PHYSICAL REVIEW E VOLUME 53, NUMBER 5 MAY 1996

Cascades and statistical equilibrium in shell models of turbulence
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We study the Gledzer-Okhitani-Yamada shell model simulating the cascade processes of turbulent flow. The
model has two inviscid invariants governing the dynamical behavior. Depending on the choice of interaction
coefficients, or coupling parameters, the two invariants are either both positive definite, analogous to energy
and enstrophy of two-dimension&D) flow, or only one is positive definite and the other not, analogous to
energy and helicity of 3D flow. In the 2D-like model the dynamics depend on the spectral ratio of enstrophy to
energy. That ratio depends on wave numbek‘asThe enstrophy transfer through the inertial subrange can be
described as a forward cascade éox2 and diffusion in a statistical equilibrium far>2. Thea=2 case,
corresponding to 2D turbulence, is a borderline between the two descriptions. The difference can be understood
in terms of the ratio of typical time scales in the inertial subrange and in the viscous subrange. The multifrac-
tality of the enstrophy dissipation also depends on the parametard seems to be related to the ratio of
typical time scales of the different shell velocities.

PACS numbes): 47.27—i

[. INTRODUCTION cading but rather a statistical equilibrium where the enstro-

_ . hy is transported through the inertial subrange by diffusion
The _stal_"ldard Kol_mogor_ok ° scaling law for energy F4])./We shovr\)/ that this isga borderline case forgwhigh, on one

cascading mﬁghree—_dlmensmr(alD) turbulence and the cor- gige the model behaves as a cascade model and, on the other

respondingk™* scaling law for enstrophy cascade in 2D tur- giqe it hehaves as a statistical equilibrium model, where the

bulence is still debated. Direct numerical calculations of theenstrophy spectrum is characterized by a simple equiparti-

full Navier-Stokes equation is by and large still impossibletioning among the degrees of freedom of the model. The

for high Reynolds number>100-200) flows. However, difference in behavior is connected with the different typical

the cascading mechanisms and its multifractal nature can kifime scales of the shell velocities as a function of shell num-

analyzed in reduced wave-number models for very high Reyber. This probably also influences tk@onuniversgl multi-

nold numbers with high accuracy. In this paper we investi-fractal behavior of the shell velocities. If time scales in the

gate the Gledzer-Okhitani-Yamad@OY) shell model1,2],  viscous subrange are not smaller than in the beginning of the

where the spectral velocity or vorticity is represented by ondnertial subrange, the low-wave-number end, the model does

complex variable for each shell evenly spaced in#pg@  not have a multifractal spectrum.

spectral space. For this type of model the Kolmogorov scal-

ing arguments can be applied as for real flow regardless of

how realistically they mimic the dynamics of the Navier-

Stokes equation. The scaling behavior of the fields depends Il. THE GOY MODEL

on the inviscid invariants of the model. In the simple model

we are able to control which symmetries and conserved in- The GOY model is a simplified analogy to the spectral

tegrals of the dynamics are present in the inviscid and forceNavier-Stokes equation for turbulence. The spectral domain

free limit. In the models we interpret as simulating 3D tur- is represented as shells, each of which is defined by a wave

bulence there are two inviscid invariants, similar to energynumberk,=koA", where\ is a scaling parameter defining

and helicity[3], of which the first is positive definite and the the shell spacing; in our calculations we use the standard

second is not. For the models we interpret as 2D turbulencealue A =2. The reduced phase space enables us to cover a

the two inviscid invariants, similar to energy and enstrophyJarge range of wave numbers, corresponding to large Rey-

are both positive definite. We will mainly be concerned with nolds numbers. We have\degrees of freedom, whekeis

an investigation of the 2D-like models. The specific paramthe number of shells, namely, the generalized complex shell

eter choice previously assigned to simulating 2D turbulenceelocities or vorticitiesu, for n=1,N. The dynamical equa-

is such that the GOY model does not show enstrophy cagion for the shell velocities is

Cc
o * * * * * * P1 —Pp2
Un=ikn| @Ug Up 1+ n+1Un—1t )\Zun—lun—z _an un_Vlkn untfn, (1)

b
XU
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where the first term represents the nonlinear wave interaction 2
or advection, the second term is the dissipation, the third

term is a drag term, specific to the 2D case, and the fourth 1k
term is the forcing. Boundary conditions at the two ends of
the spectrum are simplyu_;=ug=uUy;1=Un;2=0. o 0 2D
Throughout this paper we usg=p,=2. We will for con- 3D
venience sea=ky=1, which can be done ifl) by a re- \\
scaling of time and the units ik space. A real form of the
GOY model, as originally proposed by GledZdd, can be ‘
obtained trivially by having purely imaginary velocities and 4 2 0 2 4
forcing. The GOY model in its original real form contains no b

information about phases between waves, thus a flow field in
real space cannot be assigned to the spectral field. The com-
plex form of the GOY model and extensions in which there. FIG. 1. (b.c) parameter space. The model has two conserved

. . . integrals E1?=1/257 Ju,|?. Above the parabola, and z, are
are more shell variables in each shell introduce some degre%gmpleX conjugates, 'on the parabaig=z,. and belowz, andz
’ 2 1 2

of freedom, which could be tho“ght of as representing thg.lre real and different. Any real defines a line tangent to the pa-
phases among waves. However, it seems as if these modelg,oja. The line drawn indicates where the one conserved integral is
do not behave differently from the real form of the model in e energy, defined &&= 13|u,|? (z,=1). Forc>0 the second

regard to the conclusions in the followirl§,4]. The key  conserved integral is positive definite,t0), so the models are
issue for the behavior of the model is the symmetries angp.jike. Forc<O0 this is not the casezg<0) and the models are

conservation laws obeyed by the model. 3D-like. The casec=0 is singular g,=x), corresponding to
E2=|uy|2. The diamonds indicate the standard 2D and 3D GOY
A. Conservation laws models.

The GOY model has two conserved integrals, in the case )
of no forcing and no dissipationv& f=0). We denote the notation of Ref.[6]. The generator of the other conserved
two conserved integrals by integral isz,= 1/(e—1), so fore<1 the second conserved

integral is not positive definite and of the form
N

N N
1 N 1
EV=Y Ep’=5 2 kntdugl*=5 2 A"1qu, % (2)
n=1 2 n=1 2 n=1

N
E?=H= 21 (—1)"z5|"ug|?, (6)

N -

. - 112: . -
By settingE 0 and usingu, from (1) we get which can be interpreted as a generalized helicity. For

1+bz+cZ=0, €=1/2,z,=—2=—\ the model is the usual 3D shell model
3) andH is the helicity as defined in Ref3]. By choosing\
1+bz+c2=0, such that\=1/(1—¢€), we getE?=3(—1)"\"|u,|%. This

form was argued in Ref.3] to be the proper form for the

where the roots; ,= A%.2 gre the generators of the con- hellClty In this paper we will alternatively use the definition
served integrals. In the case of negative values o can  (6) for the helicity.

use the complex formulatioa= (In|7+im)/In\. The param- For e>1 the second conserved integral is positive definite
etersb andc are determined froni3) as and of the form
N
b=—(z1+2;)/212, 2 1 Ny (2
E’=7=2 2 Zuy|?, (7)
(4) 2451

c=1/2,7,.

which can be interpreted as a generalized enstrophy. For
In the (b,c) parameter plane the cun@=b?/4 represents e=5/4, z,=4=\2 the model is the usual 2D shell model
models with only one conserved integral; see Fig. 1. Aboveand Z is the enstrophy as defined in R¢#]. The sign of
the parabola the generators are complex conjugates and bg- which is the interaction coefficient for the smaller wave
low they are real and different. Any conserved integral repnumbers, changes when going from the 3D to the 2D case.
resented by a real nonzero generatatefines a line in the This could be related to the different role of backward cas-
(b,c) parameter plane, which is tangent to the parabola irtading in the two cases. To see this, consider the nonlinear
the point b,c)=(—2/z,1/z%). The rest of our analysis we transfer ofE' through the triad interaction between shells,
will focus on the line defined by, =1. The conserved inte- n—1n,n+1. This is simply given by
gral

L N in—lzkzi_lAn:
1__ 2 - o
Bl=3 & vl © E,=bzk A,
is the usual definition of the energy for the GOY mofiz] : in+1=02-2k§i_1An, (8

The parameters are then determined bykt-c=0, which
with the definitionsb=—€ andc=—(1—¢€) agree with the with
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s El2~ pifk(erz 203 (12
El
D D D D For the generalized velocity, we then get the “Kolmog-
TN Yy orov scaling”
2
|:| D I:l E |U|~771{gk7[Re(al'2)+l]/3- (13)
A~ The nonlinear cascade, or flux, of the conserved quantities
D |:| D defined byz, , through shell numben can be expressed
3D directly as 1'[1 =77 {—An/zp4t+ Anﬂ) In the inertial
’ range the cascade is constilf]i2 I1>2,, so we get
EZ
|:1| D Ell 21250 12— (21+25) A1 +A,=0=
n
2,2,(N3"TH2— (z,+ )\ 1+ 1=0, (14

FIG. 2. Shell triad interactions. Arrows indicate transfer of en- _ 31
ergyE" and enstrophyg? for the 2D case=5/4 and energf* and ~ where we have assumed the scaling~k}=A,~k;"" ~.
helicity E? for the 3D casee=1/2. The thickness of the arrows This gives the two solutiong; ;= — (a4 »+1)/3, which give

indicates the strength of the transfer. for the cascade oE!
Ap=Kp—1IM(Uy_1UpUn1). (9) H1~[ 1-2,/z; Kolmogorov forg* 15
_ _ . o o 0 fluxless forE?,
The detailed conservation & in the triad interaction is
reflected in the identity %bzi+cz,-2=0; the exchange of and correspondingly foE?,
energyE! with ;=0 is
0 fluxless for E2
1 2~
En-1=4n, |1—21/z2 Kolmogorov for E2.
E,l]:—eAn, These are the two scaling fixed points for the model. The
Kolmogorov fixed point for the first conserved integral cor-
El =(e—1)A, (100  responds to the fluxless fixed point for the other conserved
integral and vice versa. This is of course just a reflection of
and the exchange of helicity or enstrogE§ with a,= « is the fact that(14) is symmetric in the indices 1 and 2. That
_ these points in phase space are fixed points, in the case of no
E2 =K% ;A,, forcing and dissipation, is trivial, sincell,=II,.;
=E,,;=0=U,,,=0. It should be noted that the Kolmog-
E2=—[el(e—1)]k*_,Ap, orov fixed point
E2.,=[1h(e—1)]KS (11) U~k (eThB (16

We havee<1 for 3D-like models and>1 for 2D-like  ©Ptained from this analysis is in agreement with the dimen-

models. The two situations are depicted in Fig. 2, where thé'onﬁl anal?’S"{]}Z) g be obtained directlv from th
thickness of the arrows symbolizes the relative sizes of the The scaling fixed points can be o tyalne nylrecty rom the
exchanges in the cases ef1/2 and e=5/4. The actual Qynamlca_l equation as well. Fop,~k, 7=\ we get by
spectral transfer oE! andE2 depends on the sign df,; if  inserting into(1) with a=1

A,<0 all the arrows are turned around. If, on average, the N(1-29)—-3y 3y-1 3y—1\27_

transfer is as indicated in Fig. 2, there will be a transfer of A [1-+DbX +e(x )71=0 17
energy and helicity from the large scales to the small scaleg, | o generators reememe= A “12=\3712"1, giving the

in the 3D case and a transfer of enstrophy from the large t olmogorov fixed points for the two conserved integrals
the small scales and a transfer of energy from the smaly1 = (ay,+1)/3

scales to the large scales in the 2D case.

. . . I1l. FORWARD AND BACKWARD CASCADES
B. Scaling and inertial range

The inertial subrange is defined as the range of shells Until this point we have not specified which of the two
where the forcing and the dissipation are negligible in com-conserved quantities will cascade. Assume, in the chaotic
parison with the nonlinear interactions among shells. Theegime where the Kolmogorov fixed points are unstable,
spectrum ofEX? then, by the Kolmogorov hypothesis, de- thatthere is, on average, an input of the same size of the two
pends only ork and %, ,, where 7, , is the time-averaged quantltlesEl andE? at the forcing scale; this can of course
dissipation of E'2. From dimensional analysis we have always be done by a simple rescaling of one of the quanti-
[kul=s"%, [#72=[E*]s™!, and [EM=[k®?] ties. If Ng is a shell number at the beginning of the viscous
=[k]* 252 and we get subrange, we have thaﬁd/kNdwv and the dissipatio®' of
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FIG. 3. Mean value of the shell velocities as a function of shell
number on a logarithmic scalébase \), for the 2D case
€=5/4, ke=\"% \=2, n=30, v=10"15,
X(1+i)8h4. The model was run for 4:210* time units. The
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spectral slope, indicated by the line,-s1.05.

the conserved quantit' can be estimated as

The ratio of dissipation oE' and E® scales withky, as
D1/D2~kﬁz_“2, so that, in the limit Res» when

D'~ vk

aj+2
Ny

2
|UNd| :

and f,=5x1072

5 10 15 20 25 30
n

FIG. 5. Same as Fig. 3, but witl=30 andv=f=0. Diamonds
correspond to an initial spectral slope 6f1.0, which is a high
value of A/B. The corresponding curve is the statistical equilibrium
distribution forA/B=10%. Triangles corresponds to an initial spec-
tral slope of—0.8, which is a lower value o&/B. The curve is the
statistical equilibrium distribution foA/B=10"2.

of E! is prohibited and we should expect a forward cascade
of E2. For the backward cascade the situation is reversed, so
we should expect a backward cascaddEbf

The situation is completely different in the 2D-like and
the 3D-like cases. In the 3D-like modeEs is not positive

a1< ay, there will be no dissipation in the viscous subrangedefinite, E? (helicity) is generated also in the viscous sub-
of E* whereE? is dissipated. Therefore, a forward cascade

5.0x1074¢
4.0x10”
3.0x107 ¢
g E
- 2.0x1074
1.0x10" %
0.00
~0.02
-0.04 |
E 006}
E -
—0.08F}
—0.10}
~0.12}

FIG. 4. Mean values of(a) the energy fluxIT; and (b) the
enstrophy fluxIT,. The solid curves are guides for the eye.
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FIG. 6. Spectral slopey as a function ofe. The horizontal
dashed line is the Kolmogorov scaling for the energy cascade, the
full curve is the scaling exponent for the enstrogby the 3D-like
case of helicity cascade, and the dotted curve corresponds to the
enstrophy(helicity) equipartitioning. All the 3D-like models show
an energy cascadequipartitioning corresponds to the line=0).

The bold line segment,©e<0.39. . ., represents parameter val-
ues where the Kolmogorov fixed point is stapfd. The diamonds
are a model run withn=50, ko=A"% \=2, f,=5x10*

X (1+i)8,15, (€=11/10p=5x10"%,1'=100), (e=117/100,
v=5x10"%",»'=100), (e=5/4,»1=5%X10 251'=100), (¢=3/2,
y=5%x10"24,1'=100), (e=7/4,r=5%10 %',»'=100), and
(e=2,=5%x10"%%1»'=100). The stars are model runs with
n=19, ko=A"% \=2, f,=10 *X(1+i)6,4, »=10° and

v' =0, ande=1/2, 6/10, and 7/10. The 3D-like models show Kol-
mogorov scaling, with deviations due to intermittency corrections,
and energy cascading. The 2D-like models show a crossover at
€=5/4 between statistical equilibrium,<le<5/4, and enstrophy
cascading, 54 e<?2.



1.5

€ = 1.7

FIG. 7. Same as Figs. 3 and 4 fe=11/10, 5/4, 3/2, 7/4, and 2. The spectral slopes, indicated by the lines, are shown in Fig. 6
(diamonds.
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0.001 FIG. 8. Time evolution of shell velocities in the

] beginning and at the end of the inertial subrange.
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~0.001 To~(Knlun) "*~k2 ™. Note that fore=5/4 the
—0.002 time scale is the same for all shells.
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range, and for the usual GOY model we do not see a forwardpace. The model is therefore probably not capable of show-
cascade of helicity; see, however, Rgf]. This is in agree- ing a realistic inverse energy cascade. We will thus only
ment with the observedd > energy spectrum observed in consider the forward cascade in this paper. Figure 3 shows
real 3D turbulence corresponding to the forward cascade dhe scaling in the inertial subrange of the model with
energy. In the 2D case we observe the direct cascade ef=5/4 corresponding tax=2. The cascades of the enstro-
enstrophy, while the inverse cascade of energy is still dephy and energy are shown in Fig. 4. It is seen that enstrophy
bated. In the rest of this paper we will concentrate on 2D-likeis forward cascaded while energy is not.

models where we will implicitly think of E1=E, with

=0, as the energy an&*=Z, with a,=a>0, as the IV. STATISTICAL DESCRIPTION OF THE MODEL
enstrophy. With regard to the inverse cascade of energy one

must bear in mind that in 2D turbulence the dynamics in- In a statistical equilibrium of an ergodic dynamical sys-
volved is probably related to the generation of large scaléem we will have a probability distribution among ttf@ite)
coherent structures, vortices, and vortex interactions. Vortidegrees of freedom, assuming an ultraviolet cutoff, of the
ces are localized spatially, thus delocalized in spectral spacérm Pi~exp(—BE-1—AE-2), whereE! and E? are the con-
This is in agreement with the estimate that 2D is marginallyserved quantitied, energy and enstrophy. Thus the temporal
delocalized in spectral spa€8]. In the GOY model there is mean of any quantity, which is a function of the shell veloci-
no spatial structure and the interactions are local in spectrdles, is given as

g_=f H dug(uy, ... uy)exp —BE'—AE?) /f H duexp(—BE'— AE?). (19)

A andB are Lagrange multipliers, reflecting the conservationThe shell velocities themselves will in this description be
of energy and enstrophy when maximizing the entropy of théndependent and Gaussian distributed variables with standard

system, corresponding to inverse temperatures, denoted ésviation cr(ui)=1/[2(Bki“1+Aki“2)]. The average values
inverse “energy” and “enstrophy temperaturesT9]. of the energy and enstrophy becomes
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2E '=k|u|?=(B+Ak"2 1)~ spectral slope- a/2. Thus, for the 2D case where=2 we
! ! cannot distinguish between statisti¢guasjequilibrium and
2E f:kf‘2|ﬁ|2:(|3ki“1*“2+ AL (20) cascading. This was pointed out by Aurellal. [4] and it

was argued that the model can be described as being in sta-
For k—0 we wil have equipartitioning of energy tistical quasiequilibrium with the enstrophy transfer de-
k*|u;|?>=B~! and the scalingu;|~k~“’* and for the other scribed as a simple diffusion rather than an enstrophy cas-
branchk—o we will have equipartitioning of enstrophy cade. This coinciding scaling is a caviate of the GOY model

ki“2|ﬁ|2:A—1 and the scalinghui|~ki_ 22 | the case of no not present in the real 2D flow where the statistical equilib-

forcing and no viscosity the equilibrium will depend on the fium energy spectrum scales les' and the cascade energy
ratio A/B between the initial temperaturés 1,B~1. To il-  spectrum scales as . For other values of the scaling of
lustrate this we ran the model without forcing and viscositythe two cases are different, see Fig. 6. This figure represents
but with two different initial spectral slopes of the velocity the main message of this paper. The first axis is the param-
fields, the larger the slope the higher the ratio of the energgtere, along the line shown in Fig. 1, defining the spectral
temperature to the enstrophy temperature. Figure 5 shows thetio between the two inviscid invariants. The second axis is
equilibrium spectra fok=>5/4,y=f=0, in the cases of ini- the scaling exponent. The horizontal dashed ling=1/3 is
tial slopes—1,—0.8. The full lines are the equilibrium dis- the Kolmogorov scaling exponent for energy cascade. The
tribution given by (20) for A/B=10° and A/B=10"%, re-  full curve is the scaling exponent for the enstrophy cascade
spectively. and the dotted curve corresponds to the enstrophy equiparti-
tioning.
All the 3D-like models(asterisks in Fig. are near en-
ergy cascade scalingdashed ling Statistical equilibrium
For the forward enstrophy cascade the spectral slope isorresponds to the liney=0. The bold line segment
—(a+1)/3 and the enstrophy equipartitioning branch has0<e<0.39... represents parameter values where the Kol-
mogorov fixed point is stable[6]. The scaling for
€>0.39. .. isslightly steeper than the Kolmogorov scaling,
e =125 which is attributed to intermittency corrections originating
' ' ' R from the viscous dissipatiofil0]. It seems as if there is a
slight trend showing increasing spectral slopes for increasing
€.

V. DISTINGUISHING CASCADE FROM STATISTICAL
EQUILIBRIUM

1.00F ' '

For the 2D-like models the scaling slope is also every-
where on or slightly above both the cascade and the equilib-
rium slopes(diamonds in the figupe The classical argument
for a cascade is that given an initial state with enstrophy
concentrated at the low-wave-number end of the spectrum,
oy ] the enstrophy will flow into the high wave numbers in order
r N\ to establish statistical equilibrium. The ultraviolet catastro-

: : : : : : : phe is then prevented by the dissipation in the viscous sub-
range. Therefore, we cannot have a nonequilibrium distribu-
tion with more enstrophy in the high-wave-number part of
the spectrum than prescribed by statistical equilibrium since
enstrophy in that case would flow from high to low wave
numbers. This means that the spectral slope in the inertial
subrange always is above the slope corresponding to equilib-
0.10¢ E rium (dotted line in Fig. 6. Consequently, the 2D model

i ] with e=5/4 separates two regimes<Zk<5/4, where en-
i ] strophy equilibrium is achieved, and 5/4<2, where the
001k /Y 4 enstrophy is cascaded through the inertial range.

g : In Fig. 7 the spectra and the cascades are shown for dif-
L/ A ferent values ofe. The model was run with 50 shells and
i | forcing on shell number 15 for 2 10* time units and aver-
. o . - 3 aged. Even then there are large fluctuations in the cascades
wlvar(u)]¥2 not reflected in the spectra. The large differences in the ab-
solute values for the cascadess a reflection of the scaling

FIG. 9. Probability density functions for real part of the shell relation (18).

velocities of shells 18triangles and 40(squares The parabolas We interpret _th_e peaks a_round the forcing scale for
are Gaussians with the same variance. The upper panel shows t§& 11/10 as statistical fluctuation and the model shows no

PDF's for e=5/4 with Gaussians at both ends of the inertial range.cascade. FOe>5/4 we see an enstrophy cascade and what
The lower panel shows the PDF’s fer= 7/4 with a Gaussian in the S€ems to be an inverse energy cascade. However, we must
beginning of the inertial range and a distribution towards a LaplacStress that we do not see a second scaling regime for small
ian at the end of the inertial range, corresponding to an intermittenft corresponding the inverse cascade. Note thatfeR en-
signal. The second curve is a guide for the eye. ergy and enstrophy are identical and we have only one invis-
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cid invariant. So if a regime of inverse energy cascading VI. INTERMITTENCY CORRECTIONS

existed in parameter space nea 2 the scaling exponents The numerical result that the inertial range scaling has a

would be almost identical and coincide &t 2. slope slightly higher than the Kolmogorov 1941 prediction is

The two regimes corresponding to equipartitioning andy ¢ 1,1y understood. This is attributed to intermittency cor-

cascade can be understood in terms of time scales for the tions originating from the dissipation of enstrophy in the
dynamics of the shell velocities. A rough estimate of the timeiscous subrange.

scales for a given shelln is, from (1), given as The evolution of the shell velocities in the viscous sub-
To~ (ko) “*~k2™*. Again e=5/4, corresponding to range is intermittent fog>5/4, where the probability den-
vy=1, becomes marginal where the time scale is independesity functions(PDF's) are non-Gaussian, while the PDF’s for
of shell number. Foe<5/4 the time scale grows withand  e=5/4 are Gaussian in both ends of the inertial subrange; see
the fast time scales for smatl can equilibrate enstrophy Fig. 9. The deviation from the Kolmogorov scaling is ex-
among the degrees of freedom of the system before the digressed through the structure functiofg) [10]. The struc-
sipation, at the “slow” shells, has time to be active. There-ture function is defined through the scaling of the moments
fore these models exhibit statistical equilibrium. For5/4  of the shell velocities

the situation is reversed and the models exhibit enstrophy
cascades. Time evolutions of the shell velocities are shown
in Fig. 8, where the left columns show the evolution of a
shell in the beginning of the inertial subrange and the right

columns show the evolution of a shell at the end of the, o0 5/(q) is the deviation from Kolmogorov scaling. The
inertial subrange. This time-scale scaling might also eXpIa'%tructure functionZ(q) and 5¢(q) for e=11/10, 5/4, 3/2

why no inverse cascade branch has been seen in the GOy and 2 are shown in Fig. 10. Fer-5/4 there are inter-
model. The time-scales at the small-wave-number end of thgyittency corrections to the scaling in agreement with what
spectrum, with the dissipation or drag range for inverse cashe PDF's show. In calculating the structure function the
cade, is long in comparison with the time scales of the inerpqor statistics reflected in the noisy PDF’s are compensated
tial range of inverse cascade. Therefore a statistical equilibhy having a rather large number of shells, of the order 20, in
rium will have time to form. The analysis suggests thatthe inertial range.

parameter choices>5/4 might be more realistic than We know of no analytic way to predict the intermittency
e=5/4 for mimicking enstrophy cascade in real 2D turbu-corrections from the dynamical equation. Our numerical cal-
lence. culations suggest that the intermittency corrections are con-

|u_n|q~k§(Q):krTQV—5§(Q) , (21)
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(a) We must stress that caution should be taken upon drawing
0.4 . . . . . conclusions from this since the authors have no physical ex-
1 ] planation of the apparent relationship.
0Er ’ VIl. SUMMARY
o _00of------ % S The GOY shell model has two inviscid invariants, which
) r 1 govern the behavior of the model. In the 2D-like case these
= L . corresponds to the energy and the enstrophy of 2D turbulent
-0.2r ] flow. In the model we can change the interaction coefficient
r ‘}’ ] e and tune the spectral ratio of enstrophy to energy
-0.4+ %—_ Z,/E,=k; . For «>2 we can describe the dynamics as be-
L 1 ing in statistical equilibrium with two scaling regimes corre-
-0.6L l s s s L] sponding to equipartitioning of energy and enstrophy, re-
1.0 1.2 1.4 1.6 1.8 2.0 spectively. The reason for the equipartitioning of enstrophy
€ in the inertial ranggof forward cascading of enstrophis
(b) that the typical time scales, corresponding to eddy turnover
20F ' * * ' ™ times, are growing with shell number, thus the time scale of
E viscous dissipation is large in comparison with the time
108 E scales of nonlinear transfer. Thus this choice of interaction

coefficient is completely unrealistic for mimicking cascades
in 2D turbulence. Fo<2 the model shows forward cas-
cading of enstrophy, but we have not identified a backward
cascade of energy. The usual chowe5/4, =2 is a bor-
derline and we suggest that<2 in respect to mimicking
enstrophy cascade might be more realistic. We observe that
the dynamics becomes more intermittent when 2, in the
sense that the structure function deviates more and more

—30k s ; : : E from the Kolmogorov prediction. Foe=2 we havea=0,
1.0 1.2 1.4 1.6 1.8 2.0 thus energy and enstrophy degenerate into only one inviscid
€ invariant; this point could then be interpreted as a model of

3D turbulence. However, as is seen frgfb), in this case
the fluxless fixed point is the one surviving, but as seen in
Fig. 7, bottom panels, this model also shows cascading. This
ghoice for 3D turbulence model could shed some light on the
dispute of the second inviscid invariafitelicity) being im-
portant[3] or not[11] for the deviations from Kolmogorov
theory. Work is in progress on this point.

Note addedThe authors have recently become aware of
grelated work for a slightly different set of GOY models in M.

nected with the differences in typical time scales from th )Y
beginning of the inertial subrange, where the model is¥@mada and K. Ohkitani, Phys. Lett. 784 165(1988.

forced, to the viscous subrange. The ratio of time scales be-
tween the dissipation scale and the forcing scale can be es-
timated byT,/Ti=\2NO~1) where AN is the number of
shells between the two. Figure (Al shows the numerical We would like to thank A. Wiin-Nielsen, M. Hoeg
values of5¢(10) as a function ot and Figure 11b) shows Jensen, and G. Paladin for illuminating discussions and
log,(T,/T;) as a function ofe. The vertical line indicates David Stephenson for critical reading of the manuscript. This
the crossover between statistical equilibrium and cascadingvork was supported by the Carlsberg Foundation.

FIG. 11. (a) Numerical values 06(10) as a function ot. The
error bars represent one standard deviatibnRatio of typical time
scales between the dissipation scale and the forcing scal
log,(T, /Ts) is a function ofe. The vertical line indicates the cross-
over between statistical equilibrium and cascading.
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