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The dual cascade of energy and enstrophy in 2D turbulence cannot easily be under-
stood in terms of an analog to the Richardson-Kolmogorov scenario describing the
energy cascade in 3D turbulence. The coherent upscale and downscale fluxes point to
non-locality of interactions in spectral space, and thus the specific spatial structure of
the flow could be important. Shell models, which lack spatial structure and have only
local interactions in spectral space, indeed fail in reproducing the correct scaling for
the inverse cascade of energy. In order to exclude the possibility that non-locality of
interactions in spectral space is crucial for the dual cascade, we introduce a stochastic
spectral model of the cascades which is local in spectral space and which shows the
correct scaling for both the direct enstrophy and the inverse energy cascade. C© 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4761834]

I. INTRODUCTION

The scaling relations for the energy spectrum in turbulence are consequences of the energy
cascade in 3D turbulence19 and the dual cascades of energy and enstrophy in 2D turbulence.20 The
cascades follow from inviscid conservation of energy and enstrophy (in 2D), separation between
forcing and dissipation scales and the sweeping of smaller eddies by larger scale flow, indicating that
interactions are local in spectral space. The last assumption is based on the Richardson picture of
energy flowing in a self-similar manner from large to small scales,13 and thus depends somewhat on
the actual physical structure of the flow. In fact, experiments10, 27 and simulations16 show that fully
developed 3D turbulence has a filamented structure rather than a structure with eddies, or vortices,
with smaller eddies inside as envisaged by Richardson.

In 2D turbulence the situation is quite different: Since enstrophy is also an inviscid invariant,
the energy cascade is from smaller to larger scales. This inverse energy cascade is seen in both
experiments25, 28 and simulations.3, 15, 30 The scenario fits poorly into the Richardson picture. The
inverse cascade of energy can be understood in the spectral domain by the argument of Fjørtoft:12 An
initial spectrum concentrated around a wave number k0 will spread due to the nonlinear wave-wave
interactions. In order to conserve both the integral of the spectral energy density E(k) and the integral
of the spectral enstrophy density Z(k) = k2E(k) the energy must move to smaller wave numbers as
enstrophy moves to larger wave numbers. This argument does however not tell anything about the
spatial structures mediating this dual cascade. The 2D turbulent flow does indeed, beside the lower
dimensionality, seem to be different in its spatial structures from 3D turbulent flow.

II. CONCEPTUAL PICTURE OF 2D TURBULENCE

A 2D turbulence analog for the Richardson picture could be as follows: The flow is characterized
by well localized energy-containing vortices where the flow in between the vortices is characterized
by a strong shear accounting for the enstrophy dissipation. Vortices can merge, leading to even larger
scale structures. For this picture the dual cascade can be explained in a simple heuristic scenario:
Consider a vortex of linear scale R rotating as a rigid body with rotational speed !. Thus the velocity
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FIG. 1. Schematic cartoon of the scattering of two vortices of radii R in a 2D flow. The lower vortex is stretched in the flow
of the upper vortex. This results in growth to size 2R of the upper vortex while a smaller vortex of size R/2 is scattered of. If
the vortices are considered to perform rigid body rotations, the big upper vortex contains most of the energy while the small
lower vortex contains most of the enstrophy. In this way the energy is cascaded to large scales while enstrophy is cascaded
to small scales.

is ui(r) = εijl!jrl for r < R, falling off rapidly for r > R. !i is perpendicular to the plane of the flow.
The energy of the vortex is E = (π /4)!2R4 and the enstrophy is Z = 4π!2R2.

Consider now a flow of two such vortices of linear size R. Assume that they scatter in process
after which two vortices of linear sizes, say, R/2 and 2R emerge. This is schematically shown in
Figure 1. These new vortices have rotational speeds !1 and !2, respectively. From energy and
enstrophy conservation !1 and !2 are determined,

E/(π/4) = 2!2 R4 = !2
1(R/2)4 + !2

2(2R)4,
(1)

Z/(4π ) = 2!2 R2 = !2
1(R/2)2 + !2

2(2R)2

from which we get !2
1 = 32!2/5 and !2

2 = !2/10. The energy is then redistributed such that E1

= E/5 and E2 = 4E/5, while the enstrophy is distributed such that Z1 = 4Z/5 and Z2 = Z/5. Thus
the energy has moved to larger scales while the enstrophy has moved to smaller scales. Note that
this picture only works in the 2D turbulence case where the integral of the vorticity is an inviscid
invariant. The role of coherent structures and scattering of vortices in the cascade process is not at
present clear and this is just one of several conceptual pictures proposed.4, 29

III. LOCALITY OF INTERACTIONS IN SPECTRAL SPACE

The possibility of non-local interactions in spectral space was argued as follows by Kraichnan:21

The nonlinear spectral flux of energy $(k) from a scale l = 1/k depends on some effective rate of
shear Sk and the amount of energy at that scale kE(k). From dimensional counting we get

$(k) ∼ Skk E(k). (2)

From symmetry the mean rate of shear vanish in isotropic and homogeneous turbulence, thus the
effective rate of shear should be estimated from the square of the shear, using the association ∂u(l)/l
∼ kuk:

S2
k ∼

∫ k

K
κ2u2

κdκ =
∫ k

K
κ2 E(κ)dκ, (3)

where L = 1/K is the integral scale. The upper limit of the integral is truncated at wave number
k because smaller scales shear (wave numbers >k) should average out, and thus not contribute to
distorting eddies of scale 1/k. Assuming a scaling E(k) ∼ kγ , Eq. (3) gives S2

k ∼ (kγ+3 − K γ+3)
where the last term vanishes for K # k and γ > −3. Inserting into (2) gives the Kolmogorov scaling
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γ = −5/3 for the energy cascade. In this cascade the rate of shear is thus dominated by distortions at
wave number k, and the cascade is thus dominated by local interactions. For the enstrophy cascade
the situation is different, the spectral density of enstrophy is Z(k) = k2E(k) and flux of enstrophy is

$Z (k) ∼ Skk3 E(k), (4)

thus the scaling exponent becomes γ = −3. This value is, however, marginal in the sense that the
integral (3) becomes logarithmic divergent for K → 0. Kraichnan suggested a logarithmic correction
to the spectrum, E(k) ∼ k−3(log k/K)δ . Inserting into (3) gives S2

k ∼ (log k/K )δ+1 which inserted
into (4) gives a constant flux for δ = −1/3. Thus in this case the spectrum depends on the integral
scale L = 1/K and the interactions are non-local in spectral space. The arguments by Kraichnan
have been significantly refined by Eyink,11 still suggesting possibility of logarithmic corrections to
the spectrum and non-local interactions. However, in order to observe logarithmic corrections to the
spectrum very high Reynolds number flows must be observed. Results from numerical simulations
are ambiguous, some show a pure k−3 spectrum,3, 30 while other show a k−3(log k/K)−1/3 spectrum.26

IV. THE SHELL MODEL

An approach to modeling the cascade process as purely local in spectral space is taken in the
one-dimensional shell models introduced by Obukhov24 and Gledzer.14 In these models there are
no meaningful representation of the spatial structure of the flow. The flow is represented by a set
of generalized spectral velocity components un, associated with a wave number kn = λn, where λ

is a spectral shell spacing (typically λ = 2). The velocity un can be interpreted as some average
representation of all spectral fluid velocity components u(k) within a shell kn − 1 < |k| < kn, thus
the name “shell model.” The dynamics of the shell models7, 23 are, except for the tensorial structure,
similar to the spectral Navier-Stokes equation:

u̇n = i kn

(
u∗

n+1un+2 − ε

λ
u∗

n−1un+1 − ε − 1
λ2

un−2un−1

)

− (νk2
n + ν1k−2

n )un + f δn,n0 . (5)

The terms in the first parenthesis correspond to the nonlinear advection and pressure gradient terms.
The next term is the viscous dissipation and in the 2D case the large scale drag. The last term is
a forcing term localized at some wave number kn0 . The shell models have two quadratic inviscid
invariants: the first one is energy,

E =
∑

n

|un|2, (6)

and the second invariant determined by the free parameter is ε:

E2 =
∑

n

(ε − 1)−n|un|2 =
∑

n

kα
n |un|2, (7)

where the last equality defines the exponent α = −log (ε − 1)/log λ. For 0 < ε < 1 the factor
(ε − 1)−n = ( − 1)n|ε − 1|−n has alternating signs for even and odd shell numbers n corresponding
to a generalized helicity.6, 17 For these parameter values the shell models are denoted 3D-like. For
1 < ε < 2 the second invariant is always positive corresponding to a generalized enstrophy, and
the models are denoted 2D-like. The enstrophy has the same dimension as in the real 2D flow for
α = 2 and thus ε = 5/4. The velocity in the shell models has no meaningful spatial structure, but the
3D-like shell models do exhibit a forward energy cascade, with a Kolmogorov scaling (K41) relation
〈|un|〉 ∼ k−1/3

n . Recent interest in the 3D-like shell models has been on the numerical finding that
not only do the models show K41 scaling relations, the models also show intermittency corrections
to K41 leading to anomalous scaling relations similar to what is seen in high Reynolds number 3D
turbulence.1, 5 From inviscid energy conservation, there is an exact scaling relation for the nonlinear
flux of energy 〈$n〉 = kn,n+1 − kn−1(ε − 1),n = ε, where ε is the mean energy dissipation, and
,n = 〈Im(un − 1unun + 1)〉 is a specific third order structure function. This corresponds to the 4/5th
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TABLE I. Scaling exponents γ and κ for the energy spectrum, En ∼ kγ
n , and the eddy turnover time, τn ∼ kκ

n in the
cases of cascade or equipartition of energy or enstrophy, respectively. The parameter α signifies the generalized enstrophy:
Z =

∑
n kα

n |un |2.

Cascade Equipartition
Exponent γ κ γ κ

Energy −2/3 −2/3 0 −1

Z(α = 1) −4/3 −1/3 −1 −1/2
Z(α = 2) −2 0 −2 0
Z(α = 3) −8/3 1/3 −3 1/2

law of homogeneous and isotropic 3D turbulence. The 4/5th law: 〈δu‖(l)3〉 = −(4/5) εl relating a
third order correlator of the relative longitudinal velocity component, δu‖ = (ui (r + l) − ui(r))li/l to
the distance, l =

√
li li and the mean energy dissipation, ε, is one of a few exact non-trivial statistical

scaling relations derived from the Navier-Stokes equation.18

For the rest of this paper we shall focus on the 2D-like models and denote E2 = Z. This
case is more trickier: From classical scaling arguments we get the (constant) mean nonlinear flux
of enstrophy through the inertial range as 〈$Z

n 〉 ∼ kα+1
n 〈|un|〉3 ⇒ 〈|un|〉 ∼ k−(α+1)/3

n . This is the
corresponding Kolmogorov-Kraichnan scaling for the shell models. Obviously, in this case, as in 2D
turbulence, the inviscid enstrophy conservation also leads to an exact scaling relation for a specific
third order structure function.22 One heuristic argument for the transfer of enstrophy to smaller scales
(larger wave numbers) is that the triad interactions will tend to distribute enstrophy evenly over the
degrees of freedom of the system, which is the maximum entropy state. This state of equipartition
of enstrophy defines a different scaling relation, kα

n 〈|un|2〉 ∼ const. ⇒ 〈|un|〉 ∼ k−α/2
n .

Now, for the dimensionally correct enstrophy (α = 2) the two scalings are the same, so a
cascade and a diffusive transport of enstrophy in quasi-equilibrium cannot be distinguished.2, 9

This is an artifact of the shell models not present in 2D turbulence, where the spectral slope for
enstrophy cascade is 〈|u(k)|〉 ∼ k−1, while for equipartition it is 〈|u(k)|〉 ∼ k−1/2. If the exponent α

is different from 2, the scalings corresponding to enstrophy cascade and equipartition are different.
For 0 < α ≤ 2 the 2D-like shell models show a forward enstrophy cascade, while for α ≥ 2 they
show an equipartitioning of enstrophy. This numerical finding could be related to how the typical
eddy turnover time τ n depends on wave number. The typical eddy turnover time is simply defined
by dimensional counting: τn = (kn〈|un|〉)−1 = (kn

√
〈En〉)−1. Assuming the scaling En ∼ kγ

n , the
scaling for the eddy turnover time becomes τn ∼ kκ

n = k−(γ+2)/2
n . The scaling exponents in the

energy range and for three values of α in the enstrophy range in the two cases of cascade or
equipartition are summarized in Table I.

In the case of a cascade (0 < α ≤ 2) the eddy turnover time decreases with increasing wave
number, while in the case of equipartition (α ≥ 2) it increases with wave number, leaving time for
upscale (from large to small wave numbers) transport of enstrophy to equilibrate.8, 9 For the same
reason the 2D-like shell models fail in simulating the inverse cascade of energy: For a spectrum
corresponding to energy cascade the eddy turnover time decreases with increasing wave number
(see Table I), which makes the transport of energy diffusive, preventing the classical inverse energy
cascade (independent of α). The situation is summarized in Figure 2, where the energy spectra for
the three cases, α = 1, 2, 3 are shown: For α = 1 the model has a cascade spectrum (dashed line),
for α = 3 it has an equilibrium spectrum (full line), while for α = 2 the two spectra coincide.

It thus seems that one-dimensional models are unable to generate the dual cascade phenomenon
characteristic for 2D turbulence, which suggests that the specific spatial structure of the flow is
essential for the inverse energy cascade.

V. THE STOCHASTIC CASCADE MODEL

In order to investigate if the dual cascade is related to specific scale dependence of turnover
times we construct a stochastic Markov chain model of the cascade process. As for the shell models
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FIG. 2. Shell model energy spectra for α = 1, 2, 3, (ε = 1 + λ−α). The pumping scale is at wave number n0 = 15. Other
parameters of the simulations are: ν = 10−14, ν1 = 100, f = 1 + i. The dashed lines are the scaling relations corresponding to
(forward) cascade of enstrophy, while the full lines correspond to equipartition of enstrophy. When the slope corresponding to
equipartition is steeper than the slope corresponding to cascade (α = 3), the model shows equipartition, while in the opposite
case (α = 1) it shows cascade. By the same token there is equipartition of energy in the inverse cascade range.

we define a chain of exponentially growing scales in wave number space kn = λn. The dynamical
variable associated with each scale is the energy En. The enstrophy Zn is related to the energy as
Zn = kα

n En . The stochastic dynamical equation for En is:

d En = {qn+1 En+1 + (ε − 1)qn−1 En−1 − εqn En

+ q̃n+1 Ẽn+1 + (ε − 1)q̃n−1 Ẽn−1 − εq̃n Ẽn

− (νk2
n + ν1k−2

n )En + f δn,n0} dt, (8)

where Ẽn =
√

En−1 En+1 and {(qn, q̃n), n = 1, . . . , N} are a set of 2N stochastic variables:

qn (q̃n) =
{

1/dt (−1/dt) with probability Pn

0 with probability (1 − Pn), (9)

where Pn = min(1, dt/τn), τn = 1/(kn
√

En) is defined as a dynamical eddy turnover time and dt is
a time increment smaller than the smallest time scale in the system. The structure of the model is
derived from the spectral Navier-Stokes equation or the similar Eq. (5): Multiplying the equation by
the velocity u, using E = u2, we get Ė ∼ k

√
E E = E/τ (k). It is straightforward to verify that energy

and enstrophy are conserved in the unforced and inviscid case. The case qn = 1/dt corresponds to
a triad interaction where energy is transferred from shell n to shells n − 1 and n + 1. The case
q̃n = −1/dt corresponds to a triad interaction where energy is transferred from shells n − 1 and n
+ 1 to shell n. The choice of Ẽn as the geometric mean of the energies of the neighboring shells
ensures that energies remain positive. Furthermore, in the case that the energy follows a perfect
scaling relation, En = E0(kn/k0)γ , we have Ẽn = En and the model has detailed balance in the sense
that a (positive) energy/enstrophy transfer from shell n to the two neighboring shells has the same
probability as a transfer in the opposite direction.

The stochastic model energy spectra for the three cases α = 1, 2, 3 are shown in Figure 3. In all
three cases the two scaling regimes of inverse cascade of energy and forward cascade of enstrophy
are observed. The stochastic model thus, in contrast to the shell models, shows the same behavior
of dual cascade as in 2D turbulence, so even though the eddy turnover time in the spectral range
of inverse cascade of energy decrease with wave number, the system will not equilibrate. In the
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FIG. 3. Stochastic model energy spectra for α = 1, 2, 3, (ε = 1 + λ−α). The pumping scale is at wave number n0 = 15. Other
parameters of the simulations are: ν = 10−17, ν1 = 0.5, f = 0.1. The lines for n > n0 are the scaling relations corresponding
to (forward) cascade of enstrophy, while the lines for n < n0 correspond to the K41 scaling for the inverse cascade of energy.

spectral range of inverse energy cascade where large scale energy dissipation and small scale energy
pumping are well separated, there is a statistical steady state, |〈$n〉| = ε, where again ε is the mean
energy dissipation. Correspondingly in the range of forward enstrophy cascade there is a statistical
steady state, 〈$Z

n 〉 = η, where η is the mean enstrophy dissipation. Similar to the shell model, the
mean nonlinear transfer of energy 〈$n〉 and enstrophy 〈$Z

n 〉 from shells m ≤ n to shells m > n is
easily calculated,

〈$n〉 = (ε − 1)〈qn En〉 − 〈qn+1 En+1〉 + (ε − 1)〈q̃n Ẽn〉 − 〈q̃n+1 Ẽn+1〉 (10)

and

〈$Z
n 〉 = kα

n (〈qn En〉 − 〈qn+1 En+1〉 + 〈q̃n Ẽn〉 − 〈q̃n+1 Ẽn+1〉). (11)

Each of the terms on the right-hand sides has the form 〈qn En〉 = 〈Pn En〉 = kn〈E3/2
n 〉 ≡ kn,n or

〈q̃n Ẽn〉 = −〈Pn Ẽn〉 = −kn〈(En−1 En En+1)1/2〉 ≡ −kn,̃n and Eqs. (10) and (11) can be rewritten

〈$n〉 = kn{(ε − 1)(,n − ,̃n) − λ(,n+1 − ,̃n+1)} (12)

and

〈$Z
n 〉 = kα+1

n {(,n − ,̃n) − λ(,n+1 − ,̃n+1)}. (13)

The energy and enstrophy fluxes for the case α = 2 are shown in Figure 4. It clearly shows the dual
cascade.

An exact scaling relation ,n = ,̃n = ck3γ /2
n would imply 〈$n〉 = 〈$Z

n 〉 = 0 violating the
non-zero inverse energy and forward enstrophy cascades. Numerical inspection shows that
(,n − ,̃n)/,n # 1 for all n (and α). Thus we may assume a K41 scaling relation (,n − ,̃n)
= Ck3γ /2

n . In the range of inverse energy cascade, kn < kn f (or forward enstrophy cascade, kn > kn f ),
|〈$n〉| = ε (or 0) and 〈$Z

n 〉 = 0 (or η), Eqs. (12) and (13) imply

|〈$n〉| = Ck1+3γ /2
n {λ1+3γ /2 + (1 − ε)} = ε (or 0) (14)

and

〈$Z
n 〉 = Ckα+1+3γ /2

n {λ1+3γ /2 − 1} = 0 (or η). (15)
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FIG. 4. The spectral fluxes of energy, $n (top panel), and enstrophy, $Z
n (bottom panel), for α = 2. The red bars are

one-sigma error bars, which are smaller than the line width for the enstrophy flux. The forcing is at shell number 15.

Both equations are fulfilled exactly when γ = −2/3 and C = ε/(2 − ε) (or in the case of
enstrophy cascade, γ = −2(α + 1)/3 and C = η/(ε − 2)), note that λ−α = (ε − 1). The scaling
solutions corresponding to the dual Kolmogorov-Kraichnan cascades are obtained here from the
exact cancellations of the two terms in the curly brackets.

VI. SUMMARY

In conclusion, the behavior of the stochastic model exhibiting dual cascade indicates that the
scaling arguments leading to the prediction of dual cascade in 2D turbulence are indeed robust
and that long range triad interactions in the spectral domain are not crucial for explaining the dual
cascade. The model furthermore challenges the suggestion that the reason for why shell models
exhibit equilibrium spectra and fail in reproducing the Kolmogorov spectrum for the inverse energy
cascade should be related to the typical eddy turnover time scales leaving time for the energy to
equilibrate before being cascaded upscale.
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