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Climate transitions on long timescales

Peter D. Ditlevsen*

Centre for Ice and Climate, The Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100
Copenhagen, Denmark

(Received 30 January 2009; final version received 20 February 2009)

The climate has changed through the history of the Earth as evidenced in the geological records. Today we might be
experiencing a climate change of the same magnitude as the transition into an ice age caused by very rapid burning
and emission to the atmosphere of a substantial part of the fossilised carbon. Whether this leads to a gradual
warming or if we will experience a transition into a different climatic state is presently unknown. The present day
state-of-the-art numerical climate models are capable of producing fair representations of the current climate and are
as such trusted to also predict the climate changes due to increasing atmospheric concentrations of greenhouse gases.
However, the models are not presently capable of reproducing the rapid transitions from one climatic state, such as a
glacial climate, into another, such as the present climate. The reason for this is unknown. The transitions are
inherently ‘non-linear’ and thus not accessible through linear response theory. The term ‘non-linear’ is in this context
defined as the phenomenon that the response of the system to a change in the forcing of the system is not linearly
proportional to the forcing. This would happen if a threshold is reached such that the state of the system becomes
unstable and the system bifurcates into a different state. There are strong indications in the geological records of this
kind of behaviour for the climate. These dynamics can be understood in the context of fairly simple models of the
climate.

Keywords: climate change; climate models

1. Introduction

The climate is governed by a hierarchy of physical
processes determining how the incoming solar radia-
tion and the outgoing long wave radiation are
balanced. A very useful way of viewing the dynamics
of the climate system is through analysing the energy
flows. The incoming solar radiation is partly scattered
back into space, partly absorbed into the atmosphere
and partly absorbed into the surface of the planet. The
surface is thus heated and subsequently releasing heat
into the atmosphere both directly (sensible heat) and
through evaporation of water, which release the heat
while re-condensing in clouds (latent heat). The
incoming energy flux to the surface depends on latitude
through the variation in inclination of the Sun, thus
‘inclination’ and ‘climate’ have the same ontological
roots. The differential heating leads to the generation
of mechanical energy through the buoyancy forces
caused by the expansion of air due to heating. This in
turn redistributes the heat vertically through convec-
tion and horizontally through the winds. The mechan-
ical energy is dissipated mainly through surface drags,
some deposited as ocean surface waves, while at the
end the energy is lost to space through long wave
black-body radiation. The connection between the

long wave radiation and the surface temperature
depends on the vertical structure of the atmosphere,
cloud processes and the amount of greenhouse gases in
the atmosphere.

We shall in a loose sense consider the climate state
to be the statistically steady state represented by some
well defined variable, such as the global mean surface
temperature. Already in doing this we must be
cautious, since in principle, the system could reside in
distinct climatic states, i.e. characterised by different
meridional (equator to pole) temperature gradients
with the same mean temperature. With this pragmatic
definition of the climate the very first question one
would ask is: ‘What determines the mean surface
temperature?’. Secondly, if this is indeed determined
by, say, the incoming solar radiation: ‘What makes it
stable and what makes it change?’. These questions
turns out to be much harder to answer than what one
would perhaps expect. A comparison of the present-
day surface temperatures on Venus, Earth and Mars
shows that these differ much more than what can be
explained by the distances from the planets to the Sun.
Figure 1 shows the solar flux as a function of the
distance to the Sun. The curve shows what the surface
temperature would be if conditions were as they are on
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the Earth for planets at a given distance. As shown, the
surface temperature on Venus is about 400 K warmer
and Mars about 20 K colder than should be expected.
This is an illustration that the temperature strongly
depends on the planetary atmosphere and is not set
solely by the incoming solar flux. The incoming solar
flux has, due to the increase with time of nuclear fission
in the interior of the star, risen by about a third during
the lifetime of the solar system. This has remarkably not
caused a drastic change in the surface temperature on
Earth. On the contrary, there is good evidence for the
existence of liquid water on the surface of the Earth for
more than 4 billion years. This indicates that there are
some mechanisms in the system to stabilise the existing
climate state over long geologic times. Today we have
pretty good ideas of what these mechanisms are.

Moving from the billion years timescale to the tens
of millions of years, there is disturbing evidence of
global glaciations, with freezing all the way to the
equator, happening a few times and lasting for tens of
millions of years just prior to the development of
multicellular life. These are the so-called Snowball
Earth events, which we shall see to be a consequence of
multiple steady states in the radiative balance of the
Earth. Since the last Snowball Earth event the climate
has been warm and stable enough for the development
of complex life forms.

For the last 20 million years the Earth has been so
cold, that permanent ice sheets are found at the poles.
Antarctica especially has been permanently ice
covered. This is due to an unprecedented low atmo-
spheric concentration of the greenhouse gas CO2. This

climatic period is sometimes dubbed the ‘Icehouse
World’ (in contrast to the ‘Greenhouse World’). The
Icehouse World is characterised by periodic waxing
and waning of the large glaciers between ice ages and
warm periods. It has long been known that the coming
and going of ice ages is related to periodic changes due
to the perturbations from the other planets in Earth’s
Keplerian orbit around the Sun. However, the climatic
response to the changing solar insolation is not
completely understood. As we shall see later this is
also a strongly non-linear response phenomenon.

Finally, ice core records show that even within the
last glacial period there are variations at the thousands
of year timescale with abrupt jumps between two
distinct quasi-stable climate states. These jumps
apparently occur at random which indicates that
stochastic dynamics might be at play in the climate
system. This may lead in the end to a speculation about
the predictability of climate.

2. The radiative energy balance

The climate system and the biosphere, for that sake, is
driven by the balance of the incoming low entropic
short wave radiation from the Sun and the outgoing
high entropic long wave black-body radiation to space.
The possibility of driving the climate and biological
‘engines’ comes from the big temperature differences
between the surface of the Sun (*6000 K), the surface
of the Earth (*300 K) and outer space (*3 K). The
surface temperature of the Earth depends on this
balance. Firstly, the amount of incoming radiation
depends on the planetary albedo. The albedo of an
object is the fraction of sunlight hitting the object
which is reflected, thus it is the complement to the
absorption. The planetary albedo is not a constant
factor, it depends through the amount of clouds and
ice, on the state of the climate itself. The feedback of
clouds on temperature is very complicated. It depends
on the height in the atmosphere where the clouds are
formed and the state of the atmosphere surrounding
the clouds. The clouds cool by reflecting the incoming
radiation and they heat by trapping the outgoing
radiation. These are both strong factors, of equal
magnitude, thus partially cancelling each other out,
resulting in a net cooling effect. Ice and snow on the
surface unambiguously cool by reflecting the incoming
short wave radiation. The amount of ice and snow
influences the planetary albedo. This effect we can
describe in a model of the climate represented by just
one parameter, the mean surface temperature T. We
thus need to determine the functional relationship
between this temperature and the long wave radiation
and the albedo, respectively. The amount of ice and
snow is larger when the temperature is lower, so the

Figure 1. The surface temperature on a planet as a function
of distance to the Sun. The curve shows how the temperature
would be if conditions were identical to those of the Earth.
Venus is much warmer due to an extremely thick greenhouse
atmosphere. Mars is colder even though its atmosphere
contains mainly CO2. That is because the atmosphere is very
thin, only about 1% of that on Earth.
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lower the temperature the higher the albedo, and we
can write the albedo a(T) as a function of the
temperature. If the temperature is below some low
temperature T1 the planet will be completely ice
covered and a further decrease in temperature cannot
increase the albedo. If the temperature is above some
other high temperature T2 the ice is completely melted
and a further increase in temperature will not lead to a
decrease in albedo. The simplest functional form is a
linear dependence of the albedo on temperature in
between these two temperatures. This is the most
reasonable choice when no other information is
available a priori. We then have the relation:

aðTÞ ¼
a1; T � T1;
ðT2 � TÞa1 þ ðT� T1Þa2

T2�T1
; T1 < T � T2;

a2; T > T2:

8<
:

ð1Þ

The change of the temperature T is determined by the
difference in incoming and outgoing radiation [1,2],

c
dT

dt
¼ Ri � Ro ¼ ð1� aðTÞÞS� � sT4

eff; ð2Þ

where c is the heat capacity, S* ¼ S/4 is a quarter of
the solar constant. (The quarter comes from the ratio
of the surface of the sphere to the cross-sectional area
blocking the sunlight.)

Teff is the temperature at the level in the atmo-
sphere from where the black-body radiation is emitted
to space. Since the atmosphere is opaque in the infra-
red wave-band due to greenhouse gas absorbers this
level is estimated as one optical dept into the atmo-
sphere in this band. The greenhouse effect, the change
in cloudiness and other factors must all be expressed
through the connection between the surface tempera-
ture T and the temperature Teff. The more greenhouse
gas in the atmosphere the higher in altitude is the
effective level of emission. The temperature decreases
with height by convective adjustment, such that the
atmosphere is stable with respect to vertical adiabatic
motion. The greenhouse warming can then be defined
as DT ¼ T 7 Teff, such that the last term in Equation
(2) becomes Ro ¼ s(T 7 DT)4. The value of the
planetary albedo can be obtained elegantly by compar-
ing the bright and the dark side of the Moon at half
Moon, the bright side is lit by the Sun, while the dark
side is lit by sunlight reflected off the Earth. From this
(and from satellite measurements) the planetary albedo
is measured to be approximately 0.31; using this and
solving (2) with respect to temperature we get the
present-day greenhouse warming to be DT � 32 K.

The greenhouse warming will in general be a
function of T mainly through the temperature

dependent water vapour (a greenhouse gas) concentra-
tion and cloud formation.

The behaviour of (2) is easily understood from a
graphic representation. Figure 2 shows the incoming
and outgoing radiation as a function of temperature.
There are three temperatures Ta, Tb, Tc for which the
curves cross such that the incoming and outgoing
radiations are in balance. These points are the fixed
points of (2). Consider the climate to be at point Ta. If
some small perturbation makes the temperature lower
than Ta we will have Ri 4 Ro ) cdT/dt 4 0 and the
temperature will rise to Ta. If on the other hand, the
perturbation is positive and the temperature is a small
amount larger than Ta we have Ri 5 Ro ) cdT/
dt 4 0 and the temperature will decrease to Ta again.
Thus, Ta is a stable fixed point. The same analysis
shows that for Tb a small perturbation will grow in
time and the temperature will move away from Tb.
Thus, Tb is an unstable fixed point. A similar analysis
shows that Tc is a stable fixed point. The tendencies are
indicated by arrows in Figure 2. The model has two
stable climate states Ta and Tc. So if the temperature at
some initial time is lower than Tb it will eventually
reach the temperature Ta and if it is higher than Tb it
will reach the temperature Tc. The present climate is
the climate state Tc where the ice albedo does not play
a significant role in cooling the Earth.

The radiation might not be constant in time but
depends on some external factors. The solar flux varies
both because of changes in solar output and because of
changes in the Earth’s inclination and orbit around the
Sun. The solar constant can then be expressed as mS*,
where m 4 0 is a time dependent parameter so we have
Ri ¼ (17a)mS* in (2). Consider the climate repre-
sented by Tc in the situation m 4 1. Then for m not too
small, corresponding to the dashed curve in Figure 3,

Figure 2. The global mean surface temperature is
determined by the balance between incoming and outgoing
radiation. The net incoming flux depends on temperature
through the decreasing planetary albedo with temperature.
The outgoing flux is determined by the black-body radiation
and the greenhouse effect as a function of the surface
temperature.
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the equilibrium temperature is lowered a little, as we
would expect when the solar input decreases. However,
if m becomes smaller than some value m0 the two curves
do not cross anymore and there is no stable fixed point
near Tc. The climate will then run into the only stable
fixed point Ta which is still present. A bifurcation has
occurred and there is a large change in climate. This
kind of behaviour is for obvious reasons sometimes
also called catastrophic. If m grows again, the climate
state Tc will not recover until m exceeds some other
value m00 4 1, where Ta disappears. This is the dot-
dashed curve. For each value of m we have either one
or three fixed points and we can plot the fixed points as
a function of m. This is a bifurcation diagram (see
Figure 4). The two full curves represent the stable fixed
points and the middle dashed curve represents the
unstable fixed point. As can also be seen from Figure 4
the unstable and one of the stable points coincide at the
bifurcation points m0 and m00. Assuming that the solar
flux changes periodically in time as m(t) ¼ (m0 þ m00)/
2 þ e sin ot where e 4 jm0–m00j the climate will jump
periodically between the states Ta and Tc. The evolution
is represented by arrows in Figure 4, this is a hysteresis
loop. If the climate T(t) is considered as the response to
the forcing function m(t) the response is strongly non-
linear, which means that at some times there is a large
response to a small change in forcing, which was
originally motivating the model as an explanation for
glacial cycles as a response to the weak forcing from the
period changes in Earth orbit around the Sun. The time
evolution is schematically shown in Figure 5.

3. The Snowball Earth and the ‘Faint young Sun

paradox’

The stable climate state Ta corresponds to a totally ice
covered planet and as such is not a realistic theory of
the glacial cycles. The totally ice covered planet is the

Snowball Earth [3]. There is geological evidence of
such an extreme ‘deep freeze’ climate several times in
the Neoproterozoic period earlier than 700 million
years ago. This is based on synchronous findings of
glacial deposits like moraine in many places which at
those times were near the equator. The speculated way
out of the deep freeze is the following: the balance in
geological timescales between weathering binding
atmospheric CO2 into rocks and volcanic out-gassing
of CO2 was changed during the deep freeze. Due to the
cold conditions the atmosphere dried out and weath-
ering was reduced. Unchanged volcanic out-gassing
resulted in an ever increasing amount of CO2 in the
atmosphere. At some point, after about 80 million
years, this would result in a greenhouse warming
strong enough to melt the ice. This scenario corre-
sponds to gradually moving the Ro curve upwards in
Figure 2 until the stable fixed point Ta disappears
(together with Tb) through a saddle-node bifurcation,
and the only remaining fixed point is Tc. The warming
would then be almost explosive with global
mean temperatures going from some 7408 C to

Figure 3. The incoming radiation change as a function of
changes in the solar constant, represented by a control
parameter m. For some larger value m > m10 only the upper
stable fixed point exists. For some smaller value m 5 m only
the lower stable fixed point exists.

Figure 4. The fixed points plotted as a function of the
control parameter m. At m% m10 the lower state disappears
through a saddle-node bifurcation, while at m&m0 the upper
state disappears. A cyclic change in m leads to a hysteresis
loop.

Figure 5. A small periodic variation in the forcing can lead
to a strongly non-linear large response through a hysteresis
loop.
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some þ508 C within a few years. Few organisms would
be able to survive such a dramatic climatic jump, and
we could speculate that this is a reason why it took
such a long period for multicellular life to evolve.
Multicellular life came into existence some 600 million
years ago in the Cambrian explosion shortly after the
last deep freeze. To substantiate such a speculation of
course, unsuccessful development of multicellular life
terminated by a Snowball Earth event must be found.

The fact that the Earth was not frozen in its very
early history despite the fact that the Sun was about
30% fainter is known as the ‘Faint young Sun
paradox’. The most probable solution to the puzzle
(which is not really a paradox) is that the geochemical
carbon cycle was balancing the out-gassing of CO2

from volcanoes with CO2 removal through weathering,
where carbonic acid rain slowly dissolves silicate rocks
[4]. The balance between these two processes deter-
mines the atmospheric CO2 concentration and thus the
temperature through greenhouse warming. Obviously,
this can only work as a regulator of temperature if one
of these processes depends on the temperature itself [5].
This is the case for weathering, since it depends
strongly on precipitation. The regulation acts like
this negative feedback loop: more atmospheric CO2!
higher temperature ! more rain ! stronger weath-
ering ! less atmospheric CO2. The reason why
Snowball Earth events have not happened since before
the Cambrian explosion is thought to be a pole-ward
continental drift changing the hydrological cycle and
the weathering of atmospheric CO2.

4. One-component dynamical systems

Models like the Bodyko–Sellers climate model intro-
duced above are very useful in the study of climate
dynamics. It is therefore relevant to exploit the
behaviour in mathematical terms in a more general
setting. Consider the system as described by the
variable x by the equation

_xðtÞ ¼ fðxðtÞ; mÞ; ð3Þ

xð0Þ ¼ xi; ð4Þ

where as usual the dot means differentiation with
respect to time and m is some parameter called a
control parameter. This is the simplest case where the
system is described by only one dependent variable, so
we can call the system a ‘one-component’ dynamical
system. Equation (3) is an autonomous (f does not
depend explicitly on time, disregarding for now any
possible time dependence of m), first order (one
differentiation with respect to time), ordinary (no
partial derivatives) differential equation. It has a
unique solution with the specified initial condition (4)

where the subscript ‘i’ indicates ‘initial’. For the
moment we will suppress the dependence on the
external parameter m. Equation (3) can be integrated,

dx

dt
¼ fðxÞ )

Z xðtÞ

xi

dx

fðxÞ ¼
Z t

0

dt ¼ t ð5Þ

to obtain x as an implicit function of t, the integrand is
only defined for f(x) 6¼ 0. If f(x0) ¼ 0 then x0 will be a
fixed point where the solution will reside and the
integral above is not defined.

The fixed points of Equation (3) are determined as
the set of solutions to the equation

fðxÞ ¼ 0: ð6Þ

Having found a fixed point x0 the next thing to do is to
determine the stability of x0. When x is close to x0 we
can expand f(x) in a Taylor series around x0: f(x) ¼
f(x0) þ f 0(x0)(x7x0) þ O((x7x0)

2) ¼ f 0(x0)(x7x0) þ
O((x7x0)

2). Inserting this into (3), defining the small
perturbation y ¼ x–x0 we get to first order,

_y ¼ f 0ðx0Þy) yðtÞ ¼ yð0Þexp ðf 0ðx0ÞtÞ: ð7Þ

If f 0(x0) 4 0 the perturbation y(0) will grow exponen-
tially with time and the fixed point x0 is unstable. If
f 0(x0) 5 0 the perturbation will decrease exponentially
in time and the fixed point is stable, so the stability is
determined by the first derivative f 0(x0) at the fixed point.
The interval of initial conditions xi which eventually will
end up in (or arbitrarily close to) the stable fixed point x0
is called the domain of attraction of x0. Consider x1 5 x2
to be two stable fixed points and assume that there are no
other stable fixed points between x1 and x2. If x1 5
x 5 x2 is a point close to x1 then x will approach x1 with
time and thus f (x) 5 0. On the other hand, if x is close to
x2 it must approach x2 with time and f(x) 4 0. Thus,
there must exist a point x3 separating the domains of
attraction of x1 and x2 such that x1 5 x3 5 x2 and
f(x3) ¼ 0. This fixed point must be unstable since we
assumed that there were no stable fixed points between x1
and x2. This shows that any two stable fixed points must
be separated by an unstable fixed point, and by a
completely similar argument two unstable fixed points
must be separated by a stable fixed point. Therefore, in
the stability analysis of the climate model above it suffices
to see that Ta is a stable fixed point. From this it follows
that Tb must be unstable and Tc must be stable. This
analysis is easily understood if the equation of motion (3)
is expressed in terms of a potential,

_x ¼ � dUðxÞ
dx

; ð8Þ
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where U(x) ¼
R
xf(y)dy is the potential corresponding

to the force f(x). The fixed points correspond to
local extrema for the potential. The stability of the fixed
points are determined by the curvatures f0(x0) ¼
7U00(x0). So if U00(x0) 4 0 then U(x0) is a minimum
and x0 is a stable fixed point. If U00(x0) 5 0 then
U(x0) is a maximum and x0 is an unstable fixed
point. Figure 6 shows the potential for (2) which is a
double-well potential. It is now trivial, why two
stable fixed points must be separated by an unstable
fixed point.

5. Stochastic climate dynamics

The climate system obviously contains very many
variables interacting in complex ways, so when the
extreme reduction in representing only one variable
governed by the energy balance we should consider
Equation (2) as an effective equation and seek a way of
incorporating the effect of the unresolved variables.
The dynamics is characterised by the interaction
between components with very different typical time-
scales. The atmospheric variations, weather patterns,
are typically of days to weeks duration while variations
in ocean currents are on much longer timescales, years
to centuries, buildup of ice sheets takes several
millennia and even changes in tectonics and geochem-
istry on millions of years timescales are influential in
the climate.

The timescales where the slow climate variables
change appreciably are beyond the correlation time for
the fast variables. At these timescales the fast variables
are effectively decorrelated and could then be described
as being stochastic [6].

Assume that we can describe the system by a set of
governing equations for the system variables that can
be split in separate variables represented by the vectors

x ¼ (x1, . . . , xi, . . .) and y ¼ (y1, . . . , yj, . . .). Then
the system differential equations can be written in
terms of two sets of functions fi and gj as

_xi ¼ fiðx; yÞ; ð9Þ

_yj ¼ gjðx; yÞ; ð10Þ

where we can associate a typical timescale txi and tyj,
respectively, to each variable such that txi � tyj for
all (i, j). Equation (10) describes the dynamics of the
large scale observable. For brevity we drop vector
notations, and consider x and y as scalar variables.
The extension to more dimensions is mostly
straightforward. In the effective dynamics for y we
can write the small scale variable as x ¼ hxjyi þ x0,
where the brackets denote the average of x condi-
tioned on y. Inserting this into the second equation,
using that x varies much faster than y, we can
approximate

_y ¼ gðhxjyi þ x0; yÞ � gðhxjyi; yÞ þ @xgðhxjyi; yÞx0

¼ geffðyÞ þ sðyÞZ: ð11Þ

For the short time correlated variations x0(t) we have
substituted a stochastic white noise s(y) Z(t) with
hZ(t)Z(t0)i ¼ d (t–t0).

Equation (11) is a Langevin equation. In the
simplest form we will assume the noise intensity to
be independent of the climate state y. Writing F(y) for
geff (y) we have

_y ¼ FðyÞ þ sZ ¼ �dU=dyþ sZ; ð12Þ

where the drift ‘force’ F(y) is defined as (minus) the
gradient of an effective potential U(y). If the noise
intensity is low the y component will for a long time
settle around a stable fixed point y0 provided
F(y0) ¼ 0 and F0(y0) ¼ 7a 5 0. The notion of low
noise intensity must be defined in the sense of an
Arrhenius escape time, T * exp(h/s2), where h is the
barrier height in the potential U separating the stable
fixed point y0 from other stable fixed points. Without
loss of generality we can take y0 ¼ 0 and expand
F(y) in (12) to first order

_y ¼ �ayþ sZ: ð13Þ

A process satisfying this linear stochastic equation is
called an Ornstein–Uhlenbeck process or a red noise
process [7]. Equation (13) can easily be solved for the
auto-correlation function, c(t) ¼ hy(t)y(t þ t)i:

cðtÞ ¼ hy2iexp ð�ajtjÞ;

Figure 6. The double-well potential corresponding to the
forcing in Equation (2). In this case m0 5 m 5m1 such that
both states with temperatures Ta and Tc are stable. Tb is the
temperature of the separating unstable fixed point state
represented by the dashed line in Figure 4.
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where the correlation time is T ¼ 1/a. The power-
spectrum is the Fourier transform of the autocorrela-
tion function, which becomes,

PðoÞ ¼ s2=ðo2 þ a2Þ; ð14Þ

and the connection between the intensity of the process
and the intensity of the noise is hy2i ¼ s2/(2a). This is
the simplest form of the fluctuation-dissipation
theorem.

The red noise process (13) is quite a good model
of the variations of climate series in our present
climate. Figure 7 shows the power spectrum of the
last 4000 years of a Greenland ice-core proxy record
[8] of temperature. The smooth curve is given by
Equation (14) with a correlation time of 5 years. The
peak, indicated by the arrow is the annual cycle in
temperature, which is not included in the simple
description (13). The correlation time of 5 years
should be expected from the typical timescales of
variations in surface water temperatures in the North
Atlantic ocean influencing the air temperatures in
that region.

The Langevin Equations (11) or (12) are stochastic
and will as such have a solution which depends not
only on the initial condition y0(t0), it will also depend
on the specific realisation of the noise. A deterministic
equation for the conditional probability p(x,tjx0,t0),
which is the probability density for x at time t, given

the process is at x0 at time t0, can be derived from
Equation (12) [7]:

@tpðx; tjx0; t0Þ ¼ �@x½FðxÞpðx; tjx0; t0Þ�

þ @2x
s2ðxÞ
2

pðx; tjx0; t0Þ
� �

: ð15Þ

This is the Fokker–Planck equation for the conditional
probability density.

6. Ice ages

The climate has varied periodically between ice ages
and warm periods for the last few tens of millions of
years. A continuous record of these variations is found
in sedimentation in the deep sea. The sediments are
formed from sinking planktonic organisms (forameni-
fera). The deep sea is biologically a desert, thus the
sedimentation rate is extremely low, of the order of a
metre in a million years. The oxygen isotopes in the
calcium-carbonate shells of these organisms is a proxy
for the isotopic composition of the ocean water, and
since light isotopes evaporate easier a proxy for the
amount of water deposited in ice sheets. A composite
of deep sea records is shown in Figure 8 [9]. Since
going deeper into the sediments corresponds to going
back in time, the geological convention is to invert the
time axis. So keep in mind that time grows from right
to left in the figure. The convention for the units ‘years
BP’ is ‘year before present’, with ‘present’ ¼ 1950. The
graph should be read as a proxy-temperature record,
showing cycles of warm (high values) and cold periods
(low values).

The glacial cycles are attributed to the climatic
response of the orbital changes in the irradiance to the
Earth [10,11]. These changes in the forcing are too
small to explain the observed climate variations as
simple linear responses. Non-linear amplifications are
necessary to account for the glacial cycles. The
dominant orbital periods in solar insolation is the
41 kyr obliquity cycle (tilt of rotational axis, determin-
ing the meridional gradient in insolation) and the
precessional cycles (determining the season when Earth
is closest to the Sun) which decompose into 19 kyr and
23 kyr periods. However, through the last 800 kyr–
1 Myr the dominant period for the glacial cycles is
approximately 100 kyr similar to the one order of
magnitude weaker eccentricity cycle (determining the
semi-annual difference in distance to the Sun). The
weakness of this climatic forcing is referred to as the
100 kyr problem of the Milankovitch theory [12]. It is
now generally accepted that the 100 kyr glacial time-
scale cannot be attributed to the eccentricity cycle [9].
In the Plio- and early Pleistocene, 3–1 Myr BP, the

Figure 7. The power-spectrum of the last 4000 years of a
Greenland ice-core proxy record of temperature (Dansgaard
et al. [8]). The smooth curve is given by Equation (14) with a
correlation time of 5 years. The peak, indicated by the arrow,
is the annual cycle in temperature. The annual cycle is not
included in the red noise process (13).
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dominant period of variation was indeed the 41 kyr
obliquity variation [13,14].

Different mechanisms have been proposed to
explain the occurrence of the 100 kyr glacial cycle.
These range from self-sustained non-linear oscillators
[15–17], forced non-linear oscillators [18] to the
glaciations being a resonance phenomenon. Stochastic
resonance, which we shall return to later, was
originally constructed as an explanation of ice ages
[19].

Combined evidence from records of glaciations on
land and deep sea records suggest that the climate has
shifted between different quasi-stable states charac-
terised by the mode of the global ocean circulation and
the degree of glaciation [20]. These states may originate
similar to the stable states in the simple ocean box
model which we shall introduce later, or the energy
balance model introduced above. By comparison
between the paleoclimatic record and a non-linear
stochastic model, it is demonstrated that the record can
be generated by the forcing from insolation changes
mainly due to the obliquity cycle through the full
record including the last 1 Myr. It has been long
known that the ‘100 kyr world’ is not linearly
responding to the orbital forcing [21], but even in the
‘41 kyr world’ the climate response to the orbital
forcing is non-linear [22]. The assumption here is that
the orbital forcing resulted in periodic jumps between
two stable climate states. What happened approxi-
mately 800 kyr–1 Myr ago was that a third deep
glacial state became accessible resulting in a change in
length of the glacial cycles. The reason for this mid-
Pleistocene transition (MPT) is unknown, and
attributed to a gradual cooling due to a decreasing
atmospheric CO2 level [23] or a change in the bedrock
erosion (the regolith hypothesis) [24].

Since in the energy balance model (2) of the Earth,
the climate is characterised by only one variable, the
global mean temperature, there is ambiguity in
ascribing the orbital forcing from the time and space
varying insolation field across the globe.

Huybers et al. [13,25] argue that the ice melt-off
depends on the integrated summer insolation indicat-
ing that this could be the relevant measure of orbital
forcing [13,25]. This is closely related to the concept of
degree days, which is the annual number of days with
temperatures above freezing. This measure is domi-
nated by the obliquity cycle since the increased
insolation when Earth is close to the Sun in its orbit
is compensated by shorter time spent there due to
Kepler’s second law. Thus the total insolation during
the degree days becomes independent of the preces-
sional cycle.

In contrast to this, Paillard [26] shows using a
simple rule-based model of jumping between three
different quasi-stationary climate states, that the
climate record can be a response to the
summer solstice insolation at 65N. The two proposed
forcings (degree day insolation and June 26 insola-
tion) are different, since the latter has a strong
component of the precessional cycle. Using the June
26 insolation as the better proxy for the forcing
can be rationalised from the point of view of a
threshold crossing dynamics, since the extremal
values (mid-summer insolation) would then be the
governing parameter. However, since we cannot
decide between the two within the framework of a
simple model, we can take the alternative approach
of assuming the linear combination of the two,
considered as a first order expansion, which gives the
best fit for the observed record as a response to the
forcing.

Figure 8. The (normalised) paleoclimatic isotope record from a composite of ocean cores. The record is a proxy for the global
sea level or minus the global ice volume. The curve shows changes between ice ages and warm periods through the last two
million years. Note that the geological convention of time increasing from right to left is followed, thus present time is at the
origin.
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7. The non-linear stochastic ice age model

Due to the high dimensionality and the stochastic
nature of the climate fluctuations it is highly unlikely
that regular periodicities can result from internal
oscillatory modes alone. It is much more plausible
that non-linear responses to weak external periodic
forcing would lead to periodic behaviour. There is
evidence from observations as well as models that
multiple states exist in the climate system [20]. This
suggests a possible scenario of periodically induced
destabilisations of three quasi-stable climate states [27].

The three states can be identified with the ones
labelled G (deep glacial), g (pre-glacial), and i
(interglacial), respectively, by Paillard [26]. Paillard
observed in the paleoclimatic record that there seems
to be ‘forbidden’ transitions between the three states.
In the period 2–1 Myr BP the record shows regular
oscillations between only the two states i and g, while
in the period 1–0 Myr BP there is only a specific
sequence of occurrences: i ! g ! G ! i permitted.
The underlying bifurcation structure provides a
dynamical explanation of this observation.

From the observed climate record we derive an
empirical model. This assumes that the climate
dynamics are reflected in a single variable x(t), which
is taken to be the global mean surface temperature
anomaly represented by the deep sea oxygen isotope
proxy record shown in Figure 8. The dynamics are
described by an effective non-linear stochastic differ-
ential equation,

_x ¼ faðx; mÞ þ sZ; ð16Þ

where the white noise term Z with intensity s describes
the influence of the non-resolved variables and the
internally generated chaotic climate fluctuations. It is
within this framework that the roles of the orbital
forcing and internal stochastic forcing are investigated.
The deterministic part, fa(x, m), of the dynamics
depend on the external orbital forcing, labelled by a
single control parameter m and internal parameters,
represented by a. Note that Equation (16) is a non-
autonomous generalisation of the Equation (12), since
m and a are time-dependent.

The full climate dynamics can obviously not be
completely reconstructed by such a single valued
function. However, since stability and bifurcations
are topological quantities it could be robust with
respect to the detailed dynamics modelled. It is thus the
bifurcation structure of fa(x, m), with respect to the
control parameter m, which determines the climate
development.

Guided by the observed record and the transition
rules we can empirically construct a bifurcation

diagram: Figure 9(a), shows the bifurcation diagram
for the drift function fa(x, m) as a function of m at the
time interval 2–1 Myr BP. The bifurcation diagram
shows the curves {x0(m)jf(x0, m) ¼ 0}. The fat curves
are the stable fixed point curves for which @xf 5 0,
while the thin curves are the unstable fixed point curves
for which @xf 4 0. Thus, in the case of no additional
noise (s ¼ 0 in Equation (16)) the state of the system
x(t) is uniquely determined from the initial state x(0)
and the development of the forcing m(t).

In the real climate system the internal noise is
substantial and the system will not reside exactly in the

Figure 9. The bifurcation diagram for the ice age model.
Along the x-axis is the forcing represented by the control
parameter m, along the y-axis are the fixed points
{x0(m)jf(x0,m) ¼ 0} of the drift function fa(x, m). The drift
function is simply approximated by a fifth order polynomial,
with the roots determined by the fixed points. The horizontal
dashed line segments indicate (real part of) sets of complex
conjugate roots. The fat curves show the stable fixed points.
The bifurcation point a is the point where the deep glacial
state G disappears. The arrows indicate the hysteresis loop as
the forcing parameter is changed. Upper panel: the glacial
state G is not accessible. Lower panel: now the location of the
bifurcation point a has changed in such a way that the deep
glacial state G is accessible.
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steady states determined by the bifurcation diagram.
Thus, the full drift function needs to be parameterised.
The simplest way to parameterise the drift function in
accordance with the bifurcation diagram is as a fifth
order polynomial:

faðx; mÞ ¼
Y5
j¼1
ðx� xjaðmÞÞ; ð17Þ

where xjaðmÞ is the j th steady state (zero-points) in the
bifurcation diagram. As labelled in the figure the
parameter a determines the position of the lower
bifurcation point.

It should be noted that this is of course not the only
possible drift function corresponding to this bifurca-
tion diagram. In order to reconstruct the drift function
from the observed realisation, one could in principle
obtain the stationary probability density pm0(x) by
sorting x(t) according to m(t) ¼ m0. Assuming that m(t)
is changing slowly in comparison to the timescale for
x(t) to drift to a stationary state x0 (fa(x0, m) ¼ 0), one
could then obtain fa(x, m0) by solving the Fokker–
Planck Equation (15) associated with Equation (16) for
fixed m ¼ m0. This would require a very long data series
and complete absence of additional non-climatic noise
in the proxy data. This is not the case for the existing
paleoclimatic record.

The climate forcing is, as mentioned before, taken
to be a linear combination of the summer solstice 65N
insolation (fss) and the integrated summer insolation at
65N (�fI), where the summer period is defined as the
period where the daily mean insolation exceeds
I ¼ 200 W m72. The model results are robust with
respect to the threshold I chosen in a rather broad
interval. The forcing, f ¼ l�fI þ (17l)fss, is shown in
Figure 11, second panel, in the next section [28]. Values
of l around 0.5 gives the best result, l ¼ 0.5 is used.
This assignment might, within the framework of the
non-linear model, be interpreted as an empirical
determination of the dominating components of the
orbital forcing.

8. The hysteresis behaviour

The diagram in Figure 9(a), shows the fixed points of
fa(x, m) as a function of the deterministic forcing m. The
three branches of stable fixed points xj(m) for the
function, such that fa(x

j, m) ¼ 0 and @xfa (xj, m) 5 0,
are indicated by fat curves. The specification of the
xj(m)’s and Equations (16) and (17) completely defines
the model, see [27] for more details. Since x is a proxy
for the global mean surface temperature anomaly, or
minus the global ice volume, the lower branch
corresponds to the deep glacial state G. The middle

branch corresponds to the climate state g and the
upper branch to the interglacial state i. The thin curves
correspond to the separating unstable fixed points. The
dashed line-segments correspond to pairs of complex
conjugate roots in the fifth order polynomial. Note
again that assuming a polynomial drift function, this is
uniquely determined from the roots, except from a
trivial multiplicative constant.

Suppose that the climate is in either of the states g
or i and the climatic noise is too weak to induce a
crossing of a barrier separating the stable states. Then
the only way a forcing induced shift between the
climate states can occur is through bifurcations and a
hysteresis loop i ! g ! i as sketched by the arrows.
Clearly the climate state G is unreachable.

Assume now that the lower bifurcation point,
indicated by a0 in Figure 9(a), moves toward larger
values of m indicating that a stronger forcing is
needed in order to destabilise the deep glacial state. In
this case, a0 ! a1 shown in Figure 9(b), the glacial
state G is now reachable and a hysteresis loop
i ! g ! G ! i will appear. The central postulate of
the model is the change in this bifurcation structure
represented by the shift of the point a (from a0 to a1
on the m-axis) at the mid-Pleistocene transition. This
constitutes a dynamical explanation for the ‘rules of
forbidden transitions’ which are apparently obeyed by
the observed record.

The change in the position of the lower bifurcation
point is modelled such that a ¼ a1 when the climate is
in state i. When the state G is reached through two
bifurcations, a is gradually changing. The gradual
change in the bifurcation diagram is modelled as a
relaxation, da/dt ¼ 7(a7a0)/t, where a0 is the early
Pleistocene equilibrium value and t is a relaxation
time. When the climate bifurcates through the rapid
transition G ! i, the parameter a again changes to a1.

In order for the climate to skip the 41 kyr obliquity
pacing of deglaciations the timescale t governing the
bifurcation structure must be considerably longer than
41 kyr. The model results are quite insensitive to the
specific value of t in the interval 70–130 kyr, and is set
to be 100 kyr. It is a major challenge to interpret the
behaviour of the bifurcation point a, governed by such
a long timescale in terms of real climate dynamics. One
could speculate that it is linked to the carbon cycle
or with erosion of continents on these long timescales.

The presence of the stochastic forcing implies that
the climate evolution is not fully deterministic. Figure
10, first panel, shows a particular realisation of the
model. The second panel shows the forcing, the red
curve shows the value of a, which is defined as the
position of the lower bifurcation point in Figure 9
along the axis of the forcing (the x-axis). Note that a
transition G ! i without noise assistance is only
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possible when the forcing exceeds the value of a (that is
when the blue curve is above the red curve in the
second panel).

The composite Atlantic ocean sedimentation re-
cord in Figure 8 is repeated in the bottom panel for
comparison. The curve is plotted with normalised
variance and the mean subtracted. The dating of the

record is based on a depth–age model independent
from astronomical tuning.

The differences between the single records compris-
ing the stacked record gives an estimate of the additional
noise from bioturbation and other factors that make the
record different from a true record of ice volume. So in
order to compare the model with the observed climate

Figure 10. The top panel shows a realisation of the model. Second panel shows the orbital forcing driving the model. The red
curve shows a(t), where the jumps to a ¼ a1 are triggered by the transition G ! i. The next transition is in the low noise limit,
only possible when the blue curve is above the red curve. The third panel shows a ‘pseudo paleorecord’, where a red noise
component representing the non-climatic noise, is added to the model realisation in the top panel. Lower panel is the same record
as in Figure 8 for comparison.

Figure 11. Five realisations of the model with the same orbital forcing and different stochastic forcing. The first panel shows a
realisation without stochastic forcing. This is the purely deterministic climate response to the orbital forcing. The bottom four
realisations have a noise intensity s ¼ 0.8 K kyr71/2. It is seen that only in the last part of the 100 kyr world the timing of the
terminations are independent from the noise. In all five realisations an additional non-climatic ‘proxy noise’ is added a posteriori.
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record an additional red noise, of the same magnitude as
the difference in deep sea records is added to the model.
This is shown in the third panel, which should be
compared with the observed record in the fourth panel.

In order to investigate the role of the stochastic
noise, a set of realisations of the model is presented in
Figure 11. For the comparison between the model and
the proxy climate records we focus on the rapid
transitions G ! i, called terminations [29,30]. The top
panel shows a realisation with no stochastic noise. This
is the deterministic climate response to the orbital
forcing. It is seen that the last five terminations are
reproduced as observed, but there are fewer inter-
glacials in the earlier part of the late-Pleisocene period
(1000–500 kyr BP) than in the observed record. From
Figure 10, second panel, it is seen that the amplitude of
the orbital forcing is low in this period. The bottom
four panels show different realisations with a moderate
stochastic forcing (s ¼ 0.8 K kyr71/2). In these rea-
lisations the added noise induces additional termina-
tions at different times, suggesting a fundamental
unpredictability in glacial terminations.

9. Noise induced transitions within the last glacial

period

The last glacial period showed millennium scale
climatic shifts between two different stable climate
states. The state of thermohaline ocean circulation
probably governs the climate, and the triggering
mechanism for climate changes is random fluctuations
of the atmospheric forcing on the ocean circulation.

The high temporal resolution paleoclimatic data
from ice cores are consistent with this picture and a bi-
stable climate pseudo-potential can be derived. It is
found that the fast timescale noise forcing the climate
contains a component with an a-stable distribution,
also called a Levy flight [31]. As a radical consequence
the abrupt climatic changes observed could in principle
be triggered by single extreme events. These events are
related to ocean-atmosphere dynamics on annual or
shorter timescales and could indicate a fundamental
limitation in predictability of climate changes.

Paleoclimatic records from ice cores [8] show that
the climate of the last glacial period experienced rapid
transitions between two climatic states, the cold glacial
periods and the warmer interstadials (Dansgaard–
Oeschger (DO) events). Deep sea sediment cores [32]
and coral records [33] indicate that the ocean circula-
tion is a key player in these climatic oscillations [34].
Ocean circulation models, from the most simple
Stommel type [35] to the complex circulation models
[36] show that different flow states can exist as stable
climatic states. To show this we shall shortly divert
into the simplest possible ocean model.

10. The thermohaline circulation

The large scale ocean circulation is as important as
the atmospheric circulation for redistribution of heat
on the planet. This is part of the cause for the
climate belts not simply following the latitudes. The
climate belts are traditionally defined by the occur-
rence of different species of tropical, subtropical,
temperate or arctic plants. The ocean circulations are
driven by shear from the atmospheric winds, from
tidal forces and by gravity through the buoyancy of
the water itself [37]. These are in turn ‘the wind
driven circulations’, ‘tides’ and ‘the thermohaline
circulation’. The thermohaline circulation is driven
by the sinking of heavy water and the rising of light
water. The density of ocean water depends on two
parameters; temperature T and salinity S: warmer
water is lighter and saltier water is heavier. The
density can then, to first order in the difference
from the mean state, represented by (T0, S0), be
written as

rðT;SÞ ¼ rðT0;S0Þ þ @TrðT0;S0ÞðT� T0Þ
þ @SrðT0;S0ÞðS� S0Þ
¼ r0ð1� aDTþ bDSÞ; ð18Þ

where we have introduced the coefficients of expan-
sion 7ar0, br0 with respect to temperature and
salinity [38]. The Stommel model is the simplest
possible non-trivial model describing the dynamics of
the thermohaline circulation [39]. We assume that the
ocean can be split into two boxes A and B, each
ascribed a temperature and a salinity TA, SA and TB,
SB, respectively. These could be seen as mean
quantities like TA ¼

R
AdxT(x). The boxes are con-

nected by an upper and a lower hydraulic link, each
from continuity carrying the same current q in
opposite directions, see Figure 12. The current will
be driven by buoyancy and will depend on the density
difference between the boxes. Heavy water will be
transported in the lower link from the box containing
the heavier water to the box containing the lighter
water and vice versa for the upper link. For simplicity
we can assume a linear relationship,

q ¼ CðrA � rBÞ ¼ Cr0½bðSA � SBÞ � aðTA � TBÞ�;
ð19Þ

where C is an empirical constant. Here a variable, in
this case q, depending on the whole fluid flow,
temperature – and salinity fields not resolved in the
model – is substituted by a functional relationship
between variables in the model. This kind of modelling
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is termed a parameterisation. The governing equations
for the model are

VA
_TA ¼ jqjðTB � TAÞ þ kTð ~TA � TAÞ;

VB
_TB ¼ jqjðTA � TBÞ þ kTð ~TB � TBÞ;

VA
_SA ¼ jqjðSB � SAÞ þ kSð ~SA � SAÞ;

VB
_SB ¼ jqjðSA � SBÞ þ kSð ~SB � SBÞ: ð20Þ

Here VA and VB are the volumes of the two basins,
which we for simplicity will regard as having same size
VA ¼ VB ¼ 1 and neglect all together. The first terms
on the right-hand sides are simply the exchanges of
water between the boxes, while the second terms
parameterise all other forces restoring to some mean
temperatures ~TA, ~TB and salinities S̃A, S̃B, respectively.
This latter parameterisation is termed a Newtonian
cooling. The parameters kT and kS can be regarded as
linear response coefficients. They signify the (inverse)
timescales associated with restoring to the mean states
from perturbations in temperatures or salinities. The
four equations in (20) are linearly dependent: by
introducing T ¼ TA7TB and S ¼ SA7SB, subtracting
the second equation from the first and the fourth from
the third we get

_T ¼ �jqjTþ kTð ~T� TÞ; ð21Þ

_S ¼ �jqjSþ kSð ~S� SÞ; ð22Þ

with q ¼ (bS7aT). The constant C is trivially
eliminated by rescaling of time, kT and kS. For a
further reduction of notation we introduce x ¼ aT and
y ¼ bS so (21) and (22) become,

_x ¼ �jy� xjxþ kTð~x� xÞ; ð23Þ

_y ¼ �jy� xjyþ kSð~y� yÞ: ð24Þ

The forcing terms could be chosen in other ways, say
by ascribing a differential heating H to the temperature
equation and a fresh water forcing F to the salinity
equation. The fresh water forcing represents the water
evaporated from the warmer box transported by the
atmosphere and precipitated into the colder box,
leading to a net transport of salt in the opposite
direction. The different forcings on the two equations
are termed mixed boundary conditions. Had the
forcings been the same: kT ¼ kS ¼ k the equations
(23) and (24) could be further reduced. Introducing the
variable z ¼ y7x:

_z ¼ �jzjzþ kð~z� zÞ; ð25Þ
it is easy to see that this model has a single necessarily
stable fixed point. So in order to observe any non-
trivial behaviour it is crucial that the model has mixed
boundary conditions. The mixed boundary conditions
in the model are a natural consequence of the fact that
the timescale for restoration of the salinity is much
longer than the timescale for restoration of the
temperature, kS � kT. The model has three fixed
points which can be seen in the phase space portrait
of the tendencies in Figure 13.

The phase space for a set of two coupled first order
non-linear Equations such as (23) and (24) is very
simple. Since trajectories cannot cross, most of the
global information is obtained by identifying the fixed
points. A short exhaustive list of possible fixed points
is obtained from the linear stability of the fixed point.
There will be two eigenvalues for the linearised system,
assuming non-degeneracy of the eigen-space, these
correspond to two perpendicular eigenvectors. If the
eigenvalues are real, there are three possibilities: two
negative eigenvalues corresponding to a stable fixed
point, a negative and a positive eigenvalue correspond-
ing to a saddle point and finally two positive
eigenvalues corresponding to an unstable fixed point.

Figure 12. The Stommel model of the Atlantic ocean. The
ocean is represented by two boxes: a warm tropical basin (A)
and a cold extra-tropical and polar basin (B). These are
connected by hydraulic links with a flux q, one in the surface
ocean and one in the deep ocean. The state of the system is
represented by the two mean temperatures in the boxes, TA

and TB and the two mean salinities SA and SB.

Figure 13. The phase space for the two-box Stommel
model. The dots are the fixed points. As is seen from the
phase space flow, temperature adjusts much faster than
salinity.
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If the eigenvalues are complex this corresponds to
stable, neutral or unstable foci, depending on the sign
of the real part of the eigenvalues. The orbits along the
eigenvectors, beginning and ending at fixed points, are
the homoclinic (beginning and ending at the same
(saddle) fixed point) and heteroclinic orbits (connect-
ing stable and unstable fixed points or stable/unstable
fixed points with saddle points). These orbits separate
the phase space in basins of attraction for the stable
fixed points. If an orbit is closed without passing
through a fixed point it is a limit cycle.

In this case we can understand the behaviour of the
model by assuming that temperature will equilibrate
instantaneously, such that we can solve (23) in the case
_x ¼ 0 and obtain the equilibrium temperature as a
function of salinity. From this an effective potential
depending on the salinity alone can be constructed by
integrating the force along the curve (S, T(S)), as
shown in Figure 14.

The changes in the thermohaline circulation of the
Atlantic has probably been such that North Atlantic
deep water (NADW) is produced in the warm periods
and North Atlantic intermediate water in the cold
periods [40,41]. The key question is then whether the
switching between two stable climatic states of the
oceanic flow can be internally triggered by the random
forcing within the ocean–atmosphere system [42].

11. Noise induced climate changes

Taking the ice core record to be a climatic proxy
resulting from the climate dynamics described through a
Langevin equation of the type (12), we have to confirm
that this is a consistent description and from the analysis
to observe the structure of the noise driving the system.
This provides strong constraints on the types of possible
more realistic models of the underlying triggering
mechanisms for the observed climatic shifts.

The calcium signal from the GRIP ice core is the
highest temporal resolution glacial climate record

which exists [43]. The logarithm of the calcium signal
is (negatively) correlated with the d18O temperature
proxy with a correlation coefficient of 0.8 [44], thus we
use the logarithm of calcium as a climate proxy. This
proxy has a very high temporal resolution, since it is
related to dust in the ice and it is therefore not diffusing
in the firn (the snow-pack before compactified to ice)
as the d18O isotope signal does. The temporal
resolution of log(Ca) is about annual from 11 kyr to
91 kyr BP (80,000 data points). This is an order of
magnitude higher than that of d18O. The calcium signal
from the GRIP ice core is shown in Figure 15(a). The
typical waiting time for jumping from one state to the
other is between 1000 and 2000 years. The probability
distribution for the waiting times between the begin-
ning of the glacial – and the beginning of the following
interstadial states – is shown in Figure 16. The straight
line is an exponential distribution with mean waiting
time of 1400 years. This is expressed as P(T 4 t) ¼
exp(7t/t), where t ¼ 1400 yr is the mean waiting
time. The probability density function (PDF) of the
signal, Figure 17, shows a bimodal distribution with
peaks corresponding to the warm interstadials and the
glacial state.

From the premise of the stochastic dynamics and
the data we can now uniquely determine the climate
pseudo-potential, U(y), and the structure of the noise
term. The noise term (diffusion term) is to first order,
neglecting the drift term, defined as the derivative of
the signal estimated as (ytþDt7yt)/Dt, shown in
Figure 15(b). This signal is stationary except for a
slow trend through the record which is partly due to
smoothing with depth in the ice core. The intensity of
the noise is thus approximately independent of the
climate state itself.

The noise is approximately a white noise (not
correlated in time) and has a strongly non-Gaussian
distribution. Figure 18(a) shows the cumulated Prob-
ability on a scale on which a gaussian distribution is a
straight line (probability paper scale). Figure 18(b)
shows the two distribution tails on a log–log plot
magnifying the behaviour of the tails. This has in an
intermediate range a power function scaling with a
power of about 2.75 and an additional extreme tail.
The signal can only be described consistently by a
Langevin equation if it is driven by two noise terms:

dy ¼ �ðdU=dyÞdtþ s1dxþ s2dL: ð26Þ

The first noise component, s1dx, is generated by an addi-
tional Langevin equation, dx ¼ 7xdt þ (17x2)1/2dB,
where x is an (unobserved) independent variable and
dB is a unit variance Brownian noise. Here we have
introduced the mathematically more correct notation of
increments dy, dB etc. The notation is more correct

Figure 14. The effective potential U(S) along the curve (S,
T(S)) shown as the fat curve in Figure 13.
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since the process (12) strictly speaking is not differenti-
able in time.

The stationary distribution for x is a t-distribution
which fits to the observed tail distribution for the noise

on y. This term describes the forcing from the
atmosphere. That the noise is white means that it is
uncorrelated between consecutive data points. That
does not exclude that the noise is red on shorter
(unresolved) timescales. Actually the term 7xdt gives
a correlation time of one year. It should be noted that
the same signal could be scaled with a factor r:
dx ¼ 7r2 xdt þ r(1 þ x2)1/2dB consistently with the
data as long as r 4 1. r71 signifies the correlation
time (which is shorter than one year). The reason that

Figure 15. (a) The logarithm of the calcium concentration as a function of time (BP) in the GRIP ice core. The dating of this
upper part of the record is rather precise. The temporal resolution is about 1 year, much better than the d18O record since the
dust does not diffuse in the ice. The signal is a proxy for the climatic state. (b) The derivative of the signal in (a). This
approximately stationary signal is strongly intermittent.

Figure 16. The jumping between the glacial and interstadial
states is well described as a Poisson process. The waiting
times are defined as the times between consecutive first up
crossings through the level log(Ca) ¼ 2 (glacial state) and
first down crossings through the level log(Ca) ¼ –0.6
(interstadial state). The waiting times have an exponential
distribution (diamonds). The full line is an exponential
distribution with a mean waiting time of 1400 years. The data
record is not long enough to determine if the waiting times
for the interstadials and the glacial states are significantly
different. The exponential distribution is consistent with the
stochastic dynamics. The triangles, which are vertically
shifted for clarity, are results from simulation (see text).

Figure 17. The probability density function (PDF) of the
log(Ca) signal shows the bimodal distribution. The left
maximum corresponds to the interstadial state and the right
maximum corresponds to the glacial state. The thin curve is
the PDF of the simulated signal (Figure 6).
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this noise term is not just a Gaussian white noise term
is that the intra-annual variability is strongly depen-
dent on season, with much stronger intensity in winter
than in summer, and that the inter-annual correlation
leads to the red noise signal, where the ‘non-
Gaussianity’ survives the annual averaging.

The second noise term is an a-stable noise with
stability index a ¼ 1.75 [45]. The a-stable distributions,
which are also called Levy flights, have cumulative
probability tails which scale as x7a, for a 5 2,
implying that only moments of order less than a exists
(hjxjbi ¼ ? for b � a. The a-stable distributions fulfill
a generalised version of the central limit theorem,
namely that the distributions of sums of identically
distributed random variables with cumulative

distribution tails scaling as x7a1!a1 converges to an
a-stable distribution with a ¼ a1. These distributions
have very fat tails, meaning that the probability of
extreme events is high, such that single extreme events
within a period over which the variable is averaged will
show up also in the distribution of the averages. The a -
stable distributions were first observed in hydrological
records of river flow [46], and have later been observed
in various different physical systems [47] such as
turbulent diffusion [48] and vortex dynamics [49]. To
the present there is still no full theoretical under-
standing of why these distributions are observed, and
to what extent it has importance in climate dynamics.

A generalisation of the Fokker–Planck equation
for the two coupled Langevin equations with a-stable
noise excitations connects the stationary density
solution to the pseudo-potential U(y). However, only
the marginal distributions are known. For y this is the
PDF for log(Ca) shown in Figure 17. The pseudo-
potential, shown in Figure 18, is thus determined
iteratively by simulation starting from a solution to the
stationary one-dimensional Fokker–Planck equation
using the marginal distribution.

In order to validate that the log(Ca) signal can be
described by (1) a consistency check must be
performed. This is done by simulation. Using the
derived pseudo-potential, Figure 19, fitting s1 and s2
from the noise structure of the signal, Figure 20, shows
a realisation of (1). This should be compared with the
log(Ca) signal, Figure 15(a).

The thin lines in Figures 17 and 18 are derived from
the simulated signal. The stationary Fokker–Planck
equation does not contain information about the
timescales for jumping, Figure 16, and temporal
harmonic decomposition of the sample as represented

Figure 18. (a) The probability density of the noise (Figure
2(b)). (b) The cumulated distribution of the noise. The scale is
a ‘probability paper scale’ where a gaussian distribution
shows up as a straight line. This signal is strongly non-
gaussian. (c) The two tails of (b) on a log–log plot. For the
upper tail the probability of values larger than the abscissa is
shown. The thin curves are from the simulation, showing that
the signal is well described as containing a t-distributed noise
component and an a-stable noise component.

Figure 19. The climate pseudo-potential is a double-well
potential with the left well representing the interstadial state
and the right well representing the full glacial state. The
potential is obtained from a generalised stationary Fokker–
Planck equation.
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by the power spectra which are compared in Figure 21.
These constitute independent verifications. As seen in
all the figures the agreement is astonishing. Judged
from different simulated realisations the two signals
only deviate within the statistical uncertainty.

This is not merely an advanced curve fitting
routine. If the calcium data is assumed to be generated
by the dynamics described through a Langevin
equation, the driving noise must be of the form
described here. In order to understand the underlying
climate dynamics it is important to establish the
connection between this climatic proxy and the
climate. It is especially important to interpret the two
noise terms and connect them to the atmosphere–
ocean dynamics. The noise term ‘s1dx’ is probably
related to the ‘normal’ atmospheric fluctuations. Since
the sampling is coarse on the timescales of these
fluctuations, there is is an indeterminacy in the noise
structure on timescales shorter than about one year. In
the model this reflects itself in the invariance of this
noise term with respect to r. The noise term s2dL
represents extreme events and calls for attention. The
a-stable noise seems to occur in dynamical systems
with many different timescales where the dynamics
becomes strongly intermittent.

12. Stochastic resonance in climate transitions

In the previous analysis the paleoclimatic record was
described as resulting from noise induced jumping
between two stable climate states, where the jumping
probability only depends on the present state of the
system. Thus, it is a Markov process, for which the
distribution of waiting times becomes exponential, as
indicated by the straight line in Figure 16. The
observed record is short in the sense that only of the
order 25 DO events occurred in the last glacial period.
The limited length of the record leaves the possibility
that other models might fit the data just as well. It was
recognised from spectral analysis that there seems to be
a significant power at a frequency corresponding to a

period of 1470 yr for transitions into the interstadial
climate state [50]. By fitting the phase and overlaying a
periodic set of vertical lines on the climate record, see
Figure 22, a striking regularity emerges [51]. This has
been proposed to be due to a stochastic resonance
response to an (unknown) periodic forcing [52] or a
ghost resonance response to the beating frequency
combination of two much shorter periods in the solar
intensity [53].

The strikingly regular timing needs to be tested
statistically. This is not completely straightforward:
the general problem is that when observing a
pattern in a data set, the significance of the pattern
can be very difficult to assess a posteriori unless the
space of possible outcomes for ‘striking patterns’ is
known.

Figure 20. An artificial log(Ca) obtained from simulating a sample solution to the Langevin equation using the climate pseudo-
potential, an a ¼ 1.75 white noise and s1/s2 ¼ 3. This should be compared to Figure 16(a). The two signals are statistically
similar, showing that the log(Ca) signal can be generated by the stochastic dynamics.

Figure 21. The temporal harmonic resolution as expressed
through the power spectrum is an independent measure of
the signal. The top curve is the power spectrum of log(Ca).
This is a red noise spectrum without significant peaks. The
bottom curve is the power spectrum of the simulated signal
vertically shifted for clarity.
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We shall denote the identified time sequence for
jumps as ti, i ¼ 1, . . . , N. A preferred periodicity in
the time sequence can be detected by Rayleigh’s R
measure defined as RðtÞ ¼ ð1=NÞj

P
j exp 2ptj=tj,

where obviously R(t) 2 (0, 1) [13]. This measure is
easy to understand if we define the angles yi ¼ 2pti/t
and plot the angles on the unit circle. If the time
sequence is multiples of the time t modulo an
(unknown) phase, all angles will be located near the
same point on the unit circle and R(t) � 1. Conversely
if the data points do not cluster on the unit circle we
have R(t) � 0.

In Figure 23(b), the value of R(t) as a function of t
is shown. The period of 1470 yr shows the largest value
R ¼ 0.65. The angles with respect to the 1470 yr period
of the time sequence of DO jumps are plotted on the
unit circle in Figure 23(a). The mean phase is indicated
by the radial line segments, the length is equal to R
(1470 yr), indicated by the arrow in (b), the mean phase
defines the vertical lines plotted in Figure 22.

The next, and necessary, step in the analysis is to
test the significance of the periodicity found in the
data [54]. This can only be done by assuming a test-
model generating the data. Given such a model, we
may choose any measure derived from the data, xd
to compare with the same measure derived
from similar realisations of the test model, xm. The
null hypothesis is then that the data series is a
specific realisation of the model. It is important to
note that a null hypothesis can only be rejected and
not confirmed. That is, the value of the chosen
measure for the data may well be within the high
likelihood region for the model, but this does not
prove that the data cannot be generated from
another (competing) model with same high
likelihood for the chosen measure. On the contrary,
only if the measure for the data falls within a low
likelihood region, say with probability measure
p � 1, the model can be rejected with probability
17p.

Figure 22. A part of the NGRIP oxygen-18 record, where the dating is done by annual layer counting from the top. This is a
proxy for temperature, where the transition into the present warm period is seen to the left. The last 10 Dansgaard–Oeschger
(DO) climate events are shown. The vertical red lines shows an apparent periodicity in the initiations of DO events. The
significance of this regularity must be checked statistically.

Figure 23. The Rayleigh R for different periods. The maximum is obtained for the period t ¼ 1470 yr, indicated by the arrow.
(a) Shows the timing of the onsets tn plotted on the unit circle using the transformation yn ¼ 2ptn/t. The numbering is the
standard numbering of DO events going back in time. The segments of radians points at the mean phase, corresponding to the
vertical bars in Figure 22.
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The simplest possible model which can be chosen
for the statistical test is that the DO events occur
randomly, without a memory, on the millennial
timescale. This is consistent with the analysis presented
above. The waiting times follow an exponential
distribution corresponding to a Poisson process. The
mean waiting time can be assumed to be 2800 years.
This is obtained as an estimate from the mean waiting
times for the 14 DO events in the period 10–50 kyr.
This is also the estimate obtained from the best fit to an
exponential distribution of all DO events in the full
glacial period shown as the straight lines in Figure 16.

To test the data against this model we use the
Rayleigh R obtained from the data. For each of the
measures a probability density for a sample, similar to
the observed record, is obtained from a Monte Carlo
generated ensemble of 10000 realisations. The result is
shown together with the measure from the data record in
Figure 24(a). From the figure it is obvious that the
observations fall within the high likelihood region of the
exponential distribution. The 90% (dashed) and 99%
(full) confidence levels are shown in the figure as vertical
blue bars. Thus there is no basis for rejecting the
hypothesis of no-periodicity for the data.

The climate system is dominated by internal
noise masking possible periodic components. Thus,
a reasonable assumption is that a periodicity is
caused by an internal non-linear amplification of a
weak external periodic forcing. This could be
described by a stochastic resonance as proposed by
Alley et al. [52].

The stochastic resonance model [19] is defined by
the governing equation:

dx ¼ @xUaðx; t; tÞdtþ sdB

¼ f�2ðx3 � xÞ þ a cos ð2pt=tÞg dtþ sdB;

where a particularly simple form of the drift potential
Ua(x, t, t) is chosen here. The potential is a double-well
potential, which changes periodically with period t
from having a shallow well (s) to the right and a deep
well (d) to the left to the opposite situation. The ratio
of the barrier heights Hs!d/Hd!s is determined by the
amplitude parameter a. The timescales for jumping
from the shallow well to the deep well is given by an
Arrhenius formula; Ts!d * exp(Hs!d/2s), and simi-
larly for Td!s. The criterion for resonance, where the
signal x is most periodic, is Ts!d � t�Td!s. This
determines the noise intensity s. The difference
between a hysteresis loop through a set of bifurcations
and a stochastic resonance is seen in comparing the
schematics in Figures 25 and 26.

The proposition of rejecting a stochastic resonance
(SR) model for the ice-core data is more tricky, since
there exists a continuum of SR models with waiting
time distributions from the exponential to the delta-
distribution for the perfect periodicity [55]. However,
the only spectral weight notably above the continuum
is at t71 ¼ 1470 yr71 and not at the mean waiting
time 2800 yr71. Near the stochastic resonance one
should expect the same order of magnitude ‘early
jumps’ (corresponding to a noise induced jump from
the deep well to the shallow well) as ‘late jumps’
(corresponding to missing a jump from the shallow to
the deep well). The mean waiting time being about

Figure 24. (a) By Monte Carlo an ensemble of 1000
realisations of waiting times in a 40 kyr period has been
generated from an exponential distribution with mean
waiting time of 2800 years, corresponding to 14 DO-events
in 40 kyr. This gives probability densities for the maximal
Rayleigh’s R(t) in the range 500 yr 5 t 55000 yr. The red
bar gives the values for the observed ice-core record. The
blue bars are 90% (dashed) and 99% (full) confidence levels.
(b) Same as in the top panel, with distribution functions
obtained from stochastic resonance models with period of
1470 years. From light to dark green the model parameters
are: a ¼ 0.1, 0.2, 0.4 and s ¼ 0.38, 0.35, 0.27 (see text), which
generates on average 11 DO-events in 31 kyr. The important
difference from the case shown in the panel above is that the
Rayleigh’s R in this case are calculated for the fixed period of
1470 yr. The red bar is the ice-core observation as above. The
black curve is the distributions for the exponential model
repeated from (a). This shows that the SR model with
a ¼ 0.1 cannot be identified in a sample of this length, since
spurious coincidental periodicities will give a better match to
the data than the 1470 yr cycle.
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twice the observed spectral period indicates that a
possible SR is ‘off the resonance’ with a too low noise
level. In terms of SR parameters, this means that the
criterion; Ts!d � t � Td!s (Ts!d being the mean
waiting time for a transition from the shallow to the
deep well), is not fulfilled. We rather see t 5 Ts!d.

Here we test against three SR models with the period
t ¼ 1470 yr and a ¼ 0.1, 0.2, 0.4. The mean number
of DO events being 11 events/31 kyr corresponding to
the climate record. This determines the noise intensity
to be s ¼ 0.38, 0.35, 0.27 for the three models.

An ensemble of 1000 simulations with same length
as the data records were generated and the same three
significance tests were performed. The results for the
three models; a ¼ 0.1 (light green), a ¼ 0.2 (medium
green), a ¼ 0.4 (dark green) are shown in Figure 24(b).
The distribution in the top panel, for the exponential
distribution, is over-plotted in black. It is seen that the
first model, a ¼ 0.1, apparently has less periodicity,
represented by Rayleigh’s R, than the purely exponen-
tial model. This is because in the case of the SR model

the distribution is of R(1470 yr), while in the case of
the exponential waiting time distribution (correspond-
ing to a ¼ 0), the distribution is for the largest value of
R found in the sample. This means that for the SR
model with a ¼ 0.1, the period will not be identified in
comparison to other spurious coincidental periodici-
ties. We have thus identified the ‘weakest’ SR model
which may be identified for a sample of the size of the
record.

So the statistical tests show that the waiting times for
DO events are within the high likelihood region of the
exponential distribution. This distribution implies that
there is no long term memory in the climate system or
unknown 1470 years periodic forcing triggering the
climate shifts. By the nature of the statistical test we can
only reject the hypothesis of a periodic component when
the period is sufficiently above the noise level. For SR
models with too low a strength of the periodic
component, the period would with high probability
not be detected in comparison to detecting a spurious
coincidental periodicity in the sample.

Figure 26. For a weak periodic variation of the potential internal noise is required to induce a transition. For the right
combination of noise intensity and barrier height the response to the periodic change is still periodic. This is the stochastic
resonance.

Figure 25. A strong periodic variation of the potential leads to hysteresis behaviour through successive saddle-note
bifurcations.
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13. Summary

The paleoclimatic records show both remarkable
climate stability on geological timescales and dramatic
changes between different climate states. The transi-
tions most likely results from combinations of desta-
bilisation through bifurcations and transitions induced
by internal variation, which can be well described as
stochastic noise. The current state-of-the-art general
circulation climate models do a fair job in integrating
the flow equations for the atmosphere and oceans,
admittedly at a coarse resolution. They also incorpo-
rate many physical and chemical interactions involving
the cryosphere (ice masses), the lithosphere (the land
masses) and the biosphere (vegetation) and give a
realistic representation of the present climate. How-
ever, the models are far from being able to simulate the
observed past climate transitions. It is even not known
if the models possess a non-trivial bifurcation struc-
ture. The identification of the dynamical bifurcation
diagram from observations should thus be a guideline
for verification of realistic glacial climate models.

The presence of a fat tailed noise component could
imply that the triggeringmechanisms for climatic changes
are rare extreme events. Such events, being on the
timescale of seasons, are fundamentally unpredictable
and never captured in the numerical circulation models.
The lack of dynamical range might be due to under-
estimation of internal variability in too coarse resolution,
thus the climate noise is too weak to induce transitions
from one stable climate state to another. This could be
part of the explanation why these models have yet never
succeeded in simulating shifts between climatic states.
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