Cascades of energy and helicity in the GOY shell model of turbulence
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The effect of extreme hyperviscous dampimggh ,p=c is studied numerically in the GOY shell
model of turbulence. It has resently been demonstijdtedeque and She, Phys. Rev. L&, 2690
(1999] that the inertial range scaling in the GOY model is non-universal and dependent on the
viscous damping. In the present study it is shown that the deviation from Kolmogorov scaling is due
to the cascade of the second inviscid invariant. This invariant is non-positive definite and in this
sense analogous to the helicity of 3D turbulent flow. 1897 American Institute of Physics.
[S1070-663(97)02905-X

The invicid invariants, like the energy, of the Navier— complex shell velocitiesy, for n=1, N. The dynamical
Stokes equations are important quantities determining thequation for the shell velocities is
dynamics of turbulent flow. The major difference between
2D and 3D flow originates from the existence of a second
inviscid invariant, enstrophy, in 2D—absent in 3D flow. This
gives strong constraints on the 2D flow dynamics. Conserva-
tion of enstrophy leads to the forward cascade of enstrophy

and the backward cascade of energy in 2D, giving rise Qynhere the first term represents the non-linear wave interac-
large-scale coherent structures in the flow. In 3D there alsqgp, of advection, the second term is the dissipation, and the
exists a second quadratic inviscid invariant, namely the hegirq term the forcing, where, is some small wavenumber.
licity, defined as the integral of the scalar product of thethoughout this paper the standard 3D GOY model param-
velocity and the vorticity. It has been proposed to be imporgter values\=2, ky=A"%, a=1, b=c=—1/2 is used.
tant for 3D turbulence It was shown by Kraichndrthat the  The GOY model in this form contains no information about
interaction between waves of opposite helicity is strongephases between waves, thus there cannot be assigned a flow
than interactions between waves of the same helicity. Confie|d in real space.
sequently, helical flow might slow down the cascade of en-  The model has two conserved integrals, in the case of no
ergy to the dissipation rande. forcing and no dissipationi=f=0) (inviscid invariants.
Since the spectral helicity density grows with a factorThese are, E= %E§:1|Un|2 and H:%szl(_l)nkn|un|2
k, the modulus of the wave-vector, over the energy densityyhich corresponds to the conservation of energy and a sec-
the helicity dissipation would, in th&®—c limit, prevent  ond non-positive definite quantity interpreted as analogous to
energy dissipation. The situation would resemble that of 2helicity® for the Navier—Stokes equation of 3D turbulence,
turbulence where the cascade of enstrophy prevents the fofrereafter referred to as the helicity. It should be stressed that
ward cascade of energy. In 2D turbulence the conservation Qﬁis analogy is only in the sense that both quantities are
both [dk|u(k)|* and fdkk?|u(k)|* implies that the forward non-positive definite. In this model each shell is maximally
cascade of enstrophy must be accompanied by a backwarglical with alternating sign, since the numerical value of the
cascade of energy. This strong constraint does, however, naglicity density isk times the energy density.
apply in the case of helicity transfer since helicity is not  The forcing in(1) is applied at a small wavenumber and
positive definite. So we only have the weaker assessmefite dissipation dominates at large wavenumbers, so we can
mentioned above that the efficiency of energy dissipatiordefine an inertial range where the non-linear energy cascad-
could be depending on the non-linear helicity transfer andng terms dominate and the Kolmogorov scaling arguments
the helicity dissipation. apply. For an energy cascade we have the “Kolmogorov
Considerable interest has lately been given to the GO¥caling” of the shell-velocities,u| ~ 7**k Y, and for a he-
model of turbulence, introduced by Gletzer and examined byicity cascade we have the “helicity scaling,”
Yamada and OhkitarfiComprehensive lists of recent refer- |u|~%%~ 23 where# and7 are the mean dissipation per
ences on the GOY model can be found in Refs. 5 and 6. Thanit time of energy and helicity, respectively. The model has
behavior of the helicity in different shell models have re-both the Kolmogorov scaling;r,:k;l’gg(n) and the helicity
cently been investigatetf. scaling,u,=(— 1)k, #3g(n) as unstable fixed points in the
The GOY model is a simplified reduced wave-numberunforced and inviscid case. The functigin) = g(n + 3), is
analog to the spectral Navier—Stokes equations. The spectrahy mod3) function. The mo3) symmetry is an artifact of
domain is represented as shells, each of which is defined e GOY model discussed in detail in Ref. 5. It will become
a wavenumbek,=ko\", where\ is a scaling parameter important in the following. The Kolmogorov fixed point
defining the shell spacing. There ard 2egrees of freedom, plays an important role for the behavior of the GOY model,
where N is the number of shells, namely the generalizedwith forcing and dissipation, in the sense that the phase space
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FIG. 1. The standard GOY model w_it|ﬁ0=(1+i)><10‘3,n0=4 and ‘ 10-2i, 0000, .!
v=10"°. The model has 20 shells and is as before the run for 3000 time —sF °<>° 3
units after a 1000 time units spinup starting from ¢hestablg¢ Kolmogorov '0_4!' Lo o ]
fixed point. log({|u,))) is shown as a function of the shell number 1077 W L
n=log,(k,). The line indicates the Kolmogorov scaling with a spectral slope 1073 [ -!
of —1/3. 10-6L 3
] }
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trajectory of the shell velocities seems to “curl around” this
point with the average values of the velocities close to theFIG. 2. The modified GOY model withfy=(1+i)x10°° and
fixed point values. It was shown in a numerical Study byV0:1077k%0:429.5. This model has likewise 20 shells and is run for
Leveque and SKdhat the inertial range scaling in the GOY 3_’000 time units. The first panel is t_he same as in Fig. 1. T_hg line in the
. . . figure has a slope of 2/3 corresponding to the cascade of helicity. Second
model is not universal and is dependent on the form of the,,ne| shows the spectrum Bf,= [u(n—1)u(n)u(n+1)|“2 The line has a
viscous damping. They attributed this non-universality to thesiope of—1/2 corresponding to the equipartition of helicity.
reflection of energy flow from the viscous subrange back into
the inertial range in the case of hyperviscosip~2). By
studying the extreme cage=, | suggest a different expla- The inertial range flow is dominated by the non-linear
nation for the non-universality of the inertial range scaling,transfer of the conserved quantities. The key assumption by
namely that the cascade of helicity blocks the cascade dfolmogorov (1941 is that the inertial range flow does not
energy and thus changes the scaling. This effect is probabfepend on the specific form of the small scale viscous dissi-
specific to the GOY model, and a consequence of the specifieation. This is not the case for the GOY model. In order to
odd—even asymmetry of the helicity in the GOY model.  illustrate this point a study of a slightly modified GOY
The numerical study is performed on two versions of themodel is presented here. The dissipation is taken to be active
GOY model. First, the usual model with normai+2) dis-  only on the outermost shell, numbigr= 20; this corresponds
sipation and second, with viscosity only applied on the outt0 hyperviscosity in the limitp=o, with »=wcky" and
ermost shell, corresponding tp=% hyperviscosity. The o held constant. With this choice of dissipation the behavior
forcing in (1) is in both cases taken to He=fo/u; where Of the GOY model changes dramatically even though the

f, is a constant. This gives a constant input of engayyd non-linear terms in the governing equation remains un-
helicity) per unit time. changed. L . .

Figure 1 shows the result of a numerical calculation for ~ T19ure 2 shows the resuit of a numerical Integration with
fo=(1+i)X 10—3'n0:4 and v=10"%. The model has 20 the m(_)glflzed GOY model_ wherd y=(1+i)Xx 10 and .
shells and is run for 3000 time units after a 1000 time units’0~ 10 'k2=429.5. The first panel shows the velocity
spinup starting from théunstablg Kolmogorov fixed point. ~ SPECtrum where the m@® symmetry of the shell model
The first panel shows Iq¢|u,)) as a function of the shell becomes dominant. The scaling behavior of shells numbered
numbern=1log, (k,), where( - ) denotes the temporal aver- 10,13,16,19 is different from the rest. The line in the figure
age. The spectral slope is close to the Kolmogorov scalind?as a slope of-2/3 corresponding to the cascade of helicity
shown by the line, thus the model shows an energy cascadeAtner than energy.

. _ 1/3 . .
The sources and sinks for energy and helicity are However, if Up=[u(n—1)u(n)u(n+1)[** is consid-
ered the mo(B) symmetry is eliminated and the inertial

range scaling approximately reemerges as an arithmetic
mean of the scaling behaviors for the shells
3n, 3n+1, 3n+2 (Fig. 2, second pangl The line in the
figure has a slope of 1/2 corresponding to equipartitioning
: of helicity. The hyper-viscosity of the model, only pulling

H=2 ((—1)"Kquj fo— (= 1)"wk3ud). (3)  out helicity through th&18, 19, 20 triad, cannot maintain a

" helicity cascade.

This means that the helicity of opposite signs is dissi- The result can be interpreted as a spectral bump at the
pated at every second shell and therefore total helicity i®nd of the spectrum with an approximate equipartition of
produced for odd numbered shells in the dissipation range.helicity. Similar results have been found by Borue and

E= ; (u* fo— vk2u?) (2)

and
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Orszad for numerical simulations of the 3D Navier—Stokes ity does not apply, thus the— is a singular limit and no
equation. In this case the accumulation seems to be an effestatistical equilibrium can be reached. The relative change in
of energy not being able to be transferred across the ultraenergy over the integration is of the order £Guch that the
violet cutoff. system is in a quasi-equilibrium state where statistical equi-

In the case {=v=0) the model has, discarding the librium is reestablished in the limit where the energy injec-
boundary effects, besides the two scaling fixed points a peion rate goes to zero. Taking an even smaller forcing does
riodic solution. It is easy to verify that the following satisfies not change the statistics, thus the statistical time averaging is
the dynamical equatiofi): meaningful.

u (t)=sk51)\’3“ If the energy cascade is effectively blocked the energy

3n-2 ' should be pulled out of the system by a drag at the small

Ugy () = N3 — e Va2t (4)  wavenumbers corresponding to the backward cascade in 2D.
_ This is not seen, so an inverse energy cascade cannot be
Ugn(1) = N3\ a eV~ 0102, established. The model was also run with the usual dissipa-
with tion but only active on every second shell. The result of this
run was essentially the same as for the modified GOY model.
=S\ "H(L+bAZ+en T3 i i i
a , 5) In conclusion we see that the non-linear transfer in the

GOY model depends crucially on the dissipation properties
_ _ _ _ for both conserved quantities, energy and helicity. It is still
ands is an arbitrary constant. The scaling parameferis  an open question how much the GOY model reflects the
related to the scaling fixed DOIHZ'E by=—(a+1)/3, where  dynamics of the Navier—Stokes equation. These findings cer-
z=\“ is a solution to lFbZJr_{:Z =0, thus a generator of tainly indicate that the model is too restricted in some sense
one of the conserved q_uantm@sSo there are two values to represent real flow. The dissipative term introduced in the
possible fory; y=—(2+i/log(\))/3 corresponding to the  modified model is certainly not very realistic, in real flow
generatorz=—2, of helicity, or the fluxless fixed point of helicity of both signs will be dissipated, which it is not in the
the GOY model, and/= —1/3 corresponding to the genera- modified model presented here. The findings from this
tor, z=1, of energy, or the Kolmogorov fixed point. simple model might indicate that in the inertial range flow
There is in this periodic solution a complete phase lockthe conservation of helicity could block the energy cascade
ing of all the shells. The energy and helicity fluxes are bothand thus alter the Kolmogordv™ > scaling.
zero in the periodic solution, so in some sense it corresponds
to the fluxless fixed point of the GOY model. ACKNOWLEDGMENTS
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