity at even-numbered shells and negative he
ity at odd-numbered shells will grow with the wave numb
as Dn

H;(21)nkn
3uunu2;(21)nkn

7/3, consequently the shel
model will show strong odd-even oscillations ofPn

H from
balancing the positive and negative dissipations. The sca
will be determined by the dissipationuPn

Hu;kn
7/3 for kn

.KH . The situation for the cubic invariantG is different.
We can again define a Kolmogorov scale for dissipation oG
by equating the dissipation and the input ofG,

nkn
2Gn;n~21!nkn

7/2R@un21unu2~n11!
* #;h̄. ~24!

Using un;( «̄/kn)1/3 again gives

KG;@h̄/~ «̄n!#2/5. ~25!

The ratio of dissipation scales is thenKG /KE;n22/513/4

5n7/20, so as for the case of helicity the small scales w
have no net nonlinear flux ofG. There is, however, a crucia
difference between the dissipation ofH and ofG. The dissi-
pation of helicity is forced to be of alternating signs where
the dissipation ofG can be of either sign at any shell. Thu
one should expect the mean dissipation ofGn to vanish for
kn.KG , and the dissipation would not determine the scal
of Pn

G . So how would the scaling ofPn
G be then? The non-

linear flux Pn
G is constituted of terms of the formkn

5/2S4(n)
;kn

5/2un
4;kn

7/6. This leading scaling is eliminated by detaile
cancellations between terms in an inertial range. One wo
then expectKG to represent a decorrelation scale where

FIG. 2. The anomalous scaling exponentsz(p) defined from
(Pn

E/kn)p/3;kn
2z(p) for (e,l)5(1/g,g2) ~diamonds! coincide

within the numerical uncertainty with the values found by L’vo
et al. for (e,l)5(1/2,2) ~triangles!.
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488 PRE 62P. D. DITLEVSEN
individual terms become independent and the scaling
uPn

Gu becomes approximately that of the individual term
which is kn

7/6. This conjecture is tested in a numerical sim
lation.

XI. NUMERICAL SIMULATION

A simulation using a simple fourth-order Runge-Kut
scheme has been performed with the parameter va
(e,l,n,N, f )5„1/g,g2,1029,20,(11 i )d1,n…. The anomalous

scaling exponents are defined from̂(P̃n
E)p/3&;kn

z(p) . The
results for this model are shown in Fig. 2~diamonds! and
coincide within the numerical accuracy of the simulati
with the exponents found by L’vovet al. for the Sabra mode
with (e,l)5(1/2,2) ~triangles!. The nonlinear fluxes for
E,H,G are shown in Figs. 3, 4, and 5. The fluxes forH and
G fluctuate between positive and negative values, so
only the absolute values are shown. The scaling indicated
the straight lines confirms the conjectures made in the
ceding section. However, even though the simulation is lo
enough and numerically accurate enough to determine
anomalous scaling exponents reliably, the nonlinear fluxPn

G

can only be determined using extreme numerical precisio

FIG. 3. The nonlinear flux of energyPn
E as a function ofkn .

FIG. 4. The nonlinear flux of helicityuPn
Hu as a function ofkn .

An inertial range with coexisting cascades of both energy and
licity is seen for the first few shells, after which the dissipation
helicity dominates the spectrum. The sign of the flux alternates
even and odd shells corresponding to dissipation of positive
negative helicity. The straight line indicates the scaling expon
7/3 as is expected from the dissipation.
f
,
-

es

at
by
e-
g
he

If

we conjecture that there is a constant flux ofG of order unity
(h̄;1) through the inertial range, we must calculatePn

G as
differences of fourth-order correlators of orderkn

7/6, which is
about 106 at the end of the inertial range to obtain a const
of order unity. So in fact the graph in Fig. 5 does not reliab
representPn

G , it is merely numerical noise. To see this co
sider the averageu^Pn

G&(t)u5u*0
t Pn

G(t)dtu as a function of
t, see Fig. 6. The line is the curves/At which is expected for
an independent random process. The standard deviations of
the process is of the orderkn

7/6. The main justification for
studying shell models is the possibility of accurate numeri
calculations of correlators and scaling exponents for h
Reynolds number flow. Here we see that even the s
model can been pushed to the limit where the determina
of correlators by numerical simulation is impractical.

XII. SUMMARY

To summarize, it has been argued why this model i
natural choice for a shell model of turbulence. For the cho

e-
f
r
d
t

FIG. 5. The nonlinear flux of the third-order quantityPn
E as a

function of kn . The numerics has not converged and the scal
exponents 7/6 indicated by the line come from the standard de
tion of the numerical value of the difference between correlators
the orderkn

7/6.

FIG. 6. The averageu^Pn
G&(t)u5u*0

t Pn
G(t)dtu as a function oft.

The straight line has the slope21/2 as for an independent rando
variable. This shows that the quantity shown in Fig. 5 is domina
by noise. Note that the sampling time is long enough to determ
the anomalous scaling exponents.
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of parameters which conserves both energy, dimension
correct helicity, and the third-order quantityG, the anoma-
lous scaling exponents are the same as for the Sabra m
which conserves energy and dimensionally correct heli
but not G. So even though the model has a Hamiltoni
structure, the nonpositive Hamiltonian,G, seems not relevan
for determining the scaling properties of the model. It h
been argued that there will not be an inertial range sca
regime for the fourth-order correlator associated with the fl
of G. However, due to the extreme numerical accuracy
tt.
lly

el,
y

s
g
x
-

quired to determine this correlator, the numerical simulatio
presented here are not conclusive in the determination of
correlator.
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