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Anomalous jumping in a double-well potential
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Noise-induced jumping between metastable states in a potential depends on the structure of the noise. For an
a-stable noise, jumping triggered by single extreme events contributes to the transition probability. This is also
called Levy flights and might be of importance in triggering sudden changes in geophysical flow and perhaps
even climatic changes. The steady-state statistics is also influenced by the noise structure leading to a non-
Gibbs distribution for anv-stable noise[S1063-651X%99)04707-8

PACS numbes): 02.50.Ey, 02.50.Fz, 02.50.Ga

I. INTRODUCTION expectations. We use the usual convention that probability
distribution functionsP are capitalized and probability den-
Noise-induced jumping between metastable states sepaity functions,p=dP/dx, are in small letters.
rated by potential barriers is common in physical systems.
The time scale for the barrier penetration depends on the Il. @-STABLE DISTRIBUTIONS
structure of the noise. Most often the noise is Gaussian. o ) ) ]
However, non-Gaussian noises distributed with power- FOr distributions with power-function tailsP(X>x)
function tails, Levy flights, are observed in many different*X 7, only moments of order less thap exist «Ix[?)
physical system$1] such as turbulent diffusiofi2,3] and == for B=7). For 0<y<2 a generalized version of the
vortex dynamicg$4]. Levy flights also seem to be a common central limit theorem applies, namely, that the average of
feature in dynamical mode[§] and critical phenomengs]. n—mdeper;dent st'ochastlc variables fr.om' thg distributidn
The Levy flights can result from a Langevin equation @Symptotically will have am-stable distribution asi—o
driven bya-stable noise and give rise to anomalous diffusionWith @=y. The a-stable distributions are defined by their
of a random walker with positiorr(t) such that(|r(t)  characteristic functions{exp(kX))=exp(-o*k/*/a). The
—r(0)[2)Dt?* whereD is a constant and @ a<2 [16]. a-stable distributions are stable with respect to averaging,
The casex=2 corresponds to normal diffusion wheeis ~ Yn=n""*Z[_;X;, meaning thatY, has the same distribu-
the diffusion constant. The exponentis related to the scal- tion asX; where theX;’s are independent identically distrib-
ing of the tail of the probability distribution for the incre- uted(i.i.d.) « stable, thus the phrasexstable.” As for the
ments of the random walkeP(X>r)or ¢, For a=2 the case of Gaussian noise, the dynamics of a noise-driven sys-
second moment exists and by the central limit theorem thé&em with power-function tail distributions for the noise in-
random walker reduces in the continuum limit to a GaussiarffrementsP(X>x)«x™“,0<a<2, will reduce to a system
random walker unless the diffusion takes place on a fractalvith an a-stable noise in the continuum limit, described by a
set like in a quenched random medigi. In this case the Langevin equation8],
random walk can be subdiffusive. Another example of a pro-
cess which can be subdiffusive is the Levy W§|k Wherpe a dX=1(X)dt+o(X)dL,. 2.9)
random walker has a constant speed in between discrete sto- o rangom walker witha-stable noise increments will be
ChaSt.'C time .po_|nts.(a renewal pI’C.)CG$SWIth. a power- superdiffusive due to the large jumps from the tails of the
fgncUon tail distribution. N.ote that since the time PrOCESS 1Syistribution surviving the averaging in the continuum limit.
gs&;‘;genfor a Levy walk it cannot result from a Langevin See Appendix A for a further short description.
Anomalous diffusion was first observed in hydrological
time serieg9]. Recently evidence for-stable statistics in lll. FOKKER-PLANCK EQUATION
atmospheric circulation data has been repoifted. In a The probability density foiX in Eq. (2.1) is determined
long paleoclimatic time series am-stable noise-induced from the Fokker-Planck equatiqifPE), see Appendix B for
jumping in a double-well potential was fourdd1]. In both 3 derivation,
casesa was found to be around 1.7. The latter describes a

jumping, in glacial times, between two climatic states gov- _ 1 ik

erned by the oceanic flow forced by random fluctuations HPX)==a[f()p()]——| | e

from the atmosphere. Understanding the role of extreme )

events and the time scales for these climatic shifts is the X (k—kq)|K|“p(ky)dkdk, . (3.2

main motivation for this study.

In this paper we will interchangeably use the physics jar-The second term on the right-hand side is eprressed in terms
gon({x) and the mathematics jargdj x] for the expectation of the Fourier-transformed probability densip(k). This
value forx. The latter will be used in the case of conditional term reduces to the ordinary diffusion term
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a2 o2(X)p(x)]/2 whena=2. In this case the solution for 10
the stationary probability density function can be expressed
explicitly in the well-known form, 5l
x) 1 2fxf(y)d (32 _
X) o ex . . » L
PO 5200 A ooy 50
For <2 the FPE3.1) is nonlocal in spectral space. This is _5}

a reflection of the superdiffusivity of the proces1). Be-
sides the Gaussian case we can only solve the FPE explicitly

for a=1. This is the case of a system driven by Cauchy- -10 ' : :

distributed noise having the probability densitg(x) = -1 0o 1 2
=1[m(1+x?)], see Appendix C for further details on the *

Cauchy distribution. We are using(x) for the probability FIG. 1. The potential4.1). 4h=U(a)—U(c) is the potential
density forX in Eg.(2.1) andq(x) for the probability density difference between the two minimay=b—a is the “left half-
of the noise. Then the stationary FPE becomes width.” Units are arbitrary.

However, the indeterminacy can be lifted in the lirit-0.
When the intensity of the noise becomes small the Cauchy
distribution approaches @& distribution (when acting on
where the noise intensity is taken to be constant. From functions that are bounded bjx|? for some 8<a as x
taking the derivative with respect toon both sides of Eq. — ). Then we can approximate the system by a system with
(3.3 and performing a partial integration on the left-hand discrete states and the stationary Fokker-Planck equation Eq.
side, it follows that (3.3 is approximated by transition(Maste) equations for

the weightsp; ,i=1, ... N,

i J F(ky—Kk)p(ky)dk, = sgn(k)op(k), 3.3

[ Hta-0pm k= sk ep™ (349
pi=§ pip(i—i), 3.7

for any m. The solution isp(k)=e ¥, where\ is deter-

ined b
mined by wherei,j represents th&l minima defined in Eq(3.6). The

(. o transition probabilitiegp(j—i) are related to the transition
If f(ky—k)e M1~ Rdk =if(ix)= sgrk)o. (3.5  waiting times, which will be defined in the following.

Thus the solution is determined by the analytic continuation V. POTENTIAL

of f(x) into the complex plane, provided it exists. Note that ) . . .

the solution also applies fdr=0 where the right-hand side ~ Before proceeding we will define the drift term as result-
of Eq. (3.4) jumps, since from the definition of the Fourier ing from a potential. The governing equation then describes

o ; S Ay a massless, viscous particle moving in a potentigk) =
ialnsfcgy ggﬂgegrogsg;ﬂgagggsg WSqrEg\’g)OzNeE[;gt —dU/dx. As an example for study we define the potential as
if (—iN*)= sgn(—k) o, so fork<O0 the solution is given as 4 3 5
—\*, where\ solves Eq(3.5) for k>0. With A= B+i 6 the U(x)=4(x/A)"+h(x/A)*=8(x/A)"=3h(x/A).  (4.)

it N ic A (1) — a— Bkl a—i ok
characteristic function is given as(k)=e e " For ;i 4o ie well potential for 16/3<h<16/3.  is
p(k) to _be a cha.ra(.:ter|.st|c_funct|on we must ha8 0, and the level difference between two potential minimaxat
the stationary distribution is —A=a and x=A=c. The local potential maximum
N between the two minima is at=—3hA/16=b, and the
p(x)=2 pii Bi ’ (3.6) potential values are [U(a),U(b),U(c)]=[—-4(1
S10 T B2+ (x+ 8)? —h/2),(3h/16)%(8— 3h?/64),— 4(1+h/2)]. See Fig. 1. The
results are readily generalized to other forms of the potential
where the sum is over thBl zero points of the complex U(X).
functionif (iA) —sgnk) o in the upper half-plane>0). In

this solution of thg stationary'FPE there i's. an inde.terminacy V. WAITING TIME
since anyp(x) with Z;p;=1 is a probability density that
satisfies Eq(3.2). The waiting time for jumping between the two potential

The indeterminacy might be related to the problem ofminima(from ato c) of U(x) defined above is exponentially
conservation of probability. If there is a finite probability for distributed. Withp,.(7>t) being the probability of staying
the random walker to escape to infinity, it must be reinsertedn minimum a longer than t we have p,(7>t)
into the system for a stationary probability density to be= exp(~t/T,o) with a mean waiting timel',.. This follows
conserved. Then the indeterminacy in the reinsertion couldrom the Markov property of the Langevin equation in the
result in the indeterminacy in the coefficiemtsin Eq. (3.6). discrete state limit, since we have
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FIG. 2. A simulation of Eq(2.1) with Gaussian noise and the potential shown in Figalshows a realization an@) the probability
density function. The actual simulation is 1000 times longer than what is shova). ithe smooth curve iiib) is the probability density
function calculated from Ed3.2). (c) shows the mean waiting timeg,; (diamond$ and T, (triangles, for seven simulations with varying
h. The curves are the waiting times calculated from &q2). Units are arbitrary.

P(t<7<t-+At)/At=(1— A cAD)YAN o= N pe@XP — N gct), probability [\ ;cAt+0(At)] for jumping from the left well
(5.1) x<bto anyy>b in a single jump in a time intervakt is
. " o governed by the tail of the distribution, p(x)

asAt—>O, Wherexac; 1/T 4. is the trqn3|t|on probab|l|ty iN- o (x/0)~(** DAt/ This is seen by observing that the pro-
tensity. In the nondiscrete case, a little more rigorous treatsess(2.1) can be obtained from the discrete proceXgt
ment is needefl12]. However, the result holds, if the poten- +At)=X(t)+f(X(t))At-I—[o-Atl/“] (1), for At—0, where

tial wells are substituted for the minima, and the waiting time ) has an-stable distribution with unit intensity. Thus we
is defined as the time between consecutive crossingaofl 5

C.
NacAt=P(X(t+ At)>Db|X(t)<b)/P(X(t)<b)
A. Gaussian noise and Arrhenius formula

b 0
In the case of Gaussian noise in E@.1) T,. can be “fw[fbxp(u)du

P(x)dx=~ f p(u)du
calculated from the backward Fokker-Planck equafitii, b-a

~[(b—a)/o]™ *At. (5.9

2 (b 5 (¢ 2
~ —2U(x)/ o uy)lo
Tac sz_ocdxe fa dye’ ' (52 The inner integral is the probability of jumping fror<b to

_ _ _ anyy>b, andp(x) is the stationary probability density. The
and correspondingly fof,. By using the saddle-point ap- outer integral is dominated by the central part of the prob-
proximation in Eq.(5.2) we obtain the Arrhenius formula,  ability distribution. This result is exact in th&t—0,0—0

T.. exp{2[U(b)— U(a) /o). 5.3 limit where p(x)— é(x—a). Thus, we have

For comparison with the case aefstable noise, Fig. 2 dis- Tae=c(a)l(b=a)/a]", (5.9

plays the standard result of a numerical simulation in the . .
case of Gaussian noise. Figur@2shows the simulated pro- wherec(«a) is some constant. So in this case we see that the
cess with the potential iﬁ F% 1. Figuré® shows the sirrF:u— waiting time scales with the “left half-width” of the barrier
lated probability density function and the right-hand side of.b_aEW to the powera. The he|ghp of the barrier has no
Eq. (3.2). Figure 2c) shows the time scale for jumping as a mfluence on the transition p_robab|_llty. The results are con-

FAT ) . firmed by numerical simulation. Figure 4 displays the nu-
function of the parameteh. The time scale is calculated

from the exponential distribution of times between consecu-

tive crossings of the levelsandc. Figure 3 shows the num- 1000
ber of crossingsfrom a to ¢ and fromc to a, respectively
with a waiting time larger than each waiting time measured, ~ 0.100}
normalized by the total number of crossings. These points A
are situated on straight lines in the semilogarithmic plot )
whereT,. and T, are the slopes of the lines. Figurécp °0.010¢
shows the time scales for seven simulations with different
The curves are the time scales calculated from(B@). 0.001 . .
0.0 05 1.0 1.5 2.0
B. a-stable noise t

In the casew<<2 the situation is radically different. The FIG. 3. The probability for waiting longer tharbefore jumping
sample curves of the process are no longer continuous and the other well as a function dfobtained from the simulation.
the finite jumps or extreme events will contribute to theThe slope of the upper curve givas, and the slope of the lower
probability of jumping between the potential wells. The curve givesT,.. Units are arbitrary.
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FIG. 4. The same as Fig. 2 but with Cauchy noige; 1. Note the linear axis ific). The curves are obtained from E&.5).

merical simulation using Cauchy noise=1, and the same decomposition theorerf8] states that thex-stable process
potential as in the case displayed in Fig. 2. Note the lineacan be decomposed in a Brownian process and a compound
scale in Fig. 4c) showing the scaling of the time scale with Poisson process. The “continuous” barrier penetration can
W. be estimated by considering the distribution to be truncated
so that there are no jumps larger than the half-width of the
VI. STATIONARY DISTRIBUTION barrier w. The truncated probability for the noigg(x) is
_ _ _ _ _then defined byp'(x)=p(x) for |x|<w and p'(x)=0 for
For the Cauchy noise-driven system the indeterminacy iny|>\y. This part of the noise now has finite second-order

Eq. (3.6) can now be resolved by use of the master equation,sent and we can estimate the variance @éf

(3.7). In the limit o— 0 the system can be approximated as A, 75 ) e W @ totically for | I
discrete two-state system, with the two states correspondinﬁf X“p(x) dxcw asymptotically for fargéw or sma

to the two potential minima, a4 andc. In this limit the oise intensityo. The waiting time can be estimated as

system fulfills the stationary master equation, _
y y q T o, 2exp2[U(b)—U(a) /o2, (7.2

0= a—cC)— c—a). 6.1
Pap(a—¢)=pcp(c—a) 63 where ¢ denotes “continuous.” Note that this part of the

The transition probabilities are nop(a— c) e« 1/T . (b process is not strictly continuous, since it contains jumps
—a)/o andp(c—a)x(c—b)/o and we get smaller thanw. The time scale for single jump penetration
can be estimated from E¢.5),
Pa=1—-p.=(b—a)/(c—a). (6.2)
Tdoewe, (7.2

Note that this is independent of gxp2[U(a)—U(c)])/d?,
which in the Gaussian case corresponds to the Gibbs distriwhered denotes “discontinuous” and we have
bution. Figure 5 shows the distributiqgry , which is different
from the Gibbs distribution, as a function of Figure 4b) Td ) - .
shows the probability density function from the simulation oW exp{—c[U(b)—U(a)Jw* =}, (7.3
plotted over the one calculated from E¢3.6) and(6.2).

wherec is a constant. So the relative importance of extremal

VIl BARRIER PENETRATION jumping depends both on the height and the width of the

Whena is close to 2 we should expect the “single jump barrier. To illustrate the relative importance of two jumping
penetration” of the barrier to become more and more unfprocesses a simulation of E(.1) with an a-stable noise

likely and the continuous penetration dominating. The Levy{13] with «=1.7 and a potential4.1) with h=3, was per-
formed. Figure 6 shows part of a realization of this process.

0.50 T Here it is seen that the jumping from the deep to the shallow
040! well is governed by the discontinuous paff%(c—a)

’ <T¢(c—a), while the jumping from the shallow to the deep
0.30¢F ] well is dominated by the “continuous” partTd(a—>c)

o >T¢a—c). For proportioning the continuous and discon-
0.20¢ S ] tinuous processes in a given situation the prefactor and the
0.10t constant in Eq. (7.3 must be calculated or estimated.

000 ... . ... ..
0002040608 1.0 Vill. SUMMARY
w We have seen that the statistics of noise-induced jumping

FIG. 5. The probabilityp,=1—p,, for finding the particle in between metastable states in a potential is different for
the left well as a function afv in the simulation with Cauchy noise. a-stable noise from the usual Gaussian noise case. The sta-

The curve is obtained using E¢6.2); the distribution is deviating tionary probability distribution deviates from the Gibbs dis-
strongly from a Gibbs distribution. tribution, and the waiting time for jumping depends in some
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f(k)=f(c(n)k)" (A2)
with the solution
f(k)= exd — o®|k|*a], (A3)
M c(n)y=n"e, (A4)

The constantr®/« is chosen so that it coincides with the
usual notation in the Gaussian cage-2. Only for «>0
does Eq.(A3) represent a characteristic function. It can be
shown that the characteristic functidA3) corresponds to
distributions with power-function tails,P(X>x)~x"¢
t [15,14. For a>2 the second moment of the distribution
exists and sums of i.i.d. variables converge by the central
FIG. 6. A realization of the process with=1.7. The potential limit theorem to the Gaussian distributien=2. For 0<«
used is shown in the inset. The jumping from the (sftallow) well < 2 the distributions have a domain of attraction in the sense
to the right(deep well is triggered by the—almost—normal diffu- that sums of i.i.d. random variables with tail distributions,
sion. The jumping the other way is driven by the tail of thstable  P(X>x)~x~?, under rather general conditions, converge to
distribution, the extreme events. an a-stable distribution withv= 7. This is the generalization
of the central limit theorem for-stable distributions. The
cases more on the width than on the height of the barriefroof of this is similar to the proof of the central limit theo-
This is the case where a single extreme event triggers them for the normal distribution. It basically substitutes a
jumping. These observations might be of importance for uny it T(c(n)k)“—>f(k) for Eq. (A2). The proof can be found
derstanding the triggering mechanisms of climatic change§ Féller’s book[15], pp. 574-581
where the flow state of the ocean is trapped in a potentiaf1 T j ; -
Now we can intuitively understand the noise tedtn, in

minimum, a stable climatic state. This flow is stochastically,, Langevin equatiof2.1) as the continuum limit of addi-
forced by the atmospheric flow. There is some evidence thq on of small increments'

this stochastic forcing ig-stable rather than Gaussian such

that climatic shifts from one state to another could be trig- 1 m
gered by single extreme events. This would perhaps explain AL (At)=— > X(jAt/m), (A5)
why the climate models at present are not capable of repro- m= j=1

ducing the climatic changes observed in the geological ) ) ) )
records. The models are too coarse-grained and contain td¥1ere X(t) is a random process with power-function tails

much diffusive smoothening to allow for extreme events. P(X(t)>x)~x"“ and unit intensity. In the limitm— o,
AL, will be an a-stable noise. It follows from EqA4) that

dL,=dt¥* which in the Gaussian case is the well-known
relationdB2=dt.
| would like to thank O. Ditlevsen for valuable discus- For a<2 the a-stable variables have infinite variance.
sions. The work was funded by the Carlsberg Foundation. This concept can be difficult to comprehend when consider-
ing measurements from a given physical system. In the case
APPENDIX A: ADDITION OF «-STABLE RANDOM a sample is taken, say of measurements of the variabie
VARIABLES where X has ana-stable distribution with stability index,
then, of course, any of the measuremenqts. . . x, of Xis

Textbooks on a-stable processes are now availablefinite so that the sample variance?f- - - - +x2)/n, is some
[14,13, but for those readers not familiar with thestable finite number. The variably¥ =X? will have a tail distribu-
distributions and processes a few notes are added in the fafon given by P(Y>x?) =P(X>x)~x %=y~ *?, so that,

ACKNOWLEDGMENTS

lowing. _ _ . N ~ asymptotically for largen, Z,=n"22(Y,+---+Y,) wil
When{X;,i=1,...n} is a series of |.|.d.nrandom vari- have ana-stable distribution with stability index/2. Imag-
ables, the distribution of the variable=c(n)Zj_X; can be  ine now that we estimate th@finite) variance of variabl&
determined from the characteristic function, by taking samples of length, estimating the variance as
) (X3+...+X3)/n=n?*"17Z_ . Then the estimate itself will
. _ . be ana-stable process with stability index'2 and intensity
(exr[lkY]>—<exr{|kc(n)j21 X] > n?e=1 This estimate will be fluctuating with an intensity
growing with n for a<<2.
n
— i ) — [ aikc(n)Xyn
<]1;[1 exq'kc(“)xl]> (VRN APPENDIX B: FOKKER-PLANCK EQUATION
(A1) In the following the Fokker-Planck equatidB.1) corre-

sponding to the Langevin equati¢®.1) will be derived. The
If the distribution forY is the same as foX Eq. (Al), for the  Fokker-Planck equation will be derived in spectral form us-
characteristic functionf (k) = (exdikY]), is ing that thea-stable processes are defined by their charac-
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teristics functions. Following the lines of Stratonovictv], . . i
we define the functional f(X)p(Xo|X,t)=f U f(kl—k)p(xo|k1,t)dk4e "dk.
(B10)
I=1[ R(y)d Hdy=lim I, Bl . . .
f ()2 Xoly 1Ay A:TO at B1) Using the spectral representation for the generator function
we get
where
1 L J<|t>U<|At>1 R(k)
—— = Xo| X, X|y,At) —
ls=1 | ROIPOly.t+A0 -~ plxoly.)]dy. (B2) Vam M) PR PR A

R(y) is an arbitrary generator function, ap€ixy|x; ,t) is the X (eiky—eikX)dk] dx
conditional probability density at; corresponding to pass-
ing from Xq to x; during timet. Assuming stationarity we o 1
suppress the first temporal indgx(Xo|X,t)=p(Xg,0/X1,t) =f J’ e'ka(k)p(xo|x,t)A—
=p(Xg,7|X1,7+t). For simplicity of writing we make the t
convention thatf is to be read as (Y2) /... X E[ kXA _ 1) x(t) = x]dkdx
With p(x,|x,t) being a probability density ix we trivi- (B11)
ally have
w The conditional expectation is evaluated using the Langevin
f p(Xo|x,t)dx=1 (B3) equation(2.1) and the characteristic function of thestable
- Levy noise incremendL,,,
and the Chapman-Kolmogorov equation Ef{exgikdL,]} = exd — c*At|k|“/a]. (B12)

p(X0|Xlit):J p(X0|XrT)p(X|X11t_T)dX- (B4) We get

1 )
For the functional we then get EE[e'k[X(”m)*xl— 1X(t)=x]
1 % 1
lae=37 | RY) f_ocp(xly,At)p(xolx,t)dx— P(Xoly,t) |dy = A—tE[e‘k[f(X>At+°(A‘)+d'—a]—1]
V2
= A—:TJ p(xo|x,t)[f p(x|y,At)[R(y)—R(x)]dy]dx. = Aiteik[f(><)At+o(At)]—o“AtIkI"/cr_1
(BS) —ikf(x)— o?K|a, (B13)

We now define the Fourier transforms asAt—0. Substitution of Eq(B13) in Eqg. (B11) and com-

R(K)E : - bining with Egs.(B1) and (B2) then gives
R(X)=J R(k)e'kxdk, R(k):f R(X)e—lkxdx,

(B6) J j R(k)e™*a,p(xo|x,t)dxdk
similarly for f(x) in Eqg. (2.1), and for c“(x) to be intro-

duced below. However, for the probability dengtfx|x,t), =J j R(K) e ik f(x)— o*(x)|k|* alp(Xo|x,t)dxdk
we define
(B14)
_ ~ —ikx
P(Xolx,t)= f P(xolk,t)e™*dk, ®7) Here we have permitted the scaling factdt «, correspond-
ing to the variancer?/2 of the noise increment in the case
A _ ikx a=2, to depend on the variable By eliminating thex by
p(X°|k’t)_f P(xolx,t)e""dx, (B8) use of Eq.(B9) we get, suppressing,

consistent with the standard definition of characteristic func- R R R R
tion except for the factox/27. With these definitions it is f R(k)ﬁtp(k,t)dsz J R(K)[ikf(ky—k)
easy to derive the formula R
— (ks —k)|k|“ alp(ky,t)dkdk,

f f(x)p(x0|x,t)eikxdx=ff(kl—k)f)(xo|k1,t)dk1, (B15)

(B9) . A .
and finally sinceR(k) is arbitrary we get the spectral Fokker-
from which it directly follows that Planck equation for the integrand, suppressingttimelex,



178 P. D. DITLEVSEN PRE 60

— . S
atp(k)=J [ikf(k,—k)—o“(ki—Kk)|k|“a]p(kq)dk; . . /T\ L,
(B16) - +xé'\ L,
1
Multiplying by e~ '** and using Eq(B10) gives the Fokker- :
Planck equation in the usual form !
ap(x)=— [ F(X)p(X)] !
1 . ) L\ L
—;f f e o (k—kq)|k|*p(k,)dkdk . X

FIG. 7. Huygens principle applied to the light from a point
(B17)  source on a line. This illustrates the behavior of the averaging of

For the stationary Fokker-Planck equation the left-hand sideC auchy-distributed stochastic variables.

of (B17) vanishes and the partial derivatives become totaliniformly distributed over the anglep(6) = 1/m,6[0,7],
derivatives. The last term on the right-hand side is a genefthe distribution on the line will bep(x)=p(6)(d6/dx)

alized diffusion, which formally can be written =14 6m[1+ (x/6)]?}, where X=45tan(d) is a stochastic
variable representing the point where a photon released from
1 ﬁ[a“(x)p(x)]z N if f o ikx S at the(stochastig angle 6 crossed.. Now insertingn—1
@ dx@ a lines,L;, parallel toL, between the light sourc&andL, we
R R can apply Huygens principle, saying thatwill act as a line
X o*(k—ky)|K|*p(kqy)dkdk . of point sources, where the light follows the pash-X;

(B18) — X1t Xo— ... =X, whereX=X;+ ... +X,. The vari-
ablesX; are independent and Cauchy distributed with scale

In the casex=2 this is the usual diffusion term correspond- parametes/n. Thus Huygens principle is consistent with the
ing to Gaussian white noise excitation of intensity(x).  fact thatX=(Z;X;)/n has the same distribution & .

For a<2 the diffusion is nonlocal. The physical meaning of

this term is that fora-stable processes there will, due to the APPENDIX D: SIMULATIONS

fat tails of the distributions, be finite size jumps in the pro-

cess The simulations performed in this paper only involves

Cauchy noise, which is easily obtained from a random vari-

able X uniformly distributed in the intervdl — #/2,7/2], as

Y=tan(X). More generally, a random variable with an
The probability density can only be expressed explicitly @-stable distributior{ 13] is obtained from

for a=1, anda=1/2. Fora=1, Cauchy noise, the charac- , _ . (Va)1s _ (1-a)la

teristic function isc(k)= exp(-olk|) and its Fourier trans- Y=[sin(aX)/cog X)"*']{ — cos[1—a]X)/In(W)} 1)

form is

APPENDIX C: CAUCHY DISTRIBUTION

whereX is defined as above and is another random vari-
able uniformly distributed on the intervgd,1]. When simu-
lating Eq. (2.2) by a discrete numerical time stepping the
(fixed sizg time steps usually need to be much smaller than
For this distribution even the mean does not exist. Note thatvould be expected from numerical integration of the drift
even though the density distributidi€1) is symmetric,p  term alone. This is due to the large excursions from the tails
(—=x)=p(x); this does not imply thatx)=0. For a data of the distribution of the noise. It is thus important to use a
sampling this manifests itself in the fact that the average of stable integration routine for the drift term. A simple durable
data pointsZ,=(X;+ ...+X,)/n is Cauchy distributed routine, which is the one used in these simulations, is Heun'’s
with the same intensity aX;, so that there is no conver- integration scheme. The simulation is performed as
nce for th ri n=1.2,...;itfl xactl

i ((;Ztac;(i e = €En.n=12,... itfluctuates exactly s |\ ty = x(t) + (F[x(0) ]+ Hx(1) + F[x(D) ]AL)AL2

_ A classical example of this characteristic of the Cauchy + oAtV p(t), (D2)
distribution is seen by considering the distribution of light on
a line L from a point source, see Fig. 7. Since the light iswhere (t) is generated by EqD1).

p(x)= (CD

mo[1+(xlo)?]
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