An inner scale for dissipation of helicity
in turbulence
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1 Helical turbulence

The existence of a second quadratic inviscid invariant, the helicity, besides the
energy, in a helical turbulent flow leads to coexisting cascades of energy and
helicity [1]. An equivalent of the four-fifth law for the longitudinal third order
structure function, which is derived from energy conservation, is easily derived
from helicity conservation [2, 3]. This is a scaling relation for the third order
correlator associated with the spectral flux of helicity, (dv (I)-[vL(r) x v (r+1)])
= (2/15)612, where § is the mean dissipation of helicity. This relation is called
the ’two-fifteenth law’ due to the numerical prefactor. The two-fifteenth law
establishes another non-trivial scaling relation for velocity differences in a tur-
bulent helical flow.

The ratio of dissipation of helicity to dissipation of energy in spectral space
is proportional to the wave-number k. This is leading to a different inner — or
Kolmogorov scale for helicity than for energy [5]. The Kolmogorov scale n for
energy dissipation is obtained from & ~ dud/n ~ véul/n? = n ~ (V3/e)'/4,
where du; is a typical variation of the velocity over a scale [ and Z is the mean
energy dissipation. The Kolmogorov scale £ for dissipation of helicity is obtained
by balancing the helicity dissipation and the spectral helicity flux. With dimen-
sional counting we have § ~ véu? /¢* and using éu; ~ (I£)'/® we obtain the inner
scale £ for helicity dissipation,

£~ (P[5, (1)

where v is the kinematic viscosity, Z the mean energy dissipation and & the
mean helicity dissipation. The inner scale for helicity is always larger than the
Kolmogorov scale for energy so in the high Reynolds number limit the flow will
always be helicity free in the small scales, much in the same way as the flow



will be isotropic and homogeneous in the small scales. However, as is the case
for the enstrophy, we must have a blow up of helicity for high Reynolds number
flow in order to permit the energy to cascade to the dissipation scale since
the spectral helicity density dimensionally dominates with a factor k over the
spectral energy density. Helicity is, in contrast to enstrophy, an inviscid invariant
in 3D turbulence so the only way there can be a blow up of helicity is if there
is a detailed balance between positive and negative helicity production in the
range Ky < k < Kg. So the situation in 3D turbulence with cascades of energy
and helicity is very different from the situation in 2D turbulence since helicity is
not a positive quantity. In 2D turbulence, where enstrophy is a positive inviscid
invariant, the cascade of enstrophy prohibits a forward cascade of energy.

2 Model simulation

The idea is illustrated in a shell model of turbulence. Shell models are toy-models
of turbulence which by construction have second order inviscid invariants similar
to energy and helicity in 3D turbulence. The advantage of shell models is that
they can be investigated numerically for very high Reynolds numbers, in contrast
to the Navier-Stokes equation. Shell models lack any spatial structures so we
stress that only certain aspects of the turbulent cascades have meaningful analo-
gies in the shell models. This should especially be kept in mind when studying
helicity which is intimately linked to spatial structures, and the dissipation of
helicity to reconnection of vortex tubes [4]. So the following only concerns the
spectral aspects of the helicity and energy cascades. The most well studied shell
model, the GOY model [6, 7], is defined from the governing equation,
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with n = 1,..., N where the u,,’s are the complex shell velocities. The wave-
numbers are defined as k,, = A", where A is the shell spacing. The second and
third terms are dissipation and forcing. The model has two inviscid invariants,
energy, E =Y E, =3 |u,|?, and helicity’, H =3 H, =Y., (e—1)""|u,|?.
The model has two free parameters, A and €. The ’helicity’ only has the correct
dimension of helicity if [e — 1|7™ =k, => 1/(1 — €) = A. In this work we use the
standard parameters (e, \) = (1/2,2) for the GOY model.

Figure 1 shows two shell model simulations, one with a helicity free forcing
and one with coexisting cascades of energy and helicity. The spectral fluxes of
energy and helicity are plotted against wave-number. The helicity flux (dia-
monds) in the case of a helical forcing shows a crossover between a regime with
a constant cascade of helicity and a regime dominated by balanced dissipation of
positive and negative helicity (for even — and odd numbered shells). The scaling

in this regime is governed by the dissipation of helicity D, ~ vk2|un|? ~ vki/®.
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Figure 1: The absolute values of the helicity flux [(IIZ)| (diamonds) show a
crossover from the inertial range for helicity to the range where the helicity is
dissipated. The line has a slope of 7/3 indicating the helicity dissipation. The
dashed lines indicate the helicity input 6. The crosses is the helicity flux in the
case § = 0 where there is no inertial range and Ky coincides with the integral
scale. The triangles are the energy flux (ITF).

The crossover defines the inner scale £ = Kgl for helicity dissipation. In
the first regime both the four-fifth — and the two-fifteenth’ law applies, in the
second regime only the four-fifth law applies. The position of the inner scale
K} depends on the input of helicity § = 0. Figure 2 shows a set of simulations
performed with different helicity inputs. When scaling the wave number with
Ky and the helicity flux with 6 = 0 a clear data collapse between the different
simulations is seen, confirming the scaling (1).

3 Conclusions

The role of helicity in 3D turbulence is different from the role of enstrophy in
2D turbulence. In 3D helical turbulence the helicity is dissipated within the
inertial range of energy cascade. Thus there exist two inertial ranges in helical
turbulence, a range smaller than Ky with coexisting cascades of energy and
helicity where both the four-fifth - and the two-fifteenth law applies, and a range
between Ky and Kg where the flow is non-helical and only the four-fifth law
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Figure 2: Five simulations with constant viscosity ¥ = 10~°, constant energy
input z = 0.01 and varying helicity input § = (0.0001,0.001, 0.005, 0.01, 0.08) are
shown. The absolute values of the helicity flux [(TI)| divided by ¢ is plotted
against the wave number divided by Kg = (v°&2 /33)_1/ 7. which is obtained
from (1) neglecting O(1) constants.

applies. In this range there is a detailed balance between positive and negative
helicity associated with the structures where the energy is dissipated.
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