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The two-dimensional-~2D! and three-dimensional-~3D! like Gletzer, Okhitani, and Yamada shell models
are examined. The 2D-like model shows a transition from statistical quasiequilibrium to cascade of enstrophy
as a function of the spectral ratio of energy to enstrophy. The transition is related to the ratio of time scales,
corresponding to eddy turnover times, between shells. The anomalous scaling, giving rise to nonlinear scaling
functions, is also connected to the ratio of eddy turnover times. This is illustrated in a simple stochastic model,
where the structure functionz(q) becomes independent ofq. In the 3D-like model the multiscaling is also
influenced by the existence of a second nonpositive-definite inviscid invariant, the helicity.
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The problem of understanding the scaling properties of
velocity correlations in isotropic and homogeneous turbu-
lence is still largely unsolved. The only exact derived prop-
erty is the Kolmogorov@1# scaling law for the third-order
moments C3(r )524er /516ndC2(r )/dr, where Cq(r )
[^Dv(r )q&5^uv(x1r )2v(r )uq&, r is the distance in the
fluid, and ^& is the ensemble average. This relation is not
closed since it contains both second- and third-order correla-
tion functions. In the inertial range defined byL@r@l,
whereL is the outer scale andl the inner or Kolmogorov
dissipation scale, the second term on the right-hand side is
negligible and the scaling relation,C3(r );r z(3), with
z(3)51, holds. The classical Kolmogorov theory@1~a!#
based on dimensional arguments states thatCq(r );r z(q),
with z(q)5q/3. It was noted by Landau@2# shortly after the
theory was presented that the energy dissipation could vary
so much as to alter the scaling laws. This was incorporated in
a refined version of Kolmogorovs theory@1~b!#, in which a
dependence onL/r , the ratio of the outer scale to the scale in
the inertial range, was incorporated.

It has been seen in numerous experiments thatz(q) is a
weakly nonlinear function ofq, different from the Kolmog-
orov predictions forq different from 3. It follows from the
Ho” lder inequality that z(q) is a convex of q, thus
z(q).q/3 for q,3 andz(q),q/3 for q.3. The deviation
of the scaling from the@1~a!# prediction is referred to as
intermittency corrections. It is widely attributed to the fact
that the energy dissipation in fully developed turbulence is
indeed highly inhomogeneous, basically taking place on
lower dimensional subsets, filaments, of the flow field.

Numerical studies of the Gletzer-Okhitani-Yamada
~GOY! shell model@3# of turbulence have been popular res-
ently, mainly because this model, in which scaling relations
are completely equivalent to those of turbulence, also shows
intermittency corrections to the@1~a!#, equivalent, predic-
tions. The GOY model structually resembles the spectral

form of the Navier-Stokes equation, but there are no spatial
fields associated with the wave components in the GOY
model. The intermittency corrections in the scaling proper-
ties are thus associated with temporal intermittency, which
can only be weakly linked to spatial intermittency through
the Taylor hypothesis. The connection between the spatial
intermittency of turbulence and temporal intermittency of the
GOY model is not clear, but the hope is that understanding
the latter can shed light upon the former. This note is about
the latter.

In the GOY model the spectral domain is represented as
shells, each of which is defined by a wave numberkn5ln,
wherel is a scaling parameter defining the shell spacing.
There are 2N degrees of freedom, whereN is the number of
shells, namely, the generalized complex shell velocities,un
for n51,N. The dynamical equation for the shell velocities
is

u̇n5 iknS un12un112
e

l
un11un211

~e21!

l2 un21un22D *
2nkn

2un1 fdn,n0, ~1!

where the first term represents the nonlinear wave interaction
or advection, the second term is the dissipation, and the third
term is the forcing, wheren0 is some small wave number.
The boundary conditions areu215u05uN115uN1250.
The model has two quadratic inviscid invariants, which are
constants of motion in the casef5n50, E5(nuunu2, re-
ferred to as the energy, andH5(n(e21)2nuunu2. For
e,1, H is nonpositive definite, referred to as the helicity,
and the model is thought of as modeling 3D turbulence. For
e.1,H is positive definite, referred to as the enstrophy, and
the model is meant to resemble 2D turbulence. Dimensional
arguments similar to those of@1~a!# can be applied to the
GOY model assuming dissipation of one of the conserved
quantities. For the 2D-type model, 1,e,2, enstrophy will
be dissipated and an additional large-scale drag term
2n8kn

22un is added to~1! in order to remove the energy.
The reason for the enstrophy and not the energy being dissi-
pated is, as usual, that the dissipation of energy iskn

2a times
the dissipation of enstrophy at shelln, thus negligible for
a.0 andn→`. The Kolmogorov scaling for the 2D-type
model then becomeŝuunu&;kn

2(a11)/3. Note that this is an
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unstable fixed point of~1! for f5n50, describing a cascade.
As pointed out by Aurellet al. @4#, in the case ofa52 this
scaling coincides with the scaling that would be obtained in
a statistical equilibrium, in which the enstrophy is distributed
evenly among the degrees of freedom of the system
^uunu&;kn

2a/2 . Thea52, corresponding toe55/4, case is a
borderline case between models showing cascade, for
a,2, and models showing statistical~quasi!equilibrium, for
a.2. In order to show this a series of numerical model runs
for different values ofe have been performed, details of
which are reported elsewhere@5#. Figure 1 shows the spectral
slopes obtained. The two lines shows the slopes correspond-
ing to cascade and statistical equilibrium, respectively, and
the diamonds are the numerical results. The figure clearly
shows a crossover from one type of behavior to the other.
The reason for this transition is related to the scaling of typi-
cal time scales, or eddy turnover times, for the different
shells. The eddy turnover time at shelln is given as
tn5(kn^uunu&)21, as seen from~1! or dimensional argu-
ments. The eddy turnover time then becomes
tcascade;k(a22)/3 and tequilibrium;k(a22)/2, respectively.
Thus, for a.2 the eddy turnover times in both cases in-
crease with wave number and equilibration via inverse en-
strophy transfer, from large-wave-numbered shells to small-
wave-numbered, shells takes place. Fora,2 the situation is
reversed and a statistical equilibrium can never be achieved.
Similar results have been found by Yamada and Ohkitani@6#
for a slightly different set of GOY models, with only one
positive-definite inviscid invariant, referred here to as 3D-
type models.

In the 3D-type models the situation is totally different. In

this case the second inviscid invariant, the helicity, is not
cascaded even though the ratio of the absolute value of the
helicity to the energy at shelln grows exponentially with
n, as is the case for the enstrophy. The reason is that the
helicity has alternating signs for even and odd numbered
shells. Therefore there will be a net production of~positive
sign! helicity at odd numbered shells due to the dissipation
and no net flow of helicity from small-wave-number shells to
large-wave-number shells is necessary. It has been demon-
strated numerically that helicity is indeed the quantity to be
cascaded in the~pathological! case of hyperviscosity only
active on the outermost shell@7#. In the usual 3D case energy
will be cascaded, with the resulting spectral scaling
^uuu3&;k21.

Both the 2D and the 3D models shows intermittency cor-
rections to the Kolmogorov scaling depending one andl. In
this paper I will suggest two different mechanisms in play in
the 3D case, where only the one is in action in the 2D case.

In the 3D case it is observed that the structure function
depends only on e and l in the combination,
2 log(12e)/log(l)5a @8#. With dz(q)[z(q)2q/3, dz(q)
increases in absolute value whena increases. I suggest that
this is due to differences in the ratio of helicity production
and helicity elimination by dissipation at neighboring shells
in the beginning of the dissipative subrange where scaling
still approximately holds or where extended self-similarity

FIG. 1. Results of runs of the 2D-like GOY model for different
values ofe. Shown is the spectral slopeg52 log(̂ u&)/log(k) as
function of a52 log(e21)/log(l). The lines are the Kolmogorov
scaling for enstrophy cascade and equipartitioning of enstrophy,
respectively. For the 2D-like GOY models an additional dissipation
of the form2n8kn

22un is applied in order to remove energy at small
wave-number shells. The model is run withn550, k05l24,l
52, f n55310243(11 i )dn,15, (e511/10, n55310227, n8
5100), (e5117/100, n55310227, n85100), (e55/4, n
55310225, n85100), (e53/2, n55310223, n85100),
(e57/4, n55310223, n85100), and (e52,n55310220,
n85100). Themodels show a crossover ata52 between statisti-
cal equilibriuma.2 and enstrophy cascadinga,2.

FIG. 2. Nonlinear transfer of energy from one shell to the next
in the 3D-like GOY model withe51/2. All parameter values are
standard and forcing is on shell 4. The line segments pointing from
shell n at time t to shell n11 at time t1Dt symbolize forward
transfer, with magnitude proportional to the thickness of the line
segment. Line segments pointing from shelln11 at timet to shell
n at time t1Dt symbolize backward transfer.
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can be applied@9#. This ratio r can be estimated as
r[(DHn211DHn11)/2DHn;(l2a12/31la22/3)/2, which
for (a,l)5(0.5,2),(1,2),(2,2) gives 1.007,1.03,1.46, re-
spectively. So there is the largest ‘‘mismatch,’’ or noncan-
cellation, in the case (2,2) where the largest nonlinearity in
the structure function is observed. That these two things
should be related is consistent with the findings of a moder-
ated GOY model~model 3! by Benziet al. @10#, where two
copies of the GOY model are coupled. In this model the
helicity takes the formH5(nkn

a(uun
1u22uun

2u2), whereun
1

and un
2 are the two complex variables in shelln. In this

model the helicity production and elimination will, on aver-
age, exactly balance, thus no dependence of the structure
function on a should be expected in agreement with the
numerical findings.

In the standard 3D casea51, the structure function is
still nonlinear even though the above definedr is close to 1.
This is suggested to be due to the difference in time scales
between the large and the small scales. This effect is ex-
pected also to determine the anomalous scaling in the 2D
case, where only the dissipation of enstrophy plays a role. In
the 2D case numerical studies suggests that the absolute size
of dz(q) increases asa decreases from 2 to 0@5#. This
suggests that intermittency is enhanced with growing differ-
ence between eddy turnover times from one shell to the next,
which goes astn11 /tn5l (22a)/3. Figure 2 shows the non-
linear transferDn5kn21Im(un21unun11) of energy from
shelln21 to shellsn andn11 in the 3D case. The abscissa
is the shell number and the ordinate is time, read from top to

bottom. The figure is composed of line segments connecting
shellsn at time t i and shellsn11 at timet i1Dt, symboliz-
ing an energy transfer from shelln in the time interval
@ t i ;t i1Dt#. The thickness of the line segment is propor-
tional to the size of the transfer. Line segments going from
n11 at time t i to n at time t i1Dt symbolize the inverse
energy transfer. The figure shows that the transfer is tempo-
rally intermittent and occurring in bursts@11#, with the trans-
fer being faster as the bursts propagate to higher-wave-
number shells. From this the interpretation is
straightforward; the residence time for a burst at a given shell
is proportional to the eddy turnover time resulting in a more
and more intermittent transfer as the eddy turnover time de-
creases. In order to illustrate how this kind of behavior can
lead to anomalous scaling behavior, consider the following
linear stochastic model, which is an extreme case.

Let xn be a stochastic variable representing the energy at
shelln, governed by the dynamical equation

xn~ t11!5pn21~ t !xn21~ t !2pn~ t !xn~ t !2nkn
2xn~ t !1 fdn,1 ,

~2!

wherepn is a stochastic variable that is 1 with probability
tN /tn and 0 with probability 12tN /tn ; thus it represents a
transition probability of energy transfer from shelln to shell
n11. The boundary conditions arex215pN50. The aver-
age residence time is then simply proportional to the eddy
turnover time. It is easily seen thatxn is always positive.FIG. 3. Result of a simulation of the simple stochastic model.

xn is plotted as a function of time. The intermittent transfer is simi-
lar to what is seen in the GOY model, Fig. 2.

FIG. 4. Anomalous scaling behavior of the simple stochastic
model. log2(^x

q&) vs log2(k) for q51,8. The spectral slope does not
depend onq so thatz(q)5(a22)/3. The model was iterated for
104 large eddy turnover times withN520,f50.05, andn510211.
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Figure 3 is similar to Fig. 2, but shows the values ofxn .
There is obviously no inverse transfer in this model. By com-
paring Figs. 2 and 3 one sees that the intermittent structures
of the transfers are similar. The energy will, in this model,
scale inversely proportionally to the eddy turnover time, so
that if we identify xn with the energy or enstrophy of the
GOY modelEn5kn

auunu2, the scaling of̂ uunu&;kn
2(a11)/3 is

the same as for the GOY model. However, the structure
function changes completely. It is readily calculated, with
the result^xn

q&;kn
(a22)/3xq, wheretn5kn

(a22)/3 is the eddy
turnover time at shelln and x5 f t1 is the average energy
input into the system during one large eddy turnover time.
This means that the structure functionz(q) becomes inde-
pendent ofq. q will only show up in the offset,qlog(x) in a
log^xn

q&, log(kn) plot. This is illustrated in Fig. 4, showing the
result of a numerical simulation. Obviously this linear sto-
chastic model cannot reproduce the scaling exponents of the
GOY model or of real turbulence, but it qualitatively illus-
trates the effect of temporal intermittency.

In conclusion, the behavior of the 2D-like GOY model
shows either statistical equilibrium or cascade of enstrophy
depending on the ratio of the eddy turnover time scales be-
tween the shells. The dynamics and the multiscaling of the

3D-like GOY model depends on the existence of the second
nonpositive-definite inviscid invariant, helicity, through the
way the helicity is dissipated in the model. In both cases, the
multiscaling is an effect of temporal intermittency also origi-
nating from differences in eddy turnover times at the differ-
ent scales; thus the 2D model witha52 shows no anoma-
lous scaling. The effect is illustrated in a simple stochastic
model. The scaling behavior of this simple model does not
correspond to what is seen in the GOY model or in real
turbulence. However, the model points to a mechanism of
how the temporal intermittency can lead to anomalous scal-
ing behavior. In order to further clarify the relationship be-
tween the spatial intermittency observed in turbulence and
the temporal intermittency seen in these simple models, it
would be interesting to see if the structures seen in the time–
wave-number domain, Fig. 1, can be identified in direct nu-
merical simulations of the Navier-Stokes equation.
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