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Dissipation in helical turbulence
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~Received 30 April 2000; accepted 30 July 2001!

In helical turbulence a linear cascade of helicity accompanying the energy cascade has been
suggested. Since energy and helicity have different dimensionality we suggest the existence of a
characteristic inner scale,j5kH

21, for helicity dissipation in a regime of hydrodynamic fully
developed turbulence and estimate it on dimensional grounds. This scale is always larger than the
Kolmogorov scale,h5kE

21, and their ratioh/j vanishes in the high Reynolds number limit, so the
flow will always be helicity free in the small scales. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1404138#
an

e
w

di
n

e

n
n

s-
tio

ti

be
tive

-

in-

g

ive
n of

the
pa-
ity
In helical turbulence coexisting cascades of energy
helicity were envisaged by Brissaudet al.1 Based on dimen-
sional analysis it was conjectured that the helicity cascad
linear in the sense that the spectral helicity density follo
the spectral energy density,H(k)}E(k)}k25/3. This sce-
nario was supported numerically by Andre´ and Lesieur in an
EDQNM closure calculation2 and by Borue and Orzag3 in a
direct numerical simulation. Following Brissaudet al. the
existence of a linear helicity cascade is due to an equal
tortion time leading to the nonlinear transfer of energy a
helicity. The distortion time at a scalek is estimated as4

tk;S E
0

k

p2E~p!dpD 21/2

. ~1!

Here and in the following; denotes ‘‘equal within order
unity constants.’’5 The nonlinear transfers of energy and h
licity are then

PE~k!;kE~k!/t~k! ~2!

and

PH~k!;kH~k!/t~k!. ~3!

From ~1! and ~2! the K41 result,

E~k!;ē2/3k25/3, ~4!

follows whereē is the mean energy dissipation or mean no
linear energy transfer or mean energy input. Correspo
ingly, from ~1! and ~3! we obtain

H~k!;d̄ē21/3k25/3, ~5!

where d̄ is the mean helicity input. The linear helicity ca
cade is derived under the assumption that helicity dissipa
is negligible in the inertial range. The helicity density ish
5uiv i /2, wherev i5e i jk] juk is the vorticity. Conventionally
the helicity is defined as 2h, this is not important for the
discussion presented here. An instructive way of represen
this spectrally is to expand the velocity vectorui(k) in a
basis of ‘‘helical modes.’’6 The helical modesh6 are the
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~complex! eigenvectors of the curl operator,ikÃh6

56kh6 . Using incompressibility,k"u(k)50, we have
u(k)5u1(k)h11u2(k)h2 and the energy and helicity in
the modeu(k) are

E~k!5u~k!"u~k!* /25~ uu1~k!u21uu2~k!u2!/2 ~6!

and

H~k!5u~k!"v~k!* /25k~ uu1~k!u22uu2~k!u2!/2. ~7!

The spectral energy and helicity densities can then
separated into the densities of modes of positive and nega
helicity E(k)5E1(k)1E2(k) and H(k)5H1(k)1H2(k)
5k(E1(k)2E2(k)). From this we have the rigorous con
straint on the spectral helicity density,

uH~k!u<kE~k!. ~8!

A similar constraint can be derived regarding the mean
puts of energyē and helicityd̄. Suppose the flow is forced
with a forcing f at the pumping scale such thatf(k)50 for
uku.K whereK is a wave number larger than the pumpin
scale. Then it follows thatud̄u<K ē,3 where K is a wave
number at the pumping scale. When the scaling relations~4!
and ~5! are applied to the densities of positive and negat
helicities separately, there must be a detailed cancellatio
the leading scaling, such that

E1~k!5~C/2!ē2/3k25/31~CH/2!d̄ ē21/3k28/3 ~9!

and

E2~k!5~C/2!ē2/3k25/32~CH/2!d̄ ē21/3k28/3, ~10!

whereC and CH are some~nonuniversal! order unity Kol-
mogorov constants.

The energy dissipation is given as DE

5n*0
kE k2E(k)dk, and the upper limit of the integral which

is the ~inverse! Kolmogorov scalekE is as usual determined
by nkE

3E(kE);nkE
3( ē2/3kE

25/3);ē⇒kE;( ē/n3)1/4. The dis-
sipation is linear and can thus be split into dissipation of
positive and negative helicity parts of the spectrum se
rately. This implies that the dissipation of one sign of helic
8 © 2001 American Institute of Physics
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(s56) is DHs
;n*0

kH k2Hs(k)dk5nkH
4 Es(kH). The helicity

of sign s is thus dissipated at a scale determined by

DHs
;nkH

4 Es~kH!

;nkH
4 ~ ē2/3kH

25/31sd̄ ē21/3kH
28/3!;d̄ ~11!

and we arrive at an~inverse! inner scalekH , different from
the Kolmogorov scalekE , for dissipation of helicity,

kH;@d̄3/~n3ē2!#1/7. ~12!

It is easy to see that for any flow realization we must ha
kH<kE , so a pure helicity cascade is not possible. This
sult can also be obtained by estimating where the fl
should be forced in order to dissipate the helicity at the K
mogorov scale such thatkH;kE . Pumping helicity into the
flow at wave numberk implies d̄;kē. We thus have

kH;kE⇒F ~kē !3

n3ē2 G1/7

;S ē

n3D 1/4

⇒k;kE . ~13!

This shows that the the flow must be forced at the Kolm
orov scale which is in conflict with the existence of an ine
tial range. A similar result was obtained by Olla7 in a differ-
ent way using an argument based on the EDQN
approximation.

Furthermore, we havekH /kE}n23/713/45n9/28→0 for
n→0. So again for high Reynolds number helical flow t
small scales will always be nonhelical. The inner scale
helicity dissipation plays a different role in helical turbulen
than the Kolmogorov scale. The dissipation of one sign
helicity at a given wave number will grow with wave num
ber asDHs

(k)}k7/3, thus the dissipation of either sign o
helicity will grow with wave number in the rangekH,k
,kE . This is only possible if there is a detailed balance b
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range.

In conclusion, the scenario we propose for high Re
nolds number helical turbulence is then the following. At t
integral scaleK energy and helicity is forced into the flow. I
the inertial rangeK,k,kH there is a coexisting cascade
energy and helicity where helicity follows a ‘‘linear cascad
with a H(k);k25/3 spectrum. In the rangekH,k,kE the
dissipation of helicity dominates with a detailed balance
tween dissipation of positive and negative helicities and
right–left symmetry of the flow is restored. The balanc
positive and negative helicities are generated in analog
the enstrophy being generated in high Reynolds num
flow. The proposed scenario has been illustrated in a s
model of turbulence.8 However, since the considerations pr
sented here are purely phenomenological they should
tested in experiments or numerical simulations.
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