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We study the Gledzer-Okhitani-Yamada shell model simulating the cascade processes of turbulent flow. The
model has two inviscid invariants governing the dynamical behavior. Depending on the choice of interaction
coefficients, or coupling parameters, the two invariants are either both positive definite, analogous to energy
and enstrophy of two-dimensional~2D! flow, or only one is positive definite and the other not, analogous to
energy and helicity of 3D flow. In the 2D-like model the dynamics depend on the spectral ratio of enstrophy to
energy. That ratio depends on wave number aska. The enstrophy transfer through the inertial subrange can be
described as a forward cascade fora,2 and diffusion in a statistical equilibrium fora.2. Thea52 case,
corresponding to 2D turbulence, is a borderline between the two descriptions. The difference can be understood
in terms of the ratio of typical time scales in the inertial subrange and in the viscous subrange. The multifrac-
tality of the enstrophy dissipation also depends on the parametera and seems to be related to the ratio of
typical time scales of the different shell velocities.

PACS number~s!: 47.27.2i

I. INTRODUCTION

The standard Kolmogorovk25/3 scaling law for energy
cascading in three-dimensional~3D! turbulence and the cor-
respondingk23 scaling law for enstrophy cascade in 2D tur-
bulence is still debated. Direct numerical calculations of the
full Navier-Stokes equation is by and large still impossible
for high Reynolds number (.1002200) flows. However,
the cascading mechanisms and its multifractal nature can be
analyzed in reduced wave-number models for very high Rey-
nold numbers with high accuracy. In this paper we investi-
gate the Gledzer-Okhitani-Yamada~GOY! shell model@1,2#,
where the spectral velocity or vorticity is represented by one
complex variable for each shell evenly spaced in log(k) in
spectral space. For this type of model the Kolmogorov scal-
ing arguments can be applied as for real flow regardless of
how realistically they mimic the dynamics of the Navier-
Stokes equation. The scaling behavior of the fields depends
on the inviscid invariants of the model. In the simple model
we are able to control which symmetries and conserved in-
tegrals of the dynamics are present in the inviscid and force-
free limit. In the models we interpret as simulating 3D tur-
bulence there are two inviscid invariants, similar to energy
and helicity@3#, of which the first is positive definite and the
second is not. For the models we interpret as 2D turbulence
the two inviscid invariants, similar to energy and enstrophy,
are both positive definite. We will mainly be concerned with
an investigation of the 2D-like models. The specific param-
eter choice previously assigned to simulating 2D turbulence
is such that the GOY model does not show enstrophy cas-

cading but rather a statistical equilibrium where the enstro-
phy is transported through the inertial subrange by diffusion
@4#. We show that this is a borderline case for which, on one
side, the model behaves as a cascade model and, on the other
side, it behaves as a statistical equilibrium model, where the
enstrophy spectrum is characterized by a simple equiparti-
tioning among the degrees of freedom of the model. The
difference in behavior is connected with the different typical
time scales of the shell velocities as a function of shell num-
ber. This probably also influences the~nonuniversal! multi-
fractal behavior of the shell velocities. If time scales in the
viscous subrange are not smaller than in the beginning of the
inertial subrange, the low-wave-number end, the model does
not have a multifractal spectrum.

II. THE GOY MODEL

The GOY model is a simplified analogy to the spectral
Navier-Stokes equation for turbulence. The spectral domain
is represented as shells, each of which is defined by a wave
numberkn5k0l

n, wherel is a scaling parameter defining
the shell spacing; in our calculations we use the standard
valuel52. The reduced phase space enables us to cover a
large range of wave numbers, corresponding to large Rey-
nolds numbers. We have 2N degrees of freedom, whereN is
the number of shells, namely, the generalized complex shell
velocities or vorticities,un for n51,N. The dynamical equa-
tion for the shell velocities is

u̇n5 iknS aun12* un11* 1
b

l
un11* un21* 1

c

l2un21* un22* D2nkn
p1un2n8kn

2p2un1 f n , ~1!
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where the first term represents the nonlinear wave interaction
or advection, the second term is the dissipation, the third
term is a drag term, specific to the 2D case, and the fourth
term is the forcing. Boundary conditions at the two ends of
the spectrum are simplyu215u05uN115uN1250.
Throughout this paper we usep15p252. We will for con-
venience seta5k051, which can be done in~1! by a re-
scaling of time and the units ink space. A real form of the
GOY model, as originally proposed by Gledzer@1#, can be
obtained trivially by having purely imaginary velocities and
forcing. The GOY model in its original real form contains no
information about phases between waves, thus a flow field in
real space cannot be assigned to the spectral field. The com-
plex form of the GOY model and extensions in which there
are more shell variables in each shell introduce some degrees
of freedom, which could be thought of as representing the
phases among waves. However, it seems as if these models
do not behave differently from the real form of the model in
regard to the conclusions in the following@5,4#. The key
issue for the behavior of the model is the symmetries and
conservation laws obeyed by the model.

A. Conservation laws
The GOY model has two conserved integrals, in the case

of no forcing and no dissipation (n5 f50). We denote the
two conserved integrals by

E1,25 (
n51

N

En
1,25

1

2 (
n51

N

kn
a1,2uunu25

1

2 (
n51

N

lna1,2uunu2. ~2!

By settingĖ1,250 and usingu̇n from ~1! we get

11bz11cz1
250,

~3!
11bz21cz2

250,

where the rootsz1,25la1,2 are the generators of the con-
served integrals. In the case of negative values ofz we can
use the complex formulationa5(lnuzu1ip)/lnl. The param-
etersb andc are determined from~3! as

b52~z11z2!/z1z2 ,
~4!

c51/z1z2 .

In the (b,c) parameter plane the curvec5b2/4 represents
models with only one conserved integral; see Fig. 1. Above
the parabola the generators are complex conjugates and be-
low they are real and different. Any conserved integral rep-
resented by a real nonzero generatorz defines a line in the
(b,c) parameter plane, which is tangent to the parabola in
the point (b,c)5(22/z,1/z2). The rest of our analysis we
will focus on the line defined byz151. The conserved inte-
gral

E15
1

2 (
n51

N

uunu2 ~5!

is the usual definition of the energy for the GOY model@3#.
The parameters are then determined by 11b1c50, which
with the definitionsb52e andc52(12e) agree with the

notation of Ref.@6#. The generator of the other conserved
integral isz25 1/(e21) , so fore,1 the second conserved
integral is not positive definite and of the form

E25H5
1

2 (
n51

N

~21!nuz2unuunu2, ~6!

which can be interpreted as a generalized helicity. For
e51/2, z252252l the model is the usual 3D shell model
andH is the helicity as defined in Ref.@3#. By choosingl
such thatl51/(12e), we getE25((21)nlnuunu2. This
form was argued in Ref.@3# to be the proper form for the
helicity. In this paper we will alternatively use the definition
~6! for the helicity.

For e.1 the second conserved integral is positive definite
and of the form

E25Z5
1

2 (
n51

N

z2
nuunu2, ~7!

which can be interpreted as a generalized enstrophy. For
e55/4, z2545l2 the model is the usual 2D shell model
and Z is the enstrophy as defined in Ref.@4#. The sign of
c, which is the interaction coefficient for the smaller wave
numbers, changes when going from the 3D to the 2D case.
This could be related to the different role of backward cas-
cading in the two cases. To see this, consider the nonlinear
transfer ofEi through the triad interaction between shells,
n21,n,n11. This is simply given by

Ėn21
i 5kn21

a i Dn ,

Ėn
i 5bzikn21

a i Dn ,

Ėn11
i 5czi

2kn21
a i Dn , ~8!

with

FIG. 1. (b,c) parameter space. The model has two conserved
integralsE1,251/2(z1,2

n uunu2. Above the parabolaz1 and z2 are
complex conjugates, on the parabolaz15z2 , and belowz1 andz2
are real and different. Any realz defines a line tangent to the pa-
rabola. The line drawn indicates where the one conserved integral is
the energy, defined asE5

1
2(uunu2 (z151). For c.0 the second

conserved integral is positive definite (z2.0), so the models are
2D-like. For c,0 this is not the case (z2,0) and the models are
3D-like. The casec50 is singular (z25`), corresponding to
E25uuNu2. The diamonds indicate the standard 2D and 3D GOY
models.
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Dn5kn21Im~un21unun11!. ~9!

The detailed conservation ofEi in the triad interaction is
reflected in the identity 11bzi1czi

250; the exchange of
energyE1 with a150 is

Ėn21
1 5Dn ,

Ėn
152eDn ,

Ėn11
1 5~e21!Dn ~10!

and the exchange of helicity or enstrophyE2 with a25a is

Ėn21
2 5kn21

a Dn ,

Ėn
252@e/~e21!#kn21

a Dn ,

Ėn11
2 5@1/~e21!#kn21

a Dn . ~11!

We havee,1 for 3D-like models ande.1 for 2D-like
models. The two situations are depicted in Fig. 2, where the
thickness of the arrows symbolizes the relative sizes of the
exchanges in the cases ofe51/2 and e55/4. The actual
spectral transfer ofE1 andE2 depends on the sign ofDn ; if
Dn,0 all the arrows are turned around. If, on average, the
transfer is as indicated in Fig. 2, there will be a transfer of
energy and helicity from the large scales to the small scales
in the 3D case and a transfer of enstrophy from the large to
the small scales and a transfer of energy from the small
scales to the large scales in the 2D case.

B. Scaling and inertial range
The inertial subrange is defined as the range of shells

where the forcing and the dissipation are negligible in com-
parison with the nonlinear interactions among shells. The
spectrum ofE1,2 then, by the Kolmogorov hypothesis, de-
pends only onk andh1,2, whereh1,2 is the time-averaged
dissipation of E1,2. From dimensional analysis we have
@ku#5s21, @h1,2#5@E1,2#s21, and @E1,2#5@ka1,2u2#
5@k#a22s22 and we get

E1,2;h1,2
2/3k~a1,222!/3. ~12!

For the generalized velocity,u, we then get the ‘‘Kolmog-
orov scaling’’

uuu;h1,2
1/3k2@Re~a1,2!11#/3. ~13!

The nonlinear cascade, or flux, of the conserved quantities
defined byz1,2 through shell numbern can be expressed
directly as Pn

1,25z1,2
n (2Dn /z2,11Dn11). In the inertial

range the cascade is constantPn
1,25Pn11

1,2 , so we get

z1z2Dn122~z11z2!Dn111Dn50⇒

z1z2~l3g11!22~z11z2!l
3g111150, ~14!

where we have assumed the scalingun;kn
g⇒Dn;kn

3g11 .
This gives the two solutionsg1,252(a1,211)/3, which give
for the cascade ofE1

P1;H 12z2 /z1 Kolmogorov forE1

0 fluxless forE1,
~15!

and correspondingly forE2,

P2;H 0 fluxless forE2

12z1 /z2 Kolmogorov for E2.

These are the two scaling fixed points for the model. The
Kolmogorov fixed point for the first conserved integral cor-
responds to the fluxless fixed point for the other conserved
integral and vice versa. This is of course just a reflection of
the fact that~14! is symmetric in the indices 1 and 2. That
these points in phase space are fixed points, in the case of no
forcing and dissipation, is trivial, sincePn5Pn11

⇒Ėn1150⇒u̇n1150. It should be noted that the Kolmog-
orov fixed point

u;k2~a11!/3 ~16!

obtained from this analysis is in agreement with the dimen-
sional analysis~12!.

The scaling fixed points can be obtained directly from the
dynamical equation as well. Forun;kn

2g5l2ng, we get by
inserting into~1! with a51

ln~122g!23g@11bl3g211c~l3g21!2#50 ~17!

and the generators reemergez1,25la1,25l3g1,221, giving the
Kolmogorov fixed points for the two conserved integrals
g1,25(a1,211)/3.

III. FORWARD AND BACKWARD CASCADES

Until this point we have not specified which of the two
conserved quantities will cascade. Assume, in the chaotic
regime where the Kolmogorov fixed points are unstable,
thatthere is, on average, an input of the same size of the two
quantitiesE1 andE2 at the forcing scale; this can of course
always be done by a simple rescaling of one of the quanti-
ties. If Nd is a shell number at the beginning of the viscous
subrange, we have thatuNd /kNd'n and the dissipationDi of

FIG. 2. Shell triad interactions. Arrows indicate transfer of en-
ergyE1 and enstrophyE2 for the 2D casee55/4 and energyE1 and
helicity E2 for the 3D casee51/2. The thickness of the arrows
indicates the strength of the transfer.
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the conserved quantity,Ei can be estimated as

Di;nkNd
a i12uuNdu

2. ~18!

The ratio of dissipation ofE1 and E2 scales withkNd as

D1/D2;kNd
a12a2, so that, in the limit Re→` when

a1,a2 , there will be no dissipation in the viscous subrange
of E1 whereE2 is dissipated. Therefore, a forward cascade

of E1 is prohibited and we should expect a forward cascade
of E2. For the backward cascade the situation is reversed, so
we should expect a backward cascade ofE1.

The situation is completely different in the 2D-like and
the 3D-like cases. In the 3D-like modelsE2 is not positive
definite,E2 ~helicity! is generated also in the viscous sub-

FIG. 3. Mean value of the shell velocities as a function of shell
number on a logarithmic scale~base l), for the 2D case
e55/4, k05l24, l52, n530, n510216, and f n5531023

3(11 i )dn,4 . The model was run for 4.23104 time units. The
spectral slope, indicated by the line, is21.05.

FIG. 4. Mean values of,~a! the energy fluxP1 and ~b! the
enstrophy fluxP2 . The solid curves are guides for the eye.

FIG. 5. Same as Fig. 3, but withn530 andn5 f50. Diamonds
correspond to an initial spectral slope of21.0, which is a high
value ofA/B. The corresponding curve is the statistical equilibrium
distribution forA/B5102. Triangles corresponds to an initial spec-
tral slope of20.8, which is a lower value ofA/B. The curve is the
statistical equilibrium distribution forA/B51022.

FIG. 6. Spectral slopeg as a function ofe. The horizontal
dashed line is the Kolmogorov scaling for the energy cascade, the
full curve is the scaling exponent for the enstrophy~or the 3D-like
case of helicity! cascade, and the dotted curve corresponds to the
enstrophy~helicity! equipartitioning. All the 3D-like models show
an energy cascade~equipartitioning corresponds to the lineg50).
The bold line segment, 0,e,0.39. . . , represents parameter val-
ues where the Kolmogorov fixed point is stable@6#. The diamonds
are a model run withn550, k05l24, l52, f n5531024

3(11 i )dn,15, (e511/10,n55310227,n85100), (e5117/100,
n55310227,n85100), (e55/4,n55310225,n85100), (e53/2,
n55310221,n85100), (e57/4,n55310221,n85100), and
(e52,n55310220,n85100). The stars are model runs with
n519, k05l24, l52, f n510243(11 i )dn,4 , n51026, and
n850, ande51/2, 6/10, and 7/10. The 3D-like models show Kol-
mogorov scaling, with deviations due to intermittency corrections,
and energy cascading. The 2D-like models show a crossover at
e55/4 between statistical equilibrium, 1,e,5/4, and enstrophy
cascading, 5/4,e,2.
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FIG. 7. Same as Figs. 3 and 4 fore511/10, 5/4, 3/2, 7/4, and 2. The spectral slopes, indicated by the lines, are shown in Fig. 6
~diamonds!.
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range, and for the usual GOY model we do not see a forward
cascade of helicity; see, however, Ref.@7#. This is in agree-
ment with the observedk25/3 energy spectrum observed in
real 3D turbulence corresponding to the forward cascade of
energy. In the 2D case we observe the direct cascade of
enstrophy, while the inverse cascade of energy is still de-
bated. In the rest of this paper we will concentrate on 2D-like
models where we will implicitly think ofE15E, with
a150, as the energy andE25Z, with a25a.0, as the
enstrophy. With regard to the inverse cascade of energy one
must bear in mind that in 2D turbulence the dynamics in-
volved is probably related to the generation of large scale
coherent structures, vortices, and vortex interactions. Vorti-
ces are localized spatially, thus delocalized in spectral space.
This is in agreement with the estimate that 2D is marginally
delocalized in spectral space@8#. In the GOY model there is
no spatial structure and the interactions are local in spectral

space. The model is therefore probably not capable of show-
ing a realistic inverse energy cascade. We will thus only
consider the forward cascade in this paper. Figure 3 shows
the scaling in the inertial subrange of the model with
e55/4 corresponding toa52. The cascades of the enstro-
phy and energy are shown in Fig. 4. It is seen that enstrophy
is forward cascaded while energy is not.

IV. STATISTICAL DESCRIPTION OF THE MODEL

In a statistical equilibrium of an ergodic dynamical sys-
tem we will have a probability distribution among the~finite!
degrees of freedom, assuming an ultraviolet cutoff, of the
form Pi;exp(2BEi

12AEi
2), whereE1 andE2 are the con-

served quantitied, energy and enstrophy. Thus the temporal
mean of any quantity, which is a function of the shell veloci-
ties, is given as

g 5̄E )
i
duig~u1 , . . . ,uN!exp~2BEi

12AEi
2! YE )

i
duiexp~2BEi

12AEi
2!. ~19!

A andB are Lagrange multipliers, reflecting the conservation
of energy and enstrophy when maximizing the entropy of the
system, corresponding to inverse temperatures, denoted as
inverse ‘‘energy’’ and ‘‘enstrophy temperatures’’@9#.

The shell velocities themselves will in this description be
independent and Gaussian distributed variables with standard
deviation s(ui)51/@2(Bki

a11Aki
a2)#. The average values

of the energy and enstrophy becomes

FIG. 8. Time evolution of shell velocities in the
beginning and at the end of the inertial subrange.
The typical time scale of shelln scales as
Tn;(knuunu)21;kn

g21 . Note that fore55/4 the
time scale is the same for all shells.
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2Ē i
15ki

a1uū i u25~B1Aki
a22a1!21,

2Ē i
25ki

a2uū i u25~Bki
a12a21A!21. ~20!

For k→0 we will have equipartitioning of energy
ki

a1uū i u25B21 and the scalinguui u;ki
2a1/2 and for the other

branch k→` we will have equipartitioning of enstrophy
ki

a2uū i u25A21 and the scalinguui u;ki
2a2/2 . In the case of no

forcing and no viscosity the equilibrium will depend on the
ratio A/B between the initial temperaturesA21,B21. To il-
lustrate this we ran the model without forcing and viscosity
but with two different initial spectral slopes of the velocity
fields, the larger the slope the higher the ratio of the energy
temperature to the enstrophy temperature. Figure 5 shows the
equilibrium spectra fore55/4,n5 f50, in the cases of ini-
tial slopes21,20.8. The full lines are the equilibrium dis-
tribution given by~20! for A/B5102 and A/B51022, re-
spectively.

V. DISTINGUISHING CASCADE FROM STATISTICAL
EQUILIBRIUM

For the forward enstrophy cascade the spectral slope is
2(a11)/3 and the enstrophy equipartitioning branch has

spectral slope2a/2. Thus, for the 2D case wherea52 we
cannot distinguish between statistical~quasi!equilibrium and
cascading. This was pointed out by Aurellet al. @4# and it
was argued that the model can be described as being in sta-
tistical quasiequilibrium with the enstrophy transfer de-
scribed as a simple diffusion rather than an enstrophy cas-
cade. This coinciding scaling is a caviate of the GOY model
not present in the real 2D flow where the statistical equilib-
rium energy spectrum scales ask21 and the cascade energy
spectrum scales ask23. For other values ofa the scaling of
the two cases are different, see Fig. 6. This figure represents
the main message of this paper. The first axis is the param-
eter e, along the line shown in Fig. 1, defining the spectral
ratio between the two inviscid invariants. The second axis is
the scaling exponentg. The horizontal dashed lineg51/3 is
the Kolmogorov scaling exponent for energy cascade. The
full curve is the scaling exponent for the enstrophy cascade
and the dotted curve corresponds to the enstrophy equiparti-
tioning.

All the 3D-like models~asterisks in Fig. 6! are near en-
ergy cascade scaling~dashed line!. Statistical equilibrium
corresponds to the lineg50. The bold line segment
0,e,0.39 . . . represents parameter values where the Kol-
mogorov fixed point is stable@6#. The scaling for
e.0.39 . . . isslightly steeper than the Kolmogorov scaling,
which is attributed to intermittency corrections originating
from the viscous dissipation@10#. It seems as if there is a
slight trend showing increasing spectral slopes for increasing
e.

For the 2D-like models the scaling slope is also every-
where on or slightly above both the cascade and the equilib-
rium slopes~diamonds in the figure!. The classical argument
for a cascade is that given an initial state with enstrophy
concentrated at the low-wave-number end of the spectrum,
the enstrophy will flow into the high wave numbers in order
to establish statistical equilibrium. The ultraviolet catastro-
phe is then prevented by the dissipation in the viscous sub-
range. Therefore, we cannot have a nonequilibrium distribu-
tion with more enstrophy in the high-wave-number part of
the spectrum than prescribed by statistical equilibrium since
enstrophy in that case would flow from high to low wave
numbers. This means that the spectral slope in the inertial
subrange always is above the slope corresponding to equilib-
rium ~dotted line in Fig. 6!. Consequently, the 2D model
with e55/4 separates two regimes: 1,e,5/4, where en-
strophy equilibrium is achieved, and 5/4,e,2, where the
enstrophy is cascaded through the inertial range.

In Fig. 7 the spectra and the cascades are shown for dif-
ferent values ofe. The model was run with 50 shells and
forcing on shell number 15 for 23104 time units and aver-
aged. Even then there are large fluctuations in the cascades
not reflected in the spectra. The large differences in the ab-
solute values for the cascadesp is a reflection of the scaling
relation ~18!.

We interpret the peaks around the forcing scale for
e511/10 as statistical fluctuation and the model shows no
cascade. Fore.5/4 we see an enstrophy cascade and what
seems to be an inverse energy cascade. However, we must
stress that we do not see a second scaling regime for small
n corresponding the inverse cascade. Note that fore52 en-
ergy and enstrophy are identical and we have only one invis-

FIG. 9. Probability density functions for real part of the shell
velocities of shells 18~triangles! and 40~squares!. The parabolas
are Gaussians with the same variance. The upper panel shows the
PDF’s for e55/4 with Gaussians at both ends of the inertial range.
The lower panel shows the PDF’s fore57/4 with a Gaussian in the
beginning of the inertial range and a distribution towards a Laplac-
ian at the end of the inertial range, corresponding to an intermittent
signal. The second curve is a guide for the eye.
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cid invariant. So if a regime of inverse energy cascading
existed in parameter space neare52 the scaling exponents
would be almost identical and coincide ate52.

The two regimes corresponding to equipartitioning and
cascade can be understood in terms of time scales for the
dynamics of the shell velocities. A rough estimate of the time
scales for a given shelln is, from ~1!, given as
Tn;(knun)

21;kn
g21 . Again e55/4, corresponding to

g51, becomes marginal where the time scale is independent
of shell number. Fore,5/4 the time scale grows withn and
the fast time scales for smalln can equilibrate enstrophy
among the degrees of freedom of the system before the dis-
sipation, at the ‘‘slow’’ shells, has time to be active. There-
fore these models exhibit statistical equilibrium. Fore.5/4
the situation is reversed and the models exhibit enstrophy
cascades. Time evolutions of the shell velocities are shown
in Fig. 8, where the left columns show the evolution of a
shell in the beginning of the inertial subrange and the right
columns show the evolution of a shell at the end of the
inertial subrange. This time-scale scaling might also explain
why no inverse cascade branch has been seen in the GOY
model. The time-scales at the small-wave-number end of the
spectrum, with the dissipation or drag range for inverse cas-
cade, is long in comparison with the time scales of the iner-
tial range of inverse cascade. Therefore a statistical equilib-
rium will have time to form. The analysis suggests that
parameter choicese.5/4 might be more realistic than
e55/4 for mimicking enstrophy cascade in real 2D turbu-
lence.

VI. INTERMITTENCY CORRECTIONS

The numerical result that the inertial range scaling has a
slope slightly higher than the Kolmogorov 1941 prediction is
not fully understood. This is attributed to intermittency cor-
rections originating from the dissipation of enstrophy in the
viscous subrange.

The evolution of the shell velocities in the viscous sub-
range is intermittent fore.5/4, where the probability den-
sity functions~PDF’s! are non-Gaussian, while the PDF’s for
e55/4 are Gaussian in both ends of the inertial subrange; see
Fig. 9. The deviation from the Kolmogorov scaling is ex-
pressed through the structure functionz(q) @10#. The struc-
ture function is defined through the scaling of the moments
of the shell velocities

uūnuq;kn
z~q!5kn

2qg2dz~q! , ~21!

wheredz(q) is the deviation from Kolmogorov scaling. The
structure functionz(q) and dz(q) for e511/10, 5/4, 3/2,
7/4, and 2 are shown in Fig. 10. Fore.5/4 there are inter-
mittency corrections to the scaling in agreement with what
the PDF’s show. In calculating the structure function the
poor statistics reflected in the noisy PDF’s are compensated
by having a rather large number of shells, of the order 20, in
the inertial range.

We know of no analytic way to predict the intermittency
corrections from the dynamical equation. Our numerical cal-
culations suggest that the intermittency corrections are con-

FIG. 10. Deviation of the structure
function from Kolmogorov scaling for
e511/10, 5/4, 3/2, 7/4, and 2.

4792 53P. D. DITLEVSEN AND I. A. MOGENSEN



nected with the differences in typical time scales from the
beginning of the inertial subrange, where the model is
forced, to the viscous subrange. The ratio of time scales be-
tween the dissipation scale and the forcing scale can be es-
timated byTn /Tf'lDN(g21), whereDN is the number of
shells between the two. Figure 11~a! shows the numerical
values ofdz(10) as a function ofe and Figure 11~b! shows
log2(Tn /Tf) as a function ofe. The vertical line indicates
the crossover between statistical equilibrium and cascading.

We must stress that caution should be taken upon drawing
conclusions from this since the authors have no physical ex-
planation of the apparent relationship.

VII. SUMMARY

The GOY shell model has two inviscid invariants, which
govern the behavior of the model. In the 2D-like case these
corresponds to the energy and the enstrophy of 2D turbulent
flow. In the model we can change the interaction coefficient
e and tune the spectral ratio of enstrophy to energy
Zn /En5kn

a . For a.2 we can describe the dynamics as be-
ing in statistical equilibrium with two scaling regimes corre-
sponding to equipartitioning of energy and enstrophy, re-
spectively. The reason for the equipartitioning of enstrophy
in the inertial range~of forward cascading of enstrophy! is
that the typical time scales, corresponding to eddy turnover
times, are growing with shell number, thus the time scale of
viscous dissipation is large in comparison with the time
scales of nonlinear transfer. Thus this choice of interaction
coefficient is completely unrealistic for mimicking cascades
in 2D turbulence. Fora,2 the model shows forward cas-
cading of enstrophy, but we have not identified a backward
cascade of energy. The usual choicee55/4, a52 is a bor-
derline and we suggest thata,2 in respect to mimicking
enstrophy cascade might be more realistic. We observe that
the dynamics becomes more intermittent whena,2, in the
sense that the structure function deviates more and more
from the Kolmogorov prediction. Fore52 we havea50,
thus energy and enstrophy degenerate into only one inviscid
invariant; this point could then be interpreted as a model of
3D turbulence. However, as is seen from~15!, in this case
the fluxless fixed point is the one surviving, but as seen in
Fig. 7, bottom panels, this model also shows cascading. This
choice for 3D turbulence model could shed some light on the
dispute of the second inviscid invariant~helicity! being im-
portant@3# or not @11# for the deviations from Kolmogorov
theory. Work is in progress on this point.

Note added:The authors have recently become aware of
related work for a slightly different set of GOY models in M.
Yamada and K. Ohkitani, Phys. Lett. A134, 165 ~1988!.
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FIG. 11. ~a! Numerical values ofdz(10) as a function ofe. The
error bars represent one standard deviation.~b! Ratio of typical time
scales between the dissipation scale and the forcing scale.
log2(Tn /Tf) is a function ofe. The vertical line indicates the cross-
over between statistical equilibrium and cascading.
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