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The effect of extreme hyperviscous damping,nkn
p ,p5` is studied numerically in the GOY shell

model of turbulence. It has resently been demonstrated@Leveque and She, Phys. Rev. Lett.75, 2690
~1995!# that the inertial range scaling in the GOY model is non-universal and dependent on the
viscous damping. In the present study it is shown that the deviation from Kolmogorov scaling is due
to the cascade of the second inviscid invariant. This invariant is non-positive definite and in this
sense analogous to the helicity of 3D turbulent flow. ©1997 American Institute of Physics.
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The invicid invariants, like the energy, of the Navier
Stokes equations are important quantities determining
dynamics of turbulent flow. The major difference betwe
2D and 3D flow originates from the existence of a seco
inviscid invariant, enstrophy, in 2D—absent in 3D flow. Th
gives strong constraints on the 2D flow dynamics. Conse
tion of enstrophy leads to the forward cascade of enstro
and the backward cascade of energy in 2D, giving rise
large-scale coherent structures in the flow. In 3D there a
exists a second quadratic inviscid invariant, namely the
licity, defined as the integral of the scalar product of t
velocity and the vorticity. It has been proposed to be imp
tant for 3D turbulence.1 It was shown by Kraichnan2 that the
interaction between waves of opposite helicity is stron
than interactions between waves of the same helicity. C
sequently, helical flow might slow down the cascade of
ergy to the dissipation range.3

Since the spectral helicity density grows with a fac
k, the modulus of the wave-vector, over the energy den
the helicity dissipation would, in theR→` limit, prevent
energy dissipation. The situation would resemble that of
turbulence where the cascade of enstrophy prevents the
ward cascade of energy. In 2D turbulence the conservatio
both *dkuu(k)u2 and*dkk2uu(k)u2 implies that the forward
cascade of enstrophy must be accompanied by a back
cascade of energy. This strong constraint does, however
apply in the case of helicity transfer since helicity is n
positive definite. So we only have the weaker assessm
mentioned above that the efficiency of energy dissipat
could be depending on the non-linear helicity transfer a
the helicity dissipation.

Considerable interest has lately been given to the G
model of turbulence, introduced by Gletzer and examined
Yamada and Ohkitani.4 Comprehensive lists of recent refe
ences on the GOY model can be found in Refs. 5 and 6.
behavior of the helicity in different shell models have r
cently been investigated.6,7

The GOY model is a simplified reduced wave-numb
analog to the spectral Navier–Stokes equations. The spe
domain is represented as shells, each of which is define
a wavenumberkn5k0l

n, where l is a scaling paramete
defining the shell spacing. There are 2N degrees of freedom
whereN is the number of shells, namely the generaliz
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complex shell velocities,un for n51, N. The dynamical
equation for the shell velocities is

u̇n5 iknS aun12* un11* 1
b

l
un11* un21* 1

c

l2un21* un22* D
2nkn

pun1 fdn,n0, ~1!

where the first term represents the non-linear wave inte
tion or advection, the second term is the dissipation, and
third term the forcing, wheren0 is some small wavenumber
Throughout this paper the standard 3D GOY model para
eter values,l52, k05l24, a51, b5c521/2 is used.
The GOY model in this form contains no information abo
phases between waves, thus there cannot be assigned a
field in real space.

The model has two conserved integrals, in the case o
forcing and no dissipation (n5 f50) ~inviscid invariants!.
These are,E5 1

2(n51
N uunu2 and H5 1

2(n51
N (21)nknuunu2

which corresponds to the conservation of energy and a
ond non-positive definite quantity interpreted as analogou
helicity5 for the Navier–Stokes equation of 3D turbulenc
hereafter referred to as the helicity. It should be stressed
this analogy is only in the sense that both quantities
non-positive definite. In this model each shell is maxima
helical with alternating sign, since the numerical value of t
helicity density isk times the energy density.

The forcing in~1! is applied at a small wavenumber an
the dissipation dominates at large wavenumbers, so we
define an inertial range where the non-linear energy cas
ing terms dominate and the Kolmogorov scaling argume
apply. For an energy cascade we have the ‘‘Kolmogo
scaling’’ of the shell-velocities,uuu;h1/3k21/3, and for a he-
licity cascade we have the ‘‘helicity scaling,’
uuu;h̃1/3k22/3, whereh and h̃ are the mean dissipation pe
unit time of energy and helicity, respectively. The model h
both the Kolmogorov scaling,un5kn

21/3g(n) and the helicity
scaling,un5(21)nkn

22/3g(n) as unstable fixed points in th
unforced and inviscid case. The function,g(n) 5 g(n 1 3), is
any mod~3! function. The mod~3! symmetry is an artifact of
the GOY model discussed in detail in Ref. 5. It will becom
important in the following. The Kolmogorov fixed poin
plays an important role for the behavior of the GOY mod
with forcing and dissipation, in the sense that the phase sp
)/1482/3/$10.00 © 1997 American Institute of Physics
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trajectory of the shell velocities seems to ‘‘curl around’’ th
point with the average values of the velocities close to
fixed point values. It was shown in a numerical study
Leveque and She8 that the inertial range scaling in the GO
model is not universal and is dependent on the form of
viscous damping. They attributed this non-universality to
reflection of energy flow from the viscous subrange back i
the inertial range in the case of hyperviscosity (p.2). By
studying the extreme casep5`, I suggest a different expla
nation for the non-universality of the inertial range scalin
namely that the cascade of helicity blocks the cascade
energy and thus changes the scaling. This effect is prob
specific to the GOY model, and a consequence of the spe
odd–even asymmetry of the helicity in the GOY model.

The numerical study is performed on two versions of
GOY model. First, the usual model with normal (p52) dis-
sipation and second, with viscosity only applied on the o
ermost shell, corresponding top5` hyperviscosity. The
forcing in ~1! is in both cases taken to bef5 f 0 /un0

* where

f 0 is a constant. This gives a constant input of energy~and
helicity! per unit time.

Figure 1 shows the result of a numerical calculation
f 05(11 i )31023,n054 and n51025. The model has 20
shells and is run for 3000 time units after a 1000 time un
spinup starting from the~unstable! Kolmogorov fixed point.
The first panel shows logl(^uunu&) as a function of the shel
numbern5 logl(kn), where^ • & denotes the temporal ave
age. The spectral slope is close to the Kolmogorov scal
shown by the line, thus the model shows an energy casc

The sources and sinks for energy and helicity are

Ė5(
n

~un* f n2nkn
2un

2! ~2!

and

Ḣ5(
n

~~21!nknun* f n2~21!nnkn
3un

2!. ~3!

This means that the helicity of opposite signs is dis
pated at every second shell and therefore total helicity
produced for odd numbered shells in the dissipation rang

FIG. 1. The standard GOY model withf 05(11 i )31023,n054 and
n51025. The model has 20 shells and is as before the run for 3000 t
units after a 1000 time units spinup starting from the~unstable! Kolmogorov
fixed point. logl(^uunu&) is shown as a function of the shell numb
n5 logl(kn). The line indicates the Kolmogorov scaling with a spectral slo
of 21/3.
Phys. Fluids, Vol. 9, No. 5, May 1997
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The inertial range flow is dominated by the non-line
transfer of the conserved quantities. The key assumption
Kolmogorov ~1941! is that the inertial range flow does no
depend on the specific form of the small scale viscous di
pation. This is not the case for the GOY model. In order
illustrate this point a study of a slightly modified GO
model is presented here. The dissipation is taken to be ac
only on the outermost shell, numberN520; this corresponds
to hyperviscosity in the limit,p⇒`, with n5n0kN

2p and
n0 held constant. With this choice of dissipation the behav
of the GOY model changes dramatically even though
non-linear terms in the governing equation remains
changed.

Figure 2 shows the result of a numerical integration w
the modified GOY model wheref 05(11 i )31028 and
n051027k20

2 5429.5. The first panel shows the veloci
spectrum where the mod~3! symmetry of the shell mode
becomes dominant. The scaling behavior of shells numbe
10,13,16,19 is different from the rest. The line in the figu
has a slope of22/3 corresponding to the cascade of helic
rather than energy.

However, if Un5uu(n21)u(n)u(n11)u1/3 is consid-
ered the mod~3! symmetry is eliminated and the inertia
range scaling approximately reemerges as an arithm
mean of the scaling behaviors for the she
3n, 3n11, 3n12 ~Fig. 2, second panel!. The line in the
figure has a slope of21/2 corresponding to equipartitionin
of helicity. The hyper-viscosity of the model, only pullin
out helicity through the~18, 19, 20! triad, cannot maintain a
helicity cascade.

The result can be interpreted as a spectral bump at
end of the spectrum with an approximate equipartition
helicity. Similar results have been found by Borue a

e

FIG. 2. The modified GOY model with f 05(11 i )31028 and
n051027k20

2 5429.5. This model has likewise 20 shells and is run f
3000 time units. The first panel is the same as in Fig. 1. The line in
figure has a slope of22/3 corresponding to the cascade of helicity. Seco
panel shows the spectrum ofUn5uu(n21)u(n)u(n11)u1/3. The line has a
slope of21/2 corresponding to the equipartition of helicity.
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Orszag9 for numerical simulations of the 3D Navier–Stok
equation. In this case the accumulation seems to be an e
of energy not being able to be transferred across the u
violet cutoff.

In the case (f5n50) the model has, discarding th
boundary effects, besides the two scaling fixed points a
riodic solution. It is easy to verify that the following satisfie
the dynamical equation~1!:

u3n22~ t !5sk0
21l23n,

u3n21~ t !5l3ngA2a1e
2 iA2a1a2t, ~4!

u3n~ t !5l3ngAa2e
iA2a1a2t,

with

a15sl24~11bl21cl23g11!,
~5!

a25sl3g23~11bl23g211cl23g11!,

and s is an arbitrary constant. The scaling parameter,g, is
related to the scaling fixed point byg52(a11)/3, where
z5la is a solution to 11bz1cz250, thus a generator o
one of the conserved quantities.10 So there are two value
possible forg; g52(21 ip/ log(l))/3 corresponding to the
generator,z522, of helicity, or the fluxless fixed point o
the GOY model, andg521/3 corresponding to the gener
tor, z51, of energy, or the Kolmogorov fixed point.

There is in this periodic solution a complete phase lo
ing of all the shells. The energy and helicity fluxes are b
zero in the periodic solution, so in some sense it correspo
to the fluxless fixed point of the GOY model.

The shell-velocities of shells 8, 11, 14, 17, 20 are out
phase with those of shells 9, 12, 15, 18, while shell-veloci
of shells 10, 13, 16, 19 are almost constant. From thi
seems as if the periodic solution plays the same role for
modified GOY model as does the Kolmogorov fixed po
for the GOY model. This could indicate the existence of
~unstable! limit cycle in the modified GOY model.

The dissipation of helicity is irregular, associated w
the bursts in shell number 20~and all other shells!, the en-
ergy dissipation is completely blocked, resulting in a stea
increase of energy concentrated on shells 10,13,16,19.
mechanism for preventing the forward cascade of energ
this model is analogous to the 2D case, where the forw
cascade of enstrophy governs the dynamics.

The system shows no signs of approaching a statis
equilibrium simply because the helicity can grow to ar
trarily large negative values~dominated by shell number 19!.
The reason for this can be understood by examining the
sipative energy balance. In the case of normal viscosit
follows from ~2! that the phase space trajectory will be a
tracted to the hyper-ellipsoid given by(nkn

2uunu25 f which
is a compact 2N21 dimensional object. In thep5` case
this object will be the 2N21 dimensional ‘‘hyper-cylinder’’
defined byuu20u5 f /nk20

2 ). This is not compact and ergodic
1484 Phys. Fluids, Vol. 9, No. 5, May 1997
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ity does not apply, thus thep→` is a singular limit and no
statistical equilibrium can be reached. The relative chang
energy over the integration is of the order 1022 such that the
system is in a quasi-equilibrium state where statistical eq
librium is reestablished in the limit where the energy inje
tion rate goes to zero. Taking an even smaller forcing d
not change the statistics, thus the statistical time averagin
meaningful.

If the energy cascade is effectively blocked the ene
should be pulled out of the system by a drag at the sm
wavenumbers corresponding to the backward cascade in
This is not seen, so an inverse energy cascade canno
established. The model was also run with the usual diss
tion but only active on every second shell. The result of t
run was essentially the same as for the modified GOY mo

In conclusion we see that the non-linear transfer in
GOY model depends crucially on the dissipation propert
for both conserved quantities, energy and helicity. It is s
an open question how much the GOY model reflects
dynamics of the Navier–Stokes equation. These findings
tainly indicate that the model is too restricted in some se
to represent real flow. The dissipative term introduced in
modified model is certainly not very realistic, in real flo
helicity of both signs will be dissipated, which it is not in th
modified model presented here. The findings from t
simple model might indicate that in the inertial range flo
the conservation of helicity could block the energy casca
and thus alter the Kolmogorovk25/3 scaling.
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