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Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both
kinetic energy and helicity, a second inviscid flow invariant besides energy, from the integral
scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly
rotating flows with broken mirror symmetry, an inverse (reversed) energy cascade can
be observed analogous to that of two-dimensional turbulence (2D) where enstrophy, a
second positive-definite flow invariant, unlike helicity in 3D, effectively blocks the forward
cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation, it
has previously been shown that a subset of three-wave (triad) interactions conserve helicity
in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy
cascade in 3D. In this work, we show, both theoretically and numerically, that an additional
subset of interactions exist, conserving a new pseudo-invariant in addition to energy and
helicity, which contributes either to a forward or an inverse energy cascade depending on
the specific triad interaction geometry.
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I. INTRODUCTION

Fully developed three-dimensional (3D) turbulence is characterized by a forward cascade of
kinetic energy from the large integral scale of motion to the small Kolmogorov scale η of
viscous dissipation. In the large Reynolds number limit, η → 0, the production of enstrophy,
the integral of the vorticity squared, by the stretching and bending term in the incompressible
Navier-Stokes equations (NSE) permits the viscous dissipation of energy at the Kolmogorov scale.
In two-dimensional (2D) turbulence, the stretching and bending term is absent, and enstrophy is, in
addition to energy, also an inviscid invariant [1]. In this case, the dissipation of enstrophy prevents
dissipation of energy at the Kolmogorov scale, effectively blocking the forward cascade of energy.
The dual inviscid conservation of both quantities,

∫
E(k)dk and

∫
k2E(k)dk, the integrals over

the spectral energy and enstrophy densities, respectively, consequently implies a reversal of the
energy cascade to larger scales, hereafter referred to as a reverse cascade, following Waleffe [2]
(synonymous to an inverse or upscale cascade). In 3D turbulence, helicity, the integral of the scalar
product of velocity and vorticity, is also an inviscid invariant [3]. Similar to the enstrophy spectrum,
the helicity spectrum, H (k) ∼ kE(k), dominates over the energy spectrum at small scales (large
k), but unlike enstrophy, helicity is not sign definite. As a consequence, the increased dissipation
(of both signs) of helicity compared to energy can be obtained without a net helicity production as
long as the dissipation of both positive and negative helicities balance [4]. Inviscid conservation of
helicity therefore does not prevent a forward cascade of energy [5].

In helical flows, such as strongly rotating flows with broken mirror symmetry, a simultaneous
forward helicity cascade and reverse energy cascade can however be observed [6]. In the spectral
decomposition of the NSE, energy and helicity (and enstrophy in 2D) are conserved within each
three-wave interaction (triad interaction). It was recently proposed that reverse energy cascades
might generally exist in 3D turbulence [7], caused by a specific subset of triad interactions among
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FIG. 1. G1–G4 helical triad interactions classified by behavior (F and R classes). The behavior of G2
triads is here proposed to be determined by the conservation of a new geometry-dependant enstrophy-like
quantity, E(α). The arrows indicate the average energy transfer directions based on a linear stability analysis [2]:
Blue/solid (red/dashed) arrows denote forward (reverse) energy transfers while thick (thin) arrows represent
the dominant (subordinate) transfers.

helical wave components [2] of the same sign which render helicity enstrophy-like. The relative
roles played by the different of subsets of helical triad interactions would depend specifically on the
symmetries and boundary conditions of the turbulent flow [8,9].

By applying the helical decomposition [2] to the NSE, triad interactions are split into four distinct
groups of interactions between helical modes of different signs (depending on the relative weights of
interchange of energy and helicity among the three waves). Within each helical interaction group, we
show that an additional either helicity- or enstrophy-like quantity is conserved. Here, we conjecture
that it is the spectral properties of this triad-specific invariant that governs the dual cascade of energy
and helicity in 3D turbulence. Our conjecture is confirmed in the case of a shell model (reduced
wave space model) which obeys the same conservations as the NSE [8].

In the helical decomposition [2] of the NSE for incompressible flows, each complex spectral
velocity component, u(k), is decomposed into helical helical modes, h±(k) (using k · u(k) = 0),
which are eigenmodes of the curl operator, i.e., ik × h± = ±kh±, where k = |k|. In this basis,
velocity components are given by u(k) = u+(k)h+ + u−(k)h−, and energy and helicity are given by
E = ∑

k(|u+(k)|2 + |u−(k)|2) and H = ∑
k k(|u+(k)|2 − |u−(k)|2), respectively. The spectral NSE

become [2]

(dt + νk2)us(k) = −1/4
∑

k+k′+k′′=0

∑
s ′,s ′′

(s ′k′ − s ′′k′′) h∗
s ′ (k′) × h∗

s ′′ (k′′) · h∗
s (k) u∗

s ′ (k′)u∗
s ′′ (k′′), (1)

where {s,s ′,s ′′} = ±1 are the helical signs of the interacting modes and (s ′k′ − s ′′k′′) h∗
s ′ (k′) ×

h∗
s ′′ (k′′) · h∗

s (k) is the coupling coefficient of the helical triad interaction involving velocity
components {us(k),us ′ (k′),us ′′ (k′′)}. Each triad interaction in the spectral NSE is thus split into four
helical triad interactions by the inner sum over helical signs in (1) when sorted against shared coupling
coefficients: {s,s ′,s ′′} = ±{+,−,+}, ± {+,−,−}, ± {+,+,−}, ± {+,+,+}, hereafter referred to as
groups G1,. . . ,G4 respectively; see Fig. 1.

By isolating terms in (1) involving only three wave vectors {k,k′,k′′} (a single triad) and
defining the shorthand notation g = h∗

s ′ (k′) × h∗
s ′′ (k′′) · h∗

s (k), one finds, using the cyclic property
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of g,

dtus(k) = (s ′k′ − s ′′k′′) g u∗
s ′ (k′)u∗

s ′′ (k′′),

dtus ′ (k′) = (s ′′k′′ − sk) g u∗
s ′′ (k′′)u∗

s (k), (2)

dtus ′′ (k′′) = (sk − s ′k′) g u∗
s (k)u∗

s ′ (k′).

This simple form of the helically decomposed NSE triad dynamics is the basis of our analysis.
Note that the cyclic symmetry of (2) implies that one may assume k � k′ � k′′ without loss of
generality. By multiplying by u∗

s (k),u∗
s ′ (k′) and u∗

s ′′ (k′′), respectively, in the three equations (2), it
immediately follows that energy is conserved within each triad interaction, and similarly for helicity
by multiplication of sku∗

s (k),s ′k′u∗
s ′ (k′) and s ′′k′′u∗

s ′′ (k′′), respectively [2]. The energy flux between
the three triad legs is fixed for a given triad and is determined by the terms (s ′k′ − s ′′k′′),(s ′′k′′ − sk),
and (sk − s ′k′) in (2), while the average flux direction (to or from a leg) is determined by the sign of
the three-wave correlator 〈u∗

s (k)u∗
s ′ (k′)u∗

s ′′ (k′′)〉 + c.c.
Waleffe [2] suggested that a linear instability analysis would predict the average energy flux

direction within helical triad interactions by assuming that energy, on average, flows out of the
most unstable wave mode and into the other two. By evaluating the stability of the fixed points
{us(k),us ′ (k′),us ′′ (k′′)} = {U0,0,0},{0,U0,0},{0,0,U0} using (2), the unstable wave mode may be
identified as the one with the largest absolute coefficient value in (2). This criterion implies that the
smallest leg (largest scale) is unstable in G1 and G3 interactions, suggesting that these interactions
contribute with a forward energy cascade (F-class interactions), while for G2 and G4 the middle
leg is unstable, suggesting part of the energy flux is reversed. In G4, only same-signed helical
modes interact, implying both positive and negative helicities, H+ = ∑

k k|u+(k)|2 and H− =∑
k k|u−(k)|2), are separately conserved. As such, G4 interactions can be regarded as analogous to

enstrophy-conserving 2D interactions, and, consequently, should contribute with a reversed energy
cascade (R-class interactions). This was recently indeed found to be the case numerically [7]. Note
that the 2D analogy argument for why G4 interactions should exhibit a reversed energy cascade is
different from that of the instability assumption. Lastly, in G2 interactions, positive and negative
helicity components do interact, thus breaking the helicity-enstrophy analogy for explaining the
mixed F- and R-class nature of G2 [2].

II. THE PSEUDO-INVARIANT

Here we argue that the mixed F- and R-class nature of G2 interactions is determined by a new
quantity different from energy and helicity, which too is conserved within a single triad interaction
(2), but depends on triad shape. This new “pseudo-invariant” is thus, unlike energy and helicity,
not a globally conserved quantity (across all triad interactions) because of its shape dependency.
We therefore conjecture that the energy cascade, within subsets of identically shaped triads, should
transition from forward (F-class) to reverse (R-class) depending on whether energy or the pseudo-
invariant is dominant at the dissipation scale. To realize this, consider the spectral pseudo-invariant
quantity defined as

E(α)(k) = kα
(|u+(k)|2 + |u−(k)|2), α ∈ R, (3)

which is analogous to the spectral energy density E(k) = |u+(k)|2 + |u−(k)|2. This quantity
is conserved by triad interactions governed by (2) if dt (E(α)(k) + E(α)(k′) + E(α)(k′′)) = 0,
implying (

s ′ k
′

k
− s ′′ k

′′

k

)
+

(
k′

k

)α(
s ′′ k

′′

k
− s

)
+

(
k′′

k

)α(
s − s ′ k

′

k

)
= 0, (4)

which is trivially fulfilled for any triad when α = 0 (i.e., energy). As a function of triad shape, given
by the relative leg sizes k′/k and k′′/k, the left-hand side of (4) consists of a constant term and two
monotonically increasing or decreasing terms. The existence of a nontrivial, real solution (α 	= 0)
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FIG. 2. G2 α solutions as a function of triad shape given by the two interior angles θ ′ and θ ′′. Overlayed
are the α = 0 contour using Eq. (5) (dotted line) and the specific triad geometries simulated in this study
(crosses).

for a given triad shape {k,k′,k′′} and interaction group {s,s ′,s ′′} therefore requires the signs of the
coefficients of the two last terms in (4) to be opposite. Note that no more than one nontrivial, real
solution can exist. It follows that only G2 and G4 interactions can have nontrivial solutions to (4).
For G4, α = 1 is the solution for any triad, corresponding to the global inviscid conservation of
helicity, as expected. For G2, the solution α = α(k,k′,k′′) is triad shape dependent.

Figure 2 shows the numerically solved G2 solutions for all possible (noncongruent) triad
geometries (colored area in Fig. 2) by expressing each triad in terms of the two interior angles θ ′
and θ ′′ using the sine rule: k′/k = sin(θ ′)/ sin(π − θ ′ − θ ′′) and k′′/k = sin(θ ′′)/ sin(π − θ ′ − θ ′′).

For G2 triads fulfilling

log k′′/k

1 + k′′/k
= log k′/k

1 + k′/k
, (5)

[taking d/dα|α=0 of Eq. (4)], the trivial and nontrivial solutions collapse to the single solution α = 0.
Because the ratio of the spectral pseudo-invariant density to energy scales as kα (growing with k for
α > 0), the subset of G2 triad interactions having α > 0 (red in Fig. 2) may be regarded analogous
to enstrophy-conserving interactions in 2D turbulence. Note that these triad interactions correspond
to nonlocal interactions.

In addition to a stability analysis, Waleffe [2] also estimated the behaviors of G1–G4 by studying
the spectral energy flux equation. Assuming an infinite Kolmogorov scaling, the analysis suggested,
to leading order, that triad geometries for which

log k/k′

1 + k/k′ + log k′′/k′

k′′/k′ − 1
(6)

is positive (negative) should contribute with forward (reverse) energy cascades. Noting that 1 �
k′′/k′ � k/k′ + 1 (triangle inequality), it follows that G2 triads with k/k′ > 0.318 contribute to a
forward cascade, whereas k/k′ < 0.278 contribute reversely. That is, a band of triad geometries
exist, 0.278 < k/k′ < 0.318, outside which the energy cascade is either forward or reverse. Here,
however, we argue that retaining the original expression (6) contains more information on the
G2 F/R transition since (i) setting it equal to 0 can be shown to be identical to (5), which has a
clearer physical interpretation, and (ii) provides the exact F/R-transition line as a function of triad
geometry (Fig. 2).
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III. NUMERICAL TEST

In order to test our conjecture, we apply our newly constructed helical shell model [8]
(source available at https://github.com/nicholasmr/rdshellmodel). Shell models are a class of
fixed-triad-shape and reduced-wave-space models, allowing for very long inertial ranges to be
resolved. Benzi et al. [10] did the pioneering work on constructing helical shell models, which,
since then, has inspired other helical shell models and led to important insights on helically
decomposed triad dynamics [4,8,11–17]. The shell model used here [8], which is related to the
Sabra model [15] by the transformation us(kn) → −isus(kn) except for a sign change in G1 and G3
(relevant only when coupling G1–G4), additionally provides a natural coupling between the four
interaction groups (G1–G4) and multiple triad shapes through coupling weights derived directly
from (1).

In helical shell models, it is straight forward to perform “spectral surgery” as proposed [7,15,18,19]
in order to investigate the (isolated/uncoupled) behavior of G2 interactions. Considering only fixed-
shaped G2 interactions, the shell model takes the form

(
dt + νk2

n + νLk−2
n

)
us(kn) = skn

[
u∗

−s(kn+p)u−s(kn+q) − εp,q

λp
u∗

−s(kn−p)us(kn+q−p)

+ 1 + εp,q

λq
u−s(kn−q)us(kn−q+p)

]
+ fs(kn), (7)

where εp,q = (1 + λq)/(λp − λq), fs(kn) is the forcing at wave number kn, and the linear terms
νk2

nus(kn) and νLk−2
n us(kn) are viscous dissipation and a drag term, respectively; the latter is added

in the usual way to remove energy at large scales. The scalars kn = k0λ
n, where n = 0, . . . ,N ,

represent the exponentially distributed shell wave numbers resolved, {p,q} ∈ N where 1 < p < q,
k0 ∈ R+, and λ ∈ ]1,(1 + √

5)/2] = ]1,ϕ]. The golden ratio ϕ is the upper limit such that any set of
nearest neighbor waves fulfills the triangle inequality as required by the NSE.

The integers {p,q} can be related to any triangular shape through the sine rule. The possible
resolved triad shapes depend therefore on the combination of {λ,p,q}: For λ → 1 any triad geometry
may be constructed for sufficiently large or small values of {p,q}, while for {λ,p,q} = {ϕ,1,2} triads
collapse to a line. Thus, for each chosen set of {λ,p,q}, the shell model consists, independently of
scale kn, only of fixed-shaped triad interactions.

The nonlinear terms in (7) conserve both energy E = ∑N
n=0(|u+(kn)|2 + |u−(kn)|2) and helicity

H = ∑N
n=0 kn(|u+(kn)|2 − |u−(kn)|2). Each {p,q} configuration of the model (λ hereafter assumed

fixed) additionally conserves the pseudo-invariants E(α) = ∑N
n=0 kα

n (|u+(kn)|2 + |u−(kn)|2) in
complete analogy to (4) for the NSE [8].

The nonlinear spectral energy flux through the nth shell is given by [8]


(kn) =
n+q∑

m=n+1

�m,p,q + εp,q

n+q−p∑
m=n+1

�m,p,q, (8)

where �m,p,q = 2km−q Re[u∗
+(km−q)u∗

−(km−q+p)u−(km) − u∗
−(km−q)u∗

+(km−q+p)u+(km)].
Simulations were conducted with λ = 1.1, k0 = 1, and N = 223 for both high and low Reynolds

number configurations {ν,νL} = {1×10−12, 1×102}, {1×10−11, 1×104}, respectively. Five different
sets of {p,q} were chosen: p = {1,12,13,14,22} with q = p + 1, corresponding to α = {−30.9, −
0.15,0.01,0.15,0.69} (crosses in Fig. 2). In all simulations, the forcing f±(knf ) = (1 + i)/u∗

±(knf )
was applied to both helical components at shell nf = 108, supplying a constant energy input of
εin = 4.

Figure 3 shows the simulated spectral energy fluxes. The blue curves show the resulting energy
fluxes for the model configured with triad shapes having α < 0, in which case energy should exhibit
a forward cascade. The red curves show the opposite with α > 0, namely a 2D-like reversed energy
cascade and a forward cascade of the enstrophy-like pseudo-invariant (latter not shown). As the
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FIG. 3. Simulated spectral energy fluxes of the G2 triad geometries (α values) considered. Solid (dashed)
lines correspond to high (low) Reynolds number configurations.

cascade directions for the energy and the pseudo-invariant interchange at α = 0, we expect a split
forward and reversed energy cascade to develop, which is indeed found to be the case (black curve
in Fig. 3). Furthermore, because the ratio of the spectral pseudo-invariant density to energy scales as
kα , one would expect with increasing Reynolds numbers a narrowing of the α interval over which
the F- to R-class transition occurs, which is also found to be the case (solid versus dashed lines
in Fig. 3).

IV. DISCUSSION

De Pietro et al. [15] gave an alternative explanation for the F to R transition in the case of a
shell model by studying the energy flux equation (8). Their work suggested that if time-averaged
triple correlators, 〈�n,p,q〉, are asymptotically constant (independent of kn), Eq. (8) may be written
as 〈
(kn)〉 = (q + (q − p)εp,q)〈�n,p,q〉 = Fp,q〈�n,p,q〉. Thus, the sign of Fp,q , which depends on
triad geometry, would indicate the flux direction, assuming the sign of 〈�n,p,q〉 is fixed and given by
a stability analysis [2,15]. However, even though this prediction is in agreement with our conjecture
for the triad geometries considered here, it is important to note that 〈�n,p,q〉 cannot necessarily be
assumed asymptotically constant in the nonlocal triad limit [8].

The importance of the “hidden” reverse energy cascade carried by G2 R-class interactions (α > 0),
which are mostly nonlocal, depends (i) on the number of G2 R-class triads compared to the number
of G2 F-class triads, and (ii) the magnitude of the G2 coupling coefficients in (1) compared to those of
G1, G3, and G4. To estimate (i), consider the continuous version of (1) where the triad sum becomes
an integral over dk′dk′′. In terms of θ ′ and θ ′′, the corresponding density of triads within the element
dk′dk′′ is given by the transformation dk′dk′′ = | det J | dθ ′dθ ′′, where J = ∂
 is the Jacobian of
the transformation k′ = 
′(θ ′,θ ′′) and | det J | = k2 sin(θ ′) sin(θ ′′)[1 + cos(θ ′ + θ ′′)2]/sin(θ ′ + θ ′′)4.
Thus, the number of G2 R-class triads far exceeds the number of G2 F-class triads in
the limit of large inertial ranges (Re → ∞) since the acute triad limit k′,k′′ → ∞ implies
sin(θ ′ + θ ′′) → 0 and therefore a large density of nonlocal triads. To estimate (ii), consider the
relative (normalized) magnitudes of the G2 coupling coefficients given by I−,−/

∑
s ′,s ′′ Is ′,s ′′ , where

Is ′,s ′′ = |(sk + s ′k′ + s ′′k′′)(s ′k′ − s ′′k′′)|. That is, Is ′,s ′′ is the part of the total coupling weight
unique to each of G1–G4, which originates from (1) by noting |(s ′k′ − s ′′k′′) g| = Is ′,s ′′Q/(2kk′k′′),
where Q = (2k2k′2 + 2k′2k′′2 + 2k′′2k2 − k4 − k′4 − k′′4)1/2 [2]. Figure 4 shows the relative G2
coupling magnitudes (solid black lines), suggesting G2 R-class interactions should, overall, play
an important role in the helically decomposed dynamics of flat and semi-acute triads. In addition,
assuming k = 1 without loss of generality, the colored contours in Fig. 4 show the triad density,
| det J |, is also large for such flat and semi-acute triads triads, suggesting G2 R-class interactions
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FIG. 4. G2 relative coupling weight (solid black contours) and triad densities (coloured contours) as a
function of triad shape.

become increasingly important to the extent that the inertial range is long enough for them to be
resolved.

V. SUMMARY

In conclusion, we presented an alternative classification to linear triad stability analysis [2] for
explaining the nature of the four elementary nonlinear interactions of the spectral Navier-Stokes
equation in the helical basis. By showing a subset of interactions conserve new enstrophy-like
blocking quantities depending on triad geometry, the apparent complicated nature of the second
group (G2) of helical interactions (Fig. 1) may be explained in terms of physically conserved
quantities analogous to enstrophy in 2D turbulence.
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