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Anomalous jumping in a double-well potential
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Noise-induced jumping between metastable states in a potential depends on the structure of the noise. For an
a-stable noise, jumping triggered by single extreme events contributes to the transition probability. This is also
called Levy flights and might be of importance in triggering sudden changes in geophysical flow and perhaps
even climatic changes. The steady-state statistics is also influenced by the noise structure leading to a non-
Gibbs distribution for ana-stable noise.@S1063-651X~99!04707-8#

PACS number~s!: 02.50.Ey, 02.50.Fz, 02.50.Ga
ep
m
th

ia
e
n

n

on
ion

-
-

th
ia
ct

ro

s

i
in

a

s
v
n
m
th

ar

a

ility
-

e
of

ir

ing,
-
-

sys-
-

a

e
he
it.

rms
I. INTRODUCTION

Noise-induced jumping between metastable states s
rated by potential barriers is common in physical syste
The time scale for the barrier penetration depends on
structure of the noise. Most often the noise is Gauss
However, non-Gaussian noises distributed with pow
function tails, Levy flights, are observed in many differe
physical systems@1# such as turbulent diffusion@2,3# and
vortex dynamics@4#. Levy flights also seem to be a commo
feature in dynamical models@5# and critical phenomena@6#.

The Levy flights can result from a Langevin equati
driven bya-stable noise and give rise to anomalous diffus
of a random walker with positionr (t) such that ^ur (t)
2r (0)u2&}Dt2/a whereD is a constant and 0,a,2 @16#.
The casea52 corresponds to normal diffusion whereD is
the diffusion constant. The exponenta is related to the scal
ing of the tail of the probability distribution for the incre
ments of the random walker,P(X.r )}r 2a. For a>2 the
second moment exists and by the central limit theorem
random walker reduces in the continuum limit to a Gauss
random walker unless the diffusion takes place on a fra
set like in a quenched random medium@7#. In this case the
random walk can be subdiffusive. Another example of a p
cess which can be subdiffusive is the Levy walk where
random walker has a constant speed in between discrete
chastic time points~a renewal process! with a power-
function tail distribution. Note that since the time process
discrete for a Levy walk it cannot result from a Langev
equation.

Anomalous diffusion was first observed in hydrologic
time series@9#. Recently evidence fora-stable statistics in
atmospheric circulation data has been reported@10#. In a
long paleoclimatic time series ana-stable noise-induced
jumping in a double-well potential was found@11#. In both
casesa was found to be around 1.7. The latter describe
jumping, in glacial times, between two climatic states go
erned by the oceanic flow forced by random fluctuatio
from the atmosphere. Understanding the role of extre
events and the time scales for these climatic shifts is
main motivation for this study.

In this paper we will interchangeably use the physics j
gon^x& and the mathematics jargonE@x# for the expectation
value forx. The latter will be used in the case of condition
PRE 601063-651X/99/60~1!/172~8!/$15.00
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expectations. We use the usual convention that probab
distribution functionsP are capitalized and probability den
sity functions,p5dP/dx, are in small letters.

II. a-STABLE DISTRIBUTIONS

For distributions with power-function tails,P(X.x)
}x2g, only moments of order less thang exist (̂ uxub&
5` for b>g). For 0,g,2 a generalized version of th
central limit theorem applies, namely, that the average
n-independent stochastic variables from the distributionP
asymptotically will have ana-stable distribution asn→`
with a5g. The a-stable distributions are defined by the
characteristic functions,̂ exp(ikX)&5 exp(2saukua/a). The
a-stable distributions are stable with respect to averag
Yn5n21/a( i 51

n Xi , meaning thatYn has the same distribu
tion asXi where theXi ’s are independent identically distrib
uted~i.i.d.! a stable, thus the phrase ‘‘a stable.’’ As for the
case of Gaussian noise, the dynamics of a noise-driven
tem with power-function tail distributions for the noise in
crements,P(X.x)}x2a,0,a,2, will reduce to a system
with ana-stable noise in the continuum limit, described by
Langevin equation@8#,

dX5 f ~X!dt1s~X!dLa . ~2.1!

A random walker witha-stable noise increments will b
superdiffusive due to the large jumps from the tails of t
distribution surviving the averaging in the continuum lim
See Appendix A for a further short description.

III. FOKKER-PLANCK EQUATION

The probability density forX in Eq. ~2.1! is determined
from the Fokker-Planck equation~FPE!, see Appendix B for
a derivation,

] tp~x!52]x@ f ~x!p~x!#2
1

aE E e2 ikxsâ

3~k2k1!ukuap̂~k1!dkdk1 . ~3.1!

The second term on the right-hand side is expressed in te
of the Fourier-transformed probability densityp̂(k). This
term reduces to the ordinary diffusion term
172 ©1999 The American Physical Society
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PRE 60 173ANOMALOUS JUMPING IN A DOUBLE-WELL POTENTIAL
]x2@s2(x)p(x)#/2 whena52. In this case the solution fo
the stationary probability density function can be expres
explicitly in the well-known form,

p~x!}
1

s2~x!
expH 2E

0

x f ~y!

s2~y!
dyJ . ~3.2!

For a,2 the FPE~3.1! is nonlocal in spectral space. This
a reflection of the superdiffusivity of the process~2.1!. Be-
sides the Gaussian case we can only solve the FPE expl
for a51. This is the case of a system driven by Cauch
distributed noise having the probability density,q(x)
51/@p(11x2)#, see Appendix C for further details on th
Cauchy distribution. We are usingp(x) for the probability
density forX in Eq. ~2.1! andq(x) for the probability density
of the noise. Then the stationary FPE becomes

i E f̂ ~k12k! p̂~k1!dk15 sgn~k!s p̂~k!, ~3.3!

where the noise intensitys is taken to be constant. From
taking the derivative with respect tok on both sides of Eq.
~3.3! and performing a partial integration on the left-ha
side, it follows that

i E f̂ ~k12k! p̂(m)~k1!dk15 sgn~k!s p̂(m)~k! ~3.4!

for any m. The solution isp̂(k)5e2luku, wherel is deter-
mined by

i E f̂ ~k12k!e2l(k12k)dk15 i f ~ il!5 sgn~k!s. ~3.5!

Thus the solution is determined by the analytic continuat
of f (x) into the complex plane, provided it exists. Note th
the solution also applies fork50 where the right-hand sid
of Eq. ~3.4! jumps, since from the definition of the Fourie
transform of the probability density we havep̂(0)5E@1#
51. By complex conjugation of Eq.~3.5! we get
i f (2 il* )5 sgn(2k)s, so fork,0 the solution is given as
2l* , wherel solves Eq.~3.5! for k.0. With l5b1 id the
characteristic function is given asp̂(k)5e2bukue2 idk. For
p̂(k) to be a characteristic function we must haveb.0, and
the stationary distribution is

p~x!5(
i 51

N

pi

1

p

b i

b i
21~x1d i !

2
, ~3.6!

where the sum is over theN zero points of the complex
function i f ( il)2sgn(k)s in the upper half-plane (b.0). In
this solution of the stationary FPE there is an indetermin
since anyp(x) with ( i pi51 is a probability density tha
satisfies Eq.~3.1!.

The indeterminacy might be related to the problem
conservation of probability. If there is a finite probability fo
the random walker to escape to infinity, it must be reinser
into the system for a stationary probability density to
conserved. Then the indeterminacy in the reinsertion co
result in the indeterminacy in the coefficientspi in Eq. ~3.6!.
d

tly
-

n
t

y

f

d

ld

However, the indeterminacy can be lifted in the limits→0.
When the intensity of the noise becomes small the Cau
distribution approaches ad distribution ~when acting on
functions that are bounded byuxub for some b,a as x
→`). Then we can approximate the system by a system w
discrete states and the stationary Fokker-Planck equation
~3.3! is approximated byN transition~Master! equations for
the weightspi ,i 51, . . . ,N,

pi5(
j

pj p~ j→ i !, ~3.7!

wherei , j represents theN minima defined in Eq.~3.6!. The
transition probabilitiesp( j→ i ) are related to the transition
waiting times, which will be defined in the following.

IV. POTENTIAL

Before proceeding we will define the drift term as resu
ing from a potential. The governing equation then descri
a massless, viscous particle moving in a potential,f (x)5
2dU/dx. As an example for study we define the potential

U~x!54~x/D!41h~x/D!328~x/D!223h~x/D!. ~4.1!

U(x) is a double-well potential for216/3,h,16/3. 4h is
the level difference between two potential minima atx5
2D[a and x5D[c. The local potential maximum
between the two minima is atx523hD/16[b, and the
potential values are @U(a),U(b),U(c)#5@24(1
2h/2),(3h/16)2(823h2/64),24(11h/2)#. See Fig. 1. The
results are readily generalized to other forms of the poten
U(x).

V. WAITING TIME

The waiting time for jumping between the two potenti
minima~from a to c) of U(x) defined above is exponentiall
distributed. Withpac(t.t) being the probability of staying
in minimum a longer than t we have pac(t.t)
5 exp(2t/Tac) with a mean waiting timeTac . This follows
from the Markov property of the Langevin equation in th
discrete state limit, since we have

FIG. 1. The potential~4.1!. 4h5U(a)2U(c) is the potential
difference between the two minima,w5b2a is the ‘‘left half-
width.’’ Units are arbitrary.
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FIG. 2. A simulation of Eq.~2.1! with Gaussian noise and the potential shown in Fig. 1.~a! shows a realization and~b! the probability
density function. The actual simulation is 1000 times longer than what is shown in~a!. The smooth curve in~b! is the probability density
function calculated from Eq.~3.2!. ~c! shows the mean waiting times,Tac ~diamonds! andTca ~triangles!, for seven simulations with varying
h. The curves are the waiting times calculated from Eq.~5.2!. Units are arbitrary.
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P~ t,t,t1Dt !/Dt5~12lacDt ! t/Dtlac→lacexp~2lact !,
~5.1!

asDt→0, wherelac51/Tac is the transition probability in-
tensity. In the nondiscrete case, a little more rigorous tre
ment is needed@12#. However, the result holds, if the poten
tial wells are substituted for the minima, and the waiting tim
is defined as the time between consecutive crossings ofa and
c.

A. Gaussian noise and Arrhenius formula

In the case of Gaussian noise in Eq.~2.1! Tac can be
calculated from the backward Fokker-Planck equation@12#,

Tac'
2

s2E2`

b

dxe22U(x)/s2E
a

c

dye2U(y)/s2
, ~5.2!

and correspondingly forTca . By using the saddle-point ap
proximation in Eq.~5.2! we obtain the Arrhenius formula,

Tac} exp$2@U~b!2U~a!#/s2%. ~5.3!

For comparison with the case ofa-stable noise, Fig. 2 dis
plays the standard result of a numerical simulation in
case of Gaussian noise. Figure 2~a! shows the simulated pro
cess with the potential in Fig. 1. Figure 2~b! shows the simu-
lated probability density function and the right-hand side
Eq. ~3.2!. Figure 2~c! shows the time scale for jumping as
function of the parameterh. The time scale is calculate
from the exponential distribution of times between conse
tive crossings of the levelsa andc. Figure 3 shows the num
ber of crossings~from a to c and fromc to a, respectively!
with a waiting time larger than each waiting time measur
normalized by the total number of crossings. These po
are situated on straight lines in the semilogarithmic p
whereTac and Tca are the slopes of the lines. Figure 2~c!
shows the time scales for seven simulations with differenh.
The curves are the time scales calculated from Eq.~5.2!.

B. a-stable noise

In the casea,2 the situation is radically different. Th
sample curves of the process are no longer continuous
the finite jumps or extreme events will contribute to t
probability of jumping between the potential wells. Th
t-

e

f

-

,
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t
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probability @lacDt1o(Dt)# for jumping from the left well
x,b to any y.b in a single jump in a time intervalDt is
governed by the tail of the distribution, p(x)
}(x/s)2(a11)Dt/s. This is seen by observing that the pr
cess~2.1! can be obtained from the discrete process,X(t
1Dt)5X(t)1 f „X(t)…Dt1@sDt1/a#h(t), for Dt→0, where
h(t) has ana-stable distribution with unit intensity. Thus w
have

lacDt'P„X~ t1Dt !.buX~ t !,b…/P~X~ t !,b!

}E
2`

b F E
b2x

`

p~u!duG p̃~x!dx'E
b2a

`

p~u!du

'@~b2a!/s#2aDt. ~5.4!

The inner integral is the probability of jumping fromx,b to
anyy.b, andp̃(x) is the stationary probability density. Th
outer integral is dominated by the central part of the pro
ability distribution. This result is exact in theDt→0,s→0
limit where p(x)→d(x2a). Thus, we have

Tac5c~a!@~b2a!/s#a, ~5.5!

wherec(a) is some constant. So in this case we see that
waiting time scales with the ‘‘left half-width’’ of the barrie
b2a[w to the powera. The height of the barrier has n
influence on the transition probability. The results are co
firmed by numerical simulation. Figure 4 displays the n

FIG. 3. The probability for waiting longer thant before jumping
to the other well as a function oft obtained from the simulation
The slope of the upper curve givesTca and the slope of the lowe
curve givesTac . Units are arbitrary.
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FIG. 4. The same as Fig. 2 but with Cauchy noise,a51. Note the linear axis in~c!. The curves are obtained from Eq.~5.5!.
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merical simulation using Cauchy noise,a51, and the same
potential as in the case displayed in Fig. 2. Note the lin
scale in Fig. 4~c! showing the scaling of the time scale wi
w.

VI. STATIONARY DISTRIBUTION

For the Cauchy noise-driven system the indeterminac
Eq. ~3.6! can now be resolved by use of the master equa
~3.7!. In the limit s→0 the system can be approximated a
discrete two-state system, with the two states correspon
to the two potential minima, ata and c. In this limit the
system fulfills the stationary master equation,

05pap~a→c!2pcp~c→a!. ~6.1!

The transition probabilities are nowp(a→c)}1/Tac}(b
2a)/s andp(c→a)}(c2b)/s and we get

pa512pc5~b2a!/~c2a!. ~6.2!

Note that this is independent of exp$22@U(a)2U(c)#/s2%,
which in the Gaussian case corresponds to the Gibbs d
bution. Figure 5 shows the distributionpa , which is different
from the Gibbs distribution, as a function ofw. Figure 4~b!
shows the probability density function from the simulati
plotted over the one calculated from Eqs.~3.6! and ~6.2!.

VII. BARRIER PENETRATION

Whena is close to 2 we should expect the ‘‘single jum
penetration’’ of the barrier to become more and more
likely and the continuous penetration dominating. The Le

FIG. 5. The probability,pa512pc , for finding the particle in
the left well as a function ofw in the simulation with Cauchy noise
The curve is obtained using Eq.~6.2!; the distribution is deviating
strongly from a Gibbs distribution.
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decomposition theorem@8# states that thea-stable process
can be decomposed in a Brownian process and a compo
Poisson process. The ‘‘continuous’’ barrier penetration c
be estimated by considering the distribution to be trunca
so that there are no jumps larger than the half-width of
barrier w. The truncated probability for the noisept(x) is
then defined bypt(x)}p(x) for uxu,w and pt(x)50 for
uxu>w. This part of the noise now has finite second-ord
moment and we can estimate the variance asse f f

2

}*x2p̃(x)dx}w22a asymptotically for largew or small
noise intensitys. The waiting time can be estimated as

Tc}se f f
22 exp$2@U~b!2U~a!#/se f f

2 %, ~7.1!

where c denotes ‘‘continuous.’’ Note that this part of th
process is not strictly continuous, since it contains jum
smaller thanw. The time scale for single jump penetratio
can be estimated from Eq.~5.5!,

Td}wa, ~7.2!

whered denotes ‘‘discontinuous’’ and we have

Td

Tc
}w2 exp$2 c̃@U~b!2U~a!#wa22%, ~7.3!

wherec̃ is a constant. So the relative importance of extrem
jumping depends both on the height and the width of
barrier. To illustrate the relative importance of two jumpin
processes a simulation of Eq.~2.1! with an a-stable noise
@13# with a51.7 and a potential~4.1! with h53, was per-
formed. Figure 6 shows part of a realization of this proce
Here it is seen that the jumping from the deep to the shal
well is governed by the discontinuous part,Td(c→a)
!Tc(c→a), while the jumping from the shallow to the dee
well is dominated by the ‘‘continuous’’ part,Td(a→c)
@Tc(a→c). For proportioning the continuous and disco
tinuous processes in a given situation the prefactor and
constantc̃ in Eq. ~7.3! must be calculated or estimated.

VIII. SUMMARY

We have seen that the statistics of noise-induced jump
between metastable states in a potential is different
a-stable noise from the usual Gaussian noise case. The
tionary probability distribution deviates from the Gibbs di
tribution, and the waiting time for jumping depends in som
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176 PRE 60P. D. DITLEVSEN
cases more on the width than on the height of the barr
This is the case where a single extreme event triggers
jumping. These observations might be of importance for
derstanding the triggering mechanisms of climatic chang
where the flow state of the ocean is trapped in a poten
minimum, a stable climatic state. This flow is stochastica
forced by the atmospheric flow. There is some evidence
this stochastic forcing isa-stable rather than Gaussian su
that climatic shifts from one state to another could be tr
gered by single extreme events. This would perhaps exp
why the climate models at present are not capable of re
ducing the climatic changes observed in the geolog
records. The models are too coarse-grained and contain
much diffusive smoothening to allow for extreme events.
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APPENDIX A: ADDITION OF a-STABLE RANDOM
VARIABLES

Textbooks on a-stable processes are now availab
@14,13#, but for those readers not familiar with thea-stable
distributions and processes a few notes are added in the
lowing.

When $Xi ,i 51, . . . ,n% is a series of i.i.d. random vari
ables, the distribution of the variableY5c(n)( j 51

n Xj can be
determined from the characteristic function,

^exp@ ikY#&5K expF ikc~n!(
j 51

n

Xj G L
5K )

j 51

n

exp@ ikc~n!Xj #L 5^eikc(n)X&n.

~A1!

If the distribution forY is the same as forX Eq. ~A1!, for the
characteristic function,f (k)5^exp@ikY#&, is

FIG. 6. A realization of the process witha51.7. The potential
used is shown in the inset. The jumping from the left~shallow! well
to the right~deep! well is triggered by the—almost—normal diffu
sion. The jumping the other way is driven by the tail of thea-stable
distribution, the extreme events.
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f ~k!5 f „c~n!k…n ~A2!

with the solution

f ~k!5 exp@2saukua/a#, ~A3!

c~n!5n21/a. ~A4!

The constantsa/a is chosen so that it coincides with th
usual notation in the Gaussian casea52. Only for a.0
does Eq.~A3! represent a characteristic function. It can
shown that the characteristic function~A3! corresponds to
distributions with power-function tails,P(X.x);x2a

@15,14#. For a.2 the second moment of the distributio
exists and sums of i.i.d. variables converge by the cen
limit theorem to the Gaussian distributiona52. For 0,a
,2 the distributions have a domain of attraction in the se
that sums of i.i.d. random variables with tail distribution
P(X.x);x2g, under rather general conditions, converge
ana-stable distribution witha5g. This is the generalization
of the central limit theorem fora-stable distributions. The
proof of this is similar to the proof of the central limit theo
rem for the normal distribution. It basically substitutes
limit, f̃ „c(n)k…n→ f (k) for Eq. ~A2!. The proof can be found
in Feller’s book@15#, pp. 574–581.

Now we can intuitively understand the noise termdLa in
the Langevin equation~2.1! as the continuum limit of addi-
tion of small increments,

DLa~Dt !5
1

m1/a (
j 51

m

X~ j Dt/m!, ~A5!

where X(t) is a random process with power-function ta
P(X(t).x);x2a and unit intensity. In the limitm→`,
DLa will be ana-stable noise. It follows from Eq.~A4! that
dLa5dt1/a, which in the Gaussian case is the well-know
relationdB25dt.

For a,2 the a-stable variables have infinite varianc
This concept can be difficult to comprehend when consid
ing measurements from a given physical system. In the c
a sample is taken, say ofn measurements of the variableX,
whereX has ana-stable distribution with stability indexa,
then, of course, any of the measurementsx1 , . . . ,xn of X is
finite so that the sample variance, (x1

21•••1xn
2)/n, is some

finite number. The variableY5X2 will have a tail distribu-
tion given by P(Y.x2)5P(X.x);x2a5y2a/2, so that,
asymptotically for largen, Zn[n22/a(Y11•••1Yn) will
have ana-stable distribution with stability indexa/2. Imag-
ine now that we estimate the~infinite! variance of variableX
by taking samples of lengthn, estimating the variance a
(X1

21•••1Xn
2)/n5n2/a21Zn . Then the estimate itself will

be ana-stable process with stability indexa/2 and intensity
n2/a21. This estimate will be fluctuating with an intensit
growing with n for a,2.

APPENDIX B: FOKKER-PLANCK EQUATION

In the following the Fokker-Planck equation~3.1! corre-
sponding to the Langevin equation~2.1! will be derived. The
Fokker-Planck equation will be derived in spectral form u
ing that thea-stable processes are defined by their char
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teristics functions. Following the lines of Stratonovich@17#,
we define the functional

I 5E R~y!] tp~x0uy,t !dy5 lim
Dt→0

I Dt , ~B1!

where

I Dt5
1

DtE R~y!@p~x0uy,t1Dt !2p~x0uy,t !#dy. ~B2!

R(y) is an arbitrary generator function, andp(x0ux1 ,t) is the
conditional probability density atx1 corresponding to pass
ing from x0 to x1 during time t. Assuming stationarity we
suppress the first temporal index,p(x0ux1 ,t)[p(x0,0ux1 ,t)
5p(x0 ,tux1 ,t1t). For simplicity of writing we make the
convention that* is to be read as (1/A2p)*2`

` .
With p(x0ux,t) being a probability density inx we trivi-

ally have

E
2`

`

p~x0ux,t !dx51 ~B3!

and the Chapman-Kolmogorov equation

p~x0ux1 ,t !5E
2`

`

p~x0ux,t!p~xux1 ,t2t!dx. ~B4!

For the functional we then get

I Dt5
1

DtE R~y!F E
2`

`

p~xuy,Dt !p~x0ux,t !dx2p~x0uy,t !Gdy

5
A2p

Dt E p~x0ux,t !H E p~xuy,Dt !@R~y!2R~x!#dyJ dx.

~B5!

We now define the Fourier transforms

R~x!5E R̂~k!eikxdk, R̂~k!5E R~x!e2 ikxdx,

~B6!

similarly for f (x) in Eq. ~2.1!, and for sa(x) to be intro-
duced below. However, for the probability densityp(x0ux,t),
we define

p~x0ux,t !5E p̂~x0uk,t !e2 ikxdk, ~B7!

p̂~x0uk,t !5E p~x0ux,t !eikxdx, ~B8!

consistent with the standard definition of characteristic fu
tion except for the factorA2p. With these definitions it is
easy to derive the formula

E f ~x!p~x0ux,t !eikxdx5E f̂ ~k12k! p̂~x0uk1 ,t !dk1 ,

~B9!

from which it directly follows that
-

f ~x!p~x0ux,t !5E F E f̂ ~k12k! p̂~x0uk1 ,t !dk1Ge2 ikxdk.

~B10!

Using the spectral representation for the generator func
we get

1

A2p
I Dt5E p~x0ux,t !H E p~xuy,Dt !

1

DtE R̂~k!

3~eiky2eikx!dkJ dx

5E E eikxR̂~k!p~x0ux,t !
1

Dt

3E@eik[X(t1Dt)2x]21uX~ t !5x#dkdx.

~B11!

The conditional expectation is evaluated using the Lange
equation~2.1! and the characteristic function of thea-stable
Levy noise incrementdLa ,

E$exp@ ikdLa#%5 exp@2saDtukua/a#. ~B12!

We get

1

Dt
E@eik[X(t1Dt)2x]21uX~ t !5x#

5
1

Dt
E@eik[ f (x)Dt1o(Dt)1dLa]21#

5
1

Dt
eik[ f (x)Dt1o(Dt)] 2saDtukua/a21

→ ik f ~x!2saukua/a, ~B13!

asDt→0. Substitution of Eq.~B13! in Eq. ~B11! and com-
bining with Eqs.~B1! and ~B2! then gives

E E R̂~k!eikx] tp~x0ux,t !dxdk

5E E R̂~k!eikx@ ik f ~x!2sa~x!ukua/a#p~x0ux,t !dxdk.

~B14!

Here we have permitted the scaling factorsa/a, correspond-
ing to the variances2/2 of the noise increment in the cas
a52, to depend on the variablex. By eliminating thex by
use of Eq.~B9! we get, suppressingx0,

E R̂~k!] t p̂~k,t !dk5E E R̂~k!@ ik f̂ ~k12k!

2sâ~k12k!ukua/a# p̂~k1 ,t !dkdk1 ,

~B15!

and finally sinceR̂(k) is arbitrary we get the spectral Fokke
Planck equation for the integrand, suppressing thet index,
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] t p̂~k!5E @ ik f̂ ~k12k!2sâ~k12k!ukua/a# p̂~k1!dk1 .

~B16!

Multiplying by e2 ikx and using Eq.~B10! gives the Fokker-
Planck equation in the usual form

] tp~x!52]x@ f ~x!p~x!#

2
1

aE E e2 ikxŝa~k2k1!ukuap̂~k1!dkdk1 .

~B17!

For the stationary Fokker-Planck equation the left-hand s
of ~B17! vanishes and the partial derivatives become to
derivatives. The last term on the right-hand side is a gen
alized diffusion, which formally can be written

1

a

da

dxa
@sa~x!p~x!#[2

1

aE E e2 ikx

3ŝa~k2k1!ukuap̂~k1!dkdk1 .

~B18!

In the casea52 this is the usual diffusion term correspon
ing to Gaussian white noise excitation of intensitys2(x).
For a,2 the diffusion is nonlocal. The physical meaning
this term is that fora-stable processes there will, due to t
fat tails of the distributions, be finite size jumps in the pr
cess.

APPENDIX C: CAUCHY DISTRIBUTION

The probability density can only be expressed explic
for a51, anda51/2. Fora51, Cauchy noise, the charac
teristic function isc(k)5 exp(2suku) and its Fourier trans-
form is

p~x!5
1

ps@11~x/s!2#
. ~C1!

For this distribution even the mean does not exist. Note
even though the density distribution~C1! is symmetric,p
(2x)5p(x); this does not imply that̂ x&50. For a data
sampling this manifests itself in the fact that the average on
data pointsZn5(X11 . . . 1Xn)/n is Cauchy distributed
with the same intensity asXi , so that there is no conver
gence for the seriesZn ,n51,2, . . . ; it fluctuates exactly as
the dataXi itself.

A classical example of this characteristic of the Cauc
distribution is seen by considering the distribution of light
a line L from a point source, see Fig. 7. Since the light
e
l
r-

-

at

y

uniformly distributed over the angles,p(u)51/p,uP@0,p#,
the distribution on the line will bep(x)5p(u)(du/dx)
51/$dp@11(x/d)#2%, where X5d tan(u) is a stochastic
variable representing the point where a photon released f
S at the~stochastic! angleu crossesL. Now insertingn21
lines,Li , parallel toL, between the light source,SandL, we
can apply Huygens principle, saying thatLi will act as a line
of point sources, where the light follows the pathS→X1
→X11X2→ . . .→X, where X5X11 . . . 1Xn . The vari-
ablesXi are independent and Cauchy distributed with sc
parameterd/n. Thus Huygens principle is consistent with th
fact thatX5(( i 51

n Xi)/n has the same distribution asXi .

APPENDIX D: SIMULATIONS

The simulations performed in this paper only involv
Cauchy noise, which is easily obtained from a random va
ableX uniformly distributed in the interval@2p/2,p/2#, as
Y5tan(X). More generally, a random variable with a
a-stable distribution@13# is obtained from

Y5@sin~aX!/cos~X!(1/a)#$2 cos~@12a#X!/ ln~W!%(12a)/a,
~D1!

whereX is defined as above andW is another random vari-
able uniformly distributed on the interval@0,1#. When simu-
lating Eq. ~2.1! by a discrete numerical time stepping th
~fixed size! time steps usually need to be much smaller th
would be expected from numerical integration of the dr
term alone. This is due to the large excursions from the t
of the distribution of the noise. It is thus important to use
stable integration routine for the drift term. A simple durab
routine, which is the one used in these simulations, is Heu
integration scheme. The simulation is performed as

x~ t1Dt !5x~ t !1„f @x~ t !#1 f $x~ t !1 f @x~ t !#Dt%…Dt/2

1sDt1/ah~ t !, ~D2!

whereh(t) is generated by Eq.~D1!.

FIG. 7. Huygens principle applied to the light from a poi
source on a line. This illustrates the behavior of the averaging
Cauchy-distributed stochastic variables.
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