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Understanding the turbulent nature of the atmospheric flow is still a subject of
considerable scientific interest. The atmosphere is characterized by having energy
on all scales of motion, from the 3 dimensional small scale boundary layer turbulence
to the global scales of stationary quasi 2 dimensional planetary waves. One of the
main difficulties in characterizing this flow is the lack of clearly separated spectral
regimes, or spectral gaps in the spectrum, for the flow. The geostrophic and quasi-
geostrophic flow of the atmosphere at the large scale was shown by Charney [2] to be
equivalent to 2 dimensional flow. This classical description of the atmospheric flow
works remarkably well due to the relatively stable stratification and the atmospheres
small scale height. The characteristics of the 2 dimensionality of the flow is reflected
in the energy spectrum. As an extension of Kolmogorovs, 1941(K41) [3] theory to
the 2 dimensional case, Kraichnan [4] predicted from scaling arguments that the
energy spectrum for 2 dimensional flow should scale with wave vector as Ejy ~ k3.
This was shown by Wiin-Nielsen [5], in an observational study, to be the case for
the atmosphere. The result is remarkable, from the point of view of the energy
transfer, in the sense that the main mechanism for generation of atmospheric waves,
namely the baroclinic instability mechanism, is 3 dimensional in its very nature.
Furthermore, a main forcing mechanism, release of latent heat in the tropics from
cumulus convection, is small scale and also of a 3 dimensional nature. That is the
main reason, why numerical forecasting is such a hard task in the tropics. The fact
that quasi-geostrophic theory is not valid in the tropics is for a completely different
reason, namely that the Coriolis force vanishes at the equator. From a forecasting
point of view, quasi-geostrophy is obsolete; diabatic processes and divergencies are
important for good forecasting.

The K41 hypothesis is that for 3 dimensional flow there will be a typical (large)
scale of forcing where energy is inserted into the system. Energy is removed as heat
production, at small scales by viscous dissipation. In between there will be a range of
scales, the inertial range, in which the inertial motion of the flow is universally char-
acterized by the scale represented by the wave-vector, k, and the mean dissipation
per unit mass, . From simple scaling arguments the energy spectrum then depends
on these two parameters as Ej, ~ n?/3k=5/3 . This spectrum is seen in wind tunnels
and all other experiments and observations of 3 dimensional flows. The energy is
said to be cascaded from large to small scales. In terms of eddies and vortex tubes it
can be expressed as smaller eddies feeding on larger ones, large structures break up
into small ones. This will require a production of vorticity during that process. It is



achieved by vortex tube stretching and bending. Thus a meteorological phenomenon
such as the generation of tornados is a truly 3 dimensional phenomenon.

In 2 dimensions the situation is fundamentally different. For 2 dimensional flow
the integral of the square of the vorticity, or in quasi-geostrophic flow the square
of potential vorticity, the enstrophy, is conserved as well as the energy. In spectral
space the enstrophy is given as Z = [dkk?E}, where E = [dkE, is the energy.
At the small scales the enstrophy will dominate and be dissipated. Consequently,
there will be a cascade of enstrophy, and not energy, from the forcing scale through
the inertial range to the dissipation scale. The energy spectrum obtained from the
enstrophy cascade is the one mentioned above, Ej; ~ n?3k~3, where 1 is now the
mean dissipation of enstrophy per unit mass. The energy, on the other hand, is
confined to the large scales, where it is removed by linear drag. If both the integrals
for Z and E are to be conserved in the inertial flow, the energy must be cascaded
"up-scale”. This is called the inverse or backward cascade of energy in 2 dimensional
turbulence. The energy spectrum in this range should then scale with wave number
as k53 as in the 3 dimensional case. This spectral behavior, attributed to the
inverse energy cascade, has not yet been observed convincingly in the atmosphere.
The creation of large scale coherent structures, vortices, seen in the atmosphere,
maybe like blockings, might be attributed to the inverse energy cascade and thus
be truly 2 dimensional phenomena.

A key issue for understanding the energy transfers in the atmosphere is to under-
stand the energy spectrum and under which conditions the flow can be considered
2 dimensional and under which it is 3 dimensional. However, in numerical stud-
ies it is very difficult to simulate the cascade mechanisms, since this requires the
full spectral range to be treated dynamically. In present day computer simulations
of the Navier-Stokes equation for 3 dimensional flow resolutions of perhaps 1000
cubed points corresponding to Reynold numbers of 100-200 is at the limit. For 2
dimensional simulations somewhat higher resolution is possible, but in this case two
inertial ranges, for forward enstrophy cascade and for backward energy cascades are
required. In present atmospheric forecast models we have about 1 - 1.5 decades of
inertial range flow.

As an alternative way to get insight into the cascading mechanisms in turbulent
flow reduced wave-number models, which are truncated versions of the Navier-Stokes
equation can be studied. In the rest of this short paper the Gledzer[6], Okhitani and
Yamada[7] model, called the GOY model will be presented and discussed. We will
here only focus on the model in a form supposed to mimic 2 dimensional turbulence.

The GOY model is an analogy to the Navier-Stokes equation in spectral form.
The spectral domain is represented as shells, each of which is defined by a wavenum-
ber k, = 2"ko. So the variables are evenly spaced in log(k). We have 2N degrees
of freedom, where N is the number of shells, namely the generalized complex shell
velocities, u, for n = 1, N. The reduced phase space enables us to cover a large



range of wavenumbers, corresponding to large Reynold numbers. The dynamical
equation for the shell velocities is,
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where the first term represents the non-linear wave interaction or advection, the
second term is the dissipation, the third term is a drag term, and the fourth term
is the forcing, where ny is some small wavenumber. The free parameter € then
determines the interaction coefficients of the non-linear advection term. The GOY
model contains no information about phases between waves, thus there cannot be
assigned a flow field in real space to the spectral field. The key issue for the behavior
of the model is the symmetries and conservation laws obeyed. Depending on the
value of ¢ the model has 2 inviscid invariants, which are quadratic in the shell
velocities. In this paper we will concentrate on parameter values such that the 2
inviscid invariants are both positive definite. The invariants are then,
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which should be thought of as the energy and enstrophy of the flow. The model in
this form is then a model of 2 dimensional turbulence. The exponent « is related to
the interaction coefficient, €, as a = —log,(e — 1) [8]. So in the range 1 < e < 2 we
have co > a > 0 and for € = 5/4 we have o = 2 as is the case for the real turbulent
flow.

The inertial sub-range is, as for real flow, defined as the range of shells where
the forcing and dissipation are negligible in comparison with the non-linear inter-
actions among shells. Since we apply the forcing at the small shell numbers and
the dissipation at the large shell numbers, the inertial range (for forward cascade) is
characterized by the cascade of enstrophy. The classical Kolmogorov scaling analysis
can then be applied to the inertial range. Denoting 71 as the average dissipation of Z,
this is then also the amount of Z cascaded through the inertial range. The spectrum
of Z does, by the Kolmogorov hypothesis, only depend on k£ and 7. From dimen-
sional analysis we have, [ku] = s71, [n] = [Z]s7}, [Z] = [k*u?] = [k]* 2572, and we
get, Z ~ n?*/3k(@=2/3_ For the generalized velocity, u, we then get the ” Kolmogorov-
scaling”,

|u| ~ 771/3k7(a+1)/3_ (3)

This type of argument holds regardlessly of how well the model simulates real
flow. Figure 1 shows the result of a numerical solution of (1). The absolute values



of the shell velocities are averaged over 2 x 10* time units. They are plotted on a
logarithmic scale as a function of shell number (0-50), which is the logarithm of &
(base 2). The slope of the straight line is the scaling power, v, such that |u| ~ k7.
The system is forced at shell number 15, and the dissipation and drag dominates in
the ranges n > 40 and n < 5 respectively.
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A closed ergodic dynamical system will tend to a statistical equilibrium such
that the energy and enstrophy will be distributed among the degrees of freedom
with a temporal average for the energy given by Ey = (B + Ak*)"!. B! and
A~! are generalized energy - and enstrophy temperatures, corresponding to energy
and enstrophy being conserved in time [9]. As a function of wave-number, k, there
will then be two branches of the energy spectrum. For k& < 1 we have Ej ~ B!
and equipartitioning of energy on the shells. For k& > 1 we have E, ~ A k@
corresponding to equipartitioning of enstrophy on the shells. In the latter case,
which is the branch of forward cascade of enstrophy, the shell velocities will then
scale as |u| ~ k~%/2. Returning to figure 1 we can now understand that the model
has a second range of scaling, 5 < n < 15, where we see an equipartitioning of
energy.

The classical argument for having a cascade is that the system, when forced
at the large scales, is out of equilibrium. It will then equilibrate by transferring
enstrophy to small scales. The ultraviolet catastrophe is prevented by the viscous
dissipation at small scales (Re = oo is a singular limit). The Kolmogorov scaling
is characterized by an inertial range scaling with scaling power, v = —(a + 1)/3,
and the statistical equilibrium is characterized by a scaling power, v = —a/2. For
a = 2 these coincide with v = —1 [10], and we cannot distinguish the two. This
coinciding scaling is a caviate of the GOY model not present in the real 2-D flow



where the statistical equilibrium energy spectrum scales as k! and the cascade
energy spectrum scales as k3. For all other values of « the scaling of the two cases
are different. Motivated by this difference we ran the model with other values of « as
well. Figure 2 shows the scaling power as a function of @. The diamonds represents
the numerical results. All the slopes are steeper than or on the line representing
the steepest slope of the two. The case o = 2 is a borderline between the two
descriptions. For o < 2 the enstrophy is cascaded through the inertial range and
for o > 2 the enstrophy is equilibrated among the degrees of freedom of the inertial
range. The enstrophy is transported through the inertial range by slow diffusion.

The two regimes corresponding to equipartitioning and cascade can be under-
stood in terms of timescales for the dynamics of the shell velocities. A rough estimate
of the timescales for a given shell n, is from (1) given as T;, ~ (kpun)™t ~ k177,
Again a = 2, corresponding to v = —1, becomes marginal where the timescale is
independent of shell number. For o > 2 the timescale grows with n and the fast
timescales for small n can equilibrate enstrophy among the degrees of freedom of the
system before the dissipation, at the ”slow” shells, has time to be active. Therefore
these models exhibit statistical equilibrium. For o < 2 the situation is reversed and
the models exhibit enstrophy cascades. Even though we have v = 2 in real flows
this analysis suggests that parameter choices o < 2 might be more realistic than
« = 2 for mimicing enstrophy cascade in 2 dimensional turbulence.

Even though these types of models are very far from modeling the atmosphere,
they display some features of real flow that are still not fully understood. We hope
that from analyzing and understanding these features in a naive model, insight into
the full problem can be gained.
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