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Large-amplitude (10-15 K) millennial-duration warming events, the Dansgaard—Oeschger (DO)
events, repeatedly occurred in the North Atlantic region during ice ages. So far, the trigger of these
events is not known. To explain their recurrence pattern, a ghost stochastic resonance (GSR)
scenario has been suggested, i.e., a dynamical scenario in which the events represent the subhar-
monic response to centennial-scale solar forcing plus noise. According to this hypothesis a multi-
modal phase distribution of the events is expected, which should be tested on the basis of climate
records by means of time series analysis. A major obstacle in these tests, however, is the need of a
statistical measure of regularity that can distinguish between a random occurrence of DO events and
a GSR scenario. Here we construct and compare three new measures of phase multimodality. In a
Monte Carlo simulation with a simple conceptual model of DO events we simulate probability
distributions of the measures under both scenarios for realizations of only 11 DO events. Based on
these distributions we find that our measures are able to distinguish between a random occurrence
and a GSR scenario. We further apply our measures to analyze the recurrence pattern of the last 11
DO events in the North Greenland Ice Core Project deep ice core from Greenland. © 2009 Ameri-

can Institute of Physics. [doi:10.1063/1.3274853]

Nontrivial effects of noise in nonlinear systems have been
a classical topic for many years. It is established that
noise can even play a constructive role in synchronizing
various types of nonlinear dynamical systems. The
mechanisms of stochastic resonance (SR) and coherence
resonance (CR) are probably the most prominent ex-
amples of this fact. Recent work focused on the mecha-
nism of ghost stochastic resonance (GSR). In this mecha-
nism, a stochastic nonlinear dynamical system, with two
quasistationary states, is forced by at least two periodic
input cycles. It has been demonstrated that for an opti-
mal noise level the output of the system can be synchro-
nized at the fundamental frequency 1/T of the forcing
(where T denotes the period of the cyclic input), that is, at
a frequency with zero input power. This is in contrast to
the usual SR, in which the output is synchronized at the
same frequency as the forcing. It has further been shown
that in a GSR scenario, a multimodal recurrence pattern
of output events can be expected. For time series analysis,
this recurrence pattern poses a major challenge since it
highlights the need to develop more efficient measures of
complex, nonperiodic regularity, which are difficult to
construct. Here we use a simple two-state dynamical
model with a threshold to develop new measures of mul-
timodality, which may be used to distinguish between a
GSR and a scenario of solely noise-induced events. We
use these measures in a Monte Carlo approach to analyze
the recurrence pattern of large-amplitude (10-15 K),
shiftlike anomalies in glacial climate, the Dansgaard—
QOeschger (DO) events, which are documented, for ex-
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ample, in deep ice core records from Greenland. So far,
the cause of these remarkable glacial climate oscillations
is still unknown. Using our method we find a recurrence
pattern of DO events which might be explained by a GSR
scenario. We expect that our methodological advance
should be of value for future studies, in which the statis-
tical significance of the detected recurrence pattern needs
to be tested.

I. INTRODUCTION

Many paleoclimatic time series show the existence of
millennial-scale warming events during ice ages, the DO
events (Dansgaard et al., 1982; Grootes et al., 1993; Bond er
al., 1993), cf. Fig. 1. The temperature variations during these
events were estimated to be on the order of 10-15 K, as can
be deduced from the ratio of stable isotopes in deep ice cores
from Greenland (Severinghaus and Brook, 1999; Lang et al.,
1999). DO events are commonly interpreted as oscillations
between two different states of operation of glacial climate,
the stadial (=cold) and the interstadial (=warm) state, respec-
tively (Dansgaard er al., 1982; Oeschger ef al., 1984; Bro-
ecker et al., 1985; Sarnthein et al., 1994; Alley and Clark,
1999; Steffensen et al., 2008). These two states could corre-
spond to two fundamentally different modes of the Atlantic
ocean circulation, a cold mode with buoyancy deep convec-
tion south of the Greenland-Scotland ridge, and a warm
mode with buoyancy deep convection north of the ridge (Ga-
nopolski and Rahmstorf, 2001), cf. Fig. 2. Buoyancy deep

© 2009 American Institute of Physics
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FIG. 1. DO events 0-10 as seen in the NGRIP deep ice core from Greenland during the time interval between 11 000 and 42 000 yr before present (Andersen
et al., 2006; Svensson et al., 2006). Left: time domain. The timing of the onset of the DO events is given in Table I. Right: phase domain. The figure shows
the timing t, of the onset of the events, plotted on the unit circle using the transformation ¢,=2t,/1487.5, where ¢, denotes the phase of the events. Note
that the unit circle in the right part is divided into 34 sectors to better illustrate the cluster of the observed at a few values (“modes”) of ¢,.

convection is a threshold process, since it occurs when the
density of the surface water becomes larger than the density
of the deep ocean water. From a dynamical system view-
point, DO events can thus be regarded as repeated oscilla-
tions between two fundamentally different states of operation
in a system with a threshold and with a millennial time scale
(Alley et al., 2003).

So far, it is still not agreed upon if DO events are purely
random or synchronized by some external (e.g., solar) forc-
ing. For the “prosynchronization,” see Alley et al. (2001),
Schulz (2002), Rahmstorf (2003), Braun et al. (2005), and
Braun (2009). For the “con-synchronization,” see Ditlevsen
et al. (2005), Ditlevsen et al. (2007), and Ditlevsen and
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FIG. 2. (Color online) Two modes of operation of the Atlantic Ocean cir-
culation during DO events, as suggested by Ganopolski and Rahmstorf
(2001). Top: cold (stadial) mode. Bottom: warm (interstadial) mode. In both
modes, warm surface water from lower latitudes flows northward to the
North Atlantic and cools due to heat exchange with the colder atmosphere.
Near the sea ice margin the cooling is sufficiently strong to enable sinking of
surface water to the deep ocean (deep buoyancy convection). In the cold
mode, this process occurs south of the Greenland-Scotland ridge, whereas it
occurs north of the ridge in the warm mode. As a result, sea ice reaches as
far as about 50 north in the cold mode, but only to about 65 north in the
warm mode. Because sea ice has a strong atmospheric cooling effect, this
difference between both oceanic modes is expected to result in strong dif-
ferences in North Atlantic surface air temperature, similar to DO events.
Since the density of water depends on salinity, transitions between both
modes can be triggered, for example, by anomalies in the surface freshwater
flux to the North Atlantic.

Ditlevsen (2009) (note that a general description of the con-
cept of synchronization is given, for example, in Boccaletti
et al., 2002). In this discussion, a GSR mechanism has been
suggested, i.e., a dynamical scenario in which DO events are
triggered by a combination of noise plus centennial-scale
solar forcing in cycles of about 1470/7 (=210) and 1470/17
(=~86.5) yr (Braun et al., 2008). These cycles closely match
the leading centennial-scale spectral components of solar
variability as deduced from various solar and solar-terrestrial
time series, such as the sunspot record, auroral records, and
tree ring based '“C records (Feynman and Fougere, 1984;
Stuiver and Braziunas, 1993; Peristykh and Damon, 2003).
However, distinguishing between a GSR scenario and a
scenario of solely noise-induced DO events on the basis of
only about 10-20 sufficiently well-dated DO events is chal-
lenging: in a GSR scenario a nonperiodic recurrence pattern
of DO events is expected, i.e., a multimodal phase distribu-
tion, which resembles the phase distribution of the DO
events 0-10 in the North Greenland Ice Core Project
(NGRIP) ice core from Greenland (right part in Fig. 1). Stan-
dard measures of periodicity are thus not efficient to detect a
GSR scenario, as has explicitly been shown (Braun, 2009).
Here we construct three measures of phase multimodality.
Using a simple model for the dynamics of DO events, we
explicitly demonstrate that these measures are able to distin-
guish between a random occurrence of DO events and two
simplified GSR model scenarios, with a known forcing pe-
riod, on the basis of just 11 DO events. We further apply our
measures to analyze the recurrence pattern of DO events in
the NGRIP deep ice core from Greenland and we find a
pattern that is consistent with a GSR scenario. We note, how-
ever, that we are not yet able to estimate the statistical sig-
nificance of the detected recurrence pattern. This results from
the fact that the forcing period in the suggested GSR sce-
nario is not exactly known, for example, due to the existence
of uncertainties in the solar cycle periods and in the ice core
chronology. Therefore, our approach to calculate the statisti-
cal significance in the model simulations needs to be further
elaborated to be applicable to the observed DO events in the
ice core records. This elaboration, however, requires an even
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FIG. 3. (Color online) Dynamics of DO events in the two-state model. Top:
forcing f (thin curve) and threshold function T (thick curve). Bottom: model
state. A switch from the stadial (cold) to the interstadial (warm) state is
triggered when the forcing falls below the threshold function (at time t, in
the figure). During this switch, which is interpreted as the beginning of a DO
event in the model, the threshold function takes a nonequilibrium value (A )
and then approaches its new equilibrium value B, following a millennial
scale relaxation process with relaxation time 7;. The opposite switch, which
terminates a DO event in the model, takes place when the forcing exceeds
the threshold function (at time t; in the figure). Again, the threshold function
takes a nonequilibrium value (A,) and then approaches its new equilibrium
value B, following another millennial scale relaxation process with relax-
ation time 7. All model parameters are given in Table II.

more advanced statistical treatment, which is beyond the
scope of this paper.

Il. A SIMPLE TWO-STATE MODEL OF DO EVENTS

Defining a statistical measure that is able to distinguish
between a scenario of solely noise-induced DO events and a
GSR scenario clearly requires the identification of character-
istic recurrence patterns in a GSR scenario. For that purpose
we use a simple dynamical model of DO events, which has
been deduced from the dynamics of DO events in a much
more sophisticated ocean-atmosphere model (Braun ef al.,
2005; Braun et al., 2007). An extensive description of the
simple model was given by Braun et al. (2007), including a
discussion of its geophysical motivation, its limitations and
its potentials for statistical analyses, as well as a detailed
comparison to that ocean-atmosphere model. The dynamics
of DO events in the simple model is depicted in Fig. 3: in the
model DO events are regarded as highly nonlinear oscilla-
tions between two fundamentally different states of opera-
tion, the stadial (“cold”) and the interstadial (“warm”) states.
Switches between both model states are assumed to occur
each time a given forcing f (in freshwater flux units, i.e., in
milliSverdrup, 1 mSv=1 mSverdrup=10> m3/s) crosses a
certain threshold function T: a switch from the cold state to
the warm state is triggered when the forcing f falls below a
certain threshold value (f<T), whereas the opposite switch
is assumed to occur when the forcing exceeds the threshold
function (f>T), cf. Fig. 3. In the model, these switches are
regarded as the onset and the termination of a DO event,
respectively. During the switches a discontinuity in the
threshold function is assumed, i.e., T overshoots and after-
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ward approaches its respective equilibrium value (B, in the
stadial state, B, in the interstadial state) following a millen-
nial scale relaxation process

dT/dt=— (T - B,)/,, (1)

where T denotes the threshold function and 7 is the relax-
ation time in the stadial (s=0) and interstadial (s=1) model
states, respectively.

The dynamics of DO events in the simple two-state
model crudely resembles the dynamics of DO events as
simulated by a much more sophisticated ocean-atmosphere
model of “intermediate complexity,” CLIMBER-2 (Pe-
toukhov et al., 2000; Ganopolski and Rahmstorf, 2001). In
that model, whose computational cost is too large to be ap-
plicable for extensive statistical analyses on DO events, the
events also represent highly nonlinear oscillations in a sys-
tem with two possible states of operation (corresponding to
two fundamentally different modes of buoyancy deep con-
vection in the North Atlantic, cf. Fig. 2), with a threshold and
with an overshooting in the stability of the system during the
shifts between both model states (Ganopolski and Rahm-
storf, 2001; Braun et al., 2007). Analogous to the simple
two-state model, shifts from the stadial mode into the inter-
stadial one are triggered by a sufficiently large negative forc-
ing anomaly (i.e., by a reduction in the surface freshwater
flux to the northern North Atlantic that exceeds a certain
threshold value), and the shifts back into the stadial mode are
triggered by a sufficiently large positive forcing anomaly
(i.e., by an increase in the freshwater flux that exceeds a
certain threshold value). The six free parameters of the
simple two-state model (Table II) were estimated from sys-
tematic experiments with the ocean-atmosphere model
CLIMBER-2, cf. supporting online material in Braun et al.
(2005) and Braun et al. (2007). A detailed comparison be-
tween the two models is given in the supplementary material
of Braun er al. (2007). It is important to emphasize that the
simple two-state model is able to reproduce the timing of DO
events in the ocean-atmosphere model to a good approxima-
tion, which justifies its application for statistical analyses on
the timing of DO events.

lll. GHOST STOCHASTIC RESONANCE

In the following we use the simple two-state model to
identify characteristics in the recurrence properties of DO
events as expected from (i) the proposed GSR scenario and
(ii) from a purely random forcing scenario. This step is es-
sential to construct a statistical measure of regularity that has
a reasonable power to distinguish between both forcing sce-
narios. So far measures of periodicity have exclusively been
used for that purpose. These measures, however, do not have
much power to distinguish between the two scenarios, as has
explicitly been demonstrated in a Monte Carlo approach
(Braun, 2009). A remedy is to construct more efficient mea-
sures of complex regularity, which we will do in Sec. I'V. For
simplicity we restrict ourselves to highly simplified forcing
scenarios with very simple periodic and stochastic forcings
and with fixed model parameters. It should be stressed that
both the assumed regular solar forcing and the stochastic
forcing (which could represent, for example, random fresh-
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FIG. 4. Forcing in our two considered GSR scenarios. The figure shows the
forcing of the simple two-state model. Top: scenario 1 (bisinusoidal periodic
input+high-frequency noise). Bottom: scenario 2 (nonsinusoidal periodic
input+low-frequency noise). Scenario 1: (a) Bisinusoidal component. This
component consists of two added sinusoidal cycles with equal amplitudes A
and with periods T;=1470/17 (=~86.5) and T,=1470/7 (=210) yr, respec-
tively, as given by Eq. (2). These periods closely match the leading
centennial-scale components of solar activity proxies (Peristykh and Damon,
2003). The bisinusoidal component periodically repeats every 1470 yr, as
indicated by the solid lines. (b) Noise component. This component consists
of a Gaussian-distributed random signal with a cutoff frequency of
1/50 yr~!. For frequencies lower than 1/50 yr~!, the amplitude of each
spectral component is the same and the phase is random. For higher fre-
quencies, the amplitude of each spectral component is zero. (¢) Sum of both
components. Scenario 2: (d) Nonsinusoidal periodic component. This com-
ponent consists of a multiplicative combination of two nonsinusoidal cycles
with equal amplitudes and with periods T;=1470/7 and T,=1470/17 yr,
respectively, as given by Eq. (3). Note that the Fourier spectrum of this
forcing component [shown in (b) in Braun et al. (2005)] exhibits pro-
nounced spectral components with periods T; (=210 yr), T, (=86.5 yr),
T,/2 (=105 yr), T,/2 (=432 yr), T,-T,/(T,+T;) (=61.3 yr), and
T,-T,/(T;=T,) (=147 yr). These values closely match the leading
centennial-scale spectral components in solar activity proxies [shown, for
example, in Peristykh and Damon (2003)]. Again, the nonsinusoidal com-
ponent periodically repeats every 1470 yr, as indicated by the solid lines. (e)
Noise component. This component consists of a Gaussian-distributed ran-
dom signal with a cutoff frequency of 1/500 yr~!. For frequencies lower
than 1/500 yr~!, the amplitude of each spectral component is the same and
the phase is random. For higher frequencies, the amplitude of each spectral
component is zero. (f) Sum of both components.

water anomalies resulting from internal variability of the
continental ice sheets) during the last glacial period are sub-
ject to considerable uncertainties and potentially much more
complex than the considered forcings in our simplified sce-
narios. In addition to that, the threshold parameters of glacial
climate could also have varied considerably over the course
of several DO events. We stress, however, that our focus is
the phase distribution of the simulated events in a random
forcing scenario and in a GSR scenario, which we find to be
fairly stable with respect to modifications in the forcing and
model parameters.

To keep our study as simple as possible we first drive the
two-state model with a highly simplified GSR forcing, that
is, an input f consisting of two components, cf. top panel in
Fig. 4: (i) a bisinusoidal component with equal amplitudes A
and with periods T;=1470/7 (=210) and T,=1470/17
(=~86.5) yr, respectively, which means, with cycles close to
the main centennial-scale spectral components of solar prox-
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ies (Peristykh and Damon, 2003), and (ii) a random
Gaussian-distributed component (i.e., noise) with standard
deviation 0. A cutoff frequency of the noise of 1/50 yr! is
applied, which means, for spectral components with frequen-
cies higher than 1/50 yr~! the amplitude of the noise term is
zero. For lower frequencies the amplitude of each spectral
component is the same and the phase is random. This corre-
sponds roughly to a red noise forcing with a correlation time
of 50 yr. The total forcing f is given by the expression

f(t) =— A cos[w;t] — A cos[w,t] + - n(t), (2)

where w;=27/T; and n(t) denotes the unit variance noise
term. In our investigations we consider three different com-
binations of the forcing parameters A and o: (i) A=0 mSy,
o=7 mSv, (i) A=5 mSv, o=5 mSv, and (iii)
A=7.7 mSv, =1 mSv. We note that our bisinusoidal forc-
ing component is certainly highly simplified: 10 000 yr long,
tree ring based '*C records which serve as a standard proxy
for solar activity exhibit not only centennial-scale spectral
components with periods of about 208 and 88 yr, but also
components that correspond apparently to second harmonics
(~104 and ~44 yr) and combination tones (~150 and
~60 yr), compare, for example, Fig. 6(c) in Ogurtsov et al.
(2002) and Fig. 4 in Peristykh and Damon (2003). These
components are convincing indications for a highly nonsinu-
soidal structure of the centennial-scale solar cycles. We will,
therefore, consider a more realistic (i.e., nonsinusoidal) peri-
odic forcing component further below.

From a simulation with the two-state model we calculate
the relative frequency of waiting times between successive
events in the model output (i.e., the waiting time distribution
of the events), as well as the phase distribution as compared
with a periodic 1470 yr template. The phase ¢ of each event
is defined as ¢=2-t/(1470 yr), where t denotes the timing
of the event (in years). For the chosen forcing parameters A
and o in the scenarios shown in Fig. 5, the waiting time
distribution is centered around a value of about 2940 yr,
which corresponds approximately to the average spacing of
the DO events 0—10, cf. Table I. We note that the width of the
waiting time distribution and also the position of its maxi-
mum depend strongly on the parameters of the forcing, for
example, on the cutoff frequency and the standard deviation
o of the noise. With a smaller cutoff frequency, a broader
waiting time distribution can be obtained (compare Fig. 6 ),
which better resembles the observed waiting time distribu-
tion of the 11 DO events in the NGRIP ice core (topmost
panel of Figs. 5 and 6). With a larger stochastic forcing, in
contrast, the average waiting time between successive events
in the simulation decreases, so that for a certain noise level o
the waiting time distribution is centered around a value of
1470 yr, compare Fig. 4 in Braun ef al. (2008) and Fig. 3 in
Braun (2009). In the case without a periodic forcing compo-
nent the waiting time distribution is smooth and unimodal
(top panel of Fig. 5). In the case with a periodic forcing
component several modes appear in the distribution, the
number of which depends on the signal-to-noise ratio in the
forcing (middle and bottom panels in Fig. 5). Note that the
position of the modes in the waiting time distribution is
solely determined by the general structure of the periodic
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FIG. 5. Recurrence pattern of the simulated DO events in scenario 1. Left: waiting time distribution between successive events in comparison to the
distribution as obtained from the 11 events in the NGRIP ice core data (topmost histogram). Right: phase distribution as compared with the periodic
bisinusoidal input component. Note that the axis of the forcing is inverted. The signal-to-noise ratio in the forcing increases from top to bottom, as indicated
in the respective panels. The 1470 yr phase distribution of the events is uniform in the solely noise-driven case (top) and has an increasingly regular (i.e.,
multimodal) structure with increasing signal-to-noise ratio in the forcing (middle, bottom). We note that the position of the highest probability maximum in
the waiting time distribution is determined by the magnitude of the two forcing parameters A and o. In particular, for a different choice of these parameters,
the maximum can also be at a value of 1470 yr, corresponding to the period of the bisinusoidal input component.

forcing component, i.e., by the position of the peaks in that
component. These peaks result in increased transition rates
between the two model states and thus in a preferred ten-
dency of the events to recur with waiting times correspond-
ing to the interpeak time intervals. This effect is more evi-

TABLE I. Timing of the onset of the DO events 0-10 as inferred from the
NGRIP deep ice core record from Greenland. The values are in years before
2000 AD and are taken from Ditlevsen et al. (2007).

Timing (before 2000 AD)

Event (yr)
0 11700
1 14 680
2 23 340
3 27 780
4 28 900
5 32500
6 33740
7 35480
8 38220
9 40 160
10 41 460

dent from the 1470 yr phase distribution of the simulated
events, which is shown in the right part of Fig. 5: in the case
without a periodic forcing component (top) the simulated
events are purely random and thus do not exhibit a preferred
phase relation with the bisinusoidal 1470 yr periodic tem-
plate. With an increasing signal-to-noise ratio in the forcing,
there is an increasing tendency of the simulated events to
coincide with the most pronounced extrema in the periodic
forcing component. As a result, the 1470 yr phase distribu-
tion clearly deviates from a uniform one and shows several
peaks (i.e., modes) at values corresponding to the main ex-
trema in the periodic forcing. Quite obviously, this tendency
and also the multimodal nature of the phase distribution be-
come more pronounced in the case with a higher signal-to-
noise ratio in the forcing (right column of Fig. 5). Accord-
ingly, the number of modes in the 1470 yr phase distribution
of the simulated events decreases as the signal-to-noise ratio
increases. Note that unlike the waiting time distribution, the
simulated phase distribution is fairly insensitive with respect
to modification in the parameters of the stochastic forcing
component (e.g., its cutoff frequency) and in the spectral
composition of the periodic forcing component, compare
Figs. 5 and 6. In addition to that, the phase distribution is
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FIG. 6. Recurrence pattern of the simulated DO events in scenario 2. Left: waiting time distribution between successive events in comparison to the
distribution as obtained from the 11 events in the NGRIP ice core data (topmost histogram). Right: phase distribution as compared with the periodic
nonsinusoidal input component. Note that the axis of the forcing is inverted. The signal-to-noise ratio in the forcing increases from top to bottom, as indicated
in the respective panels. The 1470 yr phase distribution of the events is uniform in the solely noise-driven case (top) and has an increasingly regular (i.e.,
multimodal) structure with increasing signal-to-noise ratio in the forcing (middle, bottom). Note that the parameter values B=26 mSv and B=42 mSv
correspond to a standard deviation of the periodic forcing component of about 7.6 and 12.3 mSy, respectively. Again, for a different choice of o and B, the
highest probability maximum in the waiting time distribution can be at a value of 1470 yr, corresponding to the period of the periodic input component.

also fairly stable with respect to changes in the magnitude of
the total forcing, whereas such changes can lead to a strong
modification of the simulated waiting time distribution [com-
pare Figs. 5 and 6 with Fig. 3 in Braun (2009)].

To better mimic the apparently highly nonsinusoidal
structure of the centennial-scale solar cycles, we further con-
sider a second GSR forcing scenario (bottom panel of Fig.
4), that is, an input f consisting of (i) a very simple nonsinu-
soidal component with magnitude B, and (ii) a random
Gaussian-distributed component (i.e., noise) with standard
deviation o. A cutoff frequency of the noise of 1/500 yr~' is
used. The total forcing f is given by the expression

f(t) == B - |cos(mt/T;)| - |cos(mt/T,)| + 3B/4 + o - n(t)
(3)

with T;=1470/7 (=210) and T,=1470/17 (~86.5) yr. n(t)
denotes the unit variance noise term. Note that the periodic
forcing component exhibits leading spectral components
with periods of 210 and ~86.5 yr, 105 and ~43.2 yr (sec-
ond harmonics), and 147 and ~61 yr (combination tones),
compare Fig. 4(b) in Braun et al. (2005). These spectral
components closely resemble the leading centennial-scale

spectral components in tree ring based 1C records, a stan-
dard proxy for solar activity [compare Fig. 6(c) in Ogurtsov
et al. (2002) and Fig. 4 in Peristykh and Damon (2003)].
Again, it should be stressed that our implementation of the
solar cycles is certainly highly simplified. However, solar
activity variations on the centennial scale are subject to con-
siderable uncertainties, in particular, during the last glacial
period, so that we do not see any feasible alternative to our
approach. In our investigations we consider three different
combinations of the forcing parameters B and o: (i) B
=0 mSv, 0=13 mSv, (ii) B=26 mSv, 0=6.5 mSv, and
(iii) B=42 mSv, 0=4 mSv. We note that B=26 mSv and
B=42 mSv correspond to a standard deviation of the peri-
odic forcing of about 7.6 and 12.3 mSyv, respectively.

From a simulation with the two-state model we again
calculate the waiting time distribution of the events as well
as the phase distribution as compared with a periodic 1470 yr
template. The phase ¢ of each event is defined as ¢
=2a-t/(1470 yr), where t denotes the timing of the event
(in years). For the chosen forcing parameters B and o in the
scenarios shown in Fig. 6, the waiting time distribution is
centered around a value of slightly less than 2940 yr, which
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corresponds approximately to the average spacing of the DO
events 0-10, cf. Table I. In the case without a periodic forc-
ing component, the waiting time distribution is again smooth
(top panel of Fig. 6). But in the case with a periodic forcing
component, several modes appear in the distribution, the
number of them depends on the signal-to-noise ratio in the
forcing (middle and bottom panels of Fig. 6). Note that the
waiting time distributions in Fig. 6 are somewhat broader
than the ones in Fig. 5, which is in better agreement with the
NGRIP data and results mainly from the lower cutoff fre-
quency in Fig. 6. Apart from that, the position of the modes
in the waiting time distribution is similar to Fig. 5. Again, the
phase distribution of the simulated events (right part of Fig.
6) is uniform in the absence of a periodic forcing component.
With an increasing signal-to-noise ratio in the forcing, there
is also an increasing tendency of the simulated events to
coincide with the most pronounced extrema in the periodic
forcing component. As a result, the 1470 yr phase distribu-
tion clearly deviates from a uniform one and again shows
several peaks (i.e., modes) at values corresponding to the
main extrema in the periodic forcing. As before, this ten-
dency and also the multimodal nature of the phase distribu-
tion become more pronounced in the case with a higher
signal-to-noise ratio in the forcing (right panels of Fig. 6).
Accordingly, the number of modes in the 1470 yr phase dis-
tribution of the simulated events decreases as the signal-to-
noise ratio increases.

Note that several characteristic time scales exist in our
model simulations, i.e., the periods T;=1470/7 yr and
T,=1470/17 yr of the two centennial-scale forcing cycles,
the fundamental period T=1470 yr of the periodic forcing,
the inverse of the cutoff frequency of the stochastic forcing,
the average waiting time between successive DO events, and
the millennial relaxation times 7, and 7, of the applied
model. All these time scales are reflected in the recurrence
properties of the simulated DO events: the existence of the
relaxation times 7, and 7,, for example, which represent the
characteristic time scale on which the density-driven (i.e.,
“thermohaline”) ocean circulation is thought to converge
from a nonequilibrium configuration toward its equilibrium
state, confines the waiting time distribution of the simulated
events to a much narrower range than would be obtained in
the case of a constant threshold, as discussed by Braun et al.
(2007). The width of the waiting time distribution is also
affected by the choice of the cutoff frequency of the stochas-
tic forcing, with a higher cutoff frequency leading to a nar-
rower distribution (compare left columns in Figs. 5 and 6).
Moreover, the maximum of highest probability in the waiting
time corresponds approximately to the average spacing be-
tween successive DO events in the simulation and depends
on both the noise intensity o and the magnitude of the peri-
odic forcing. In contrast, the position of the different modes
in the waiting time distribution and in the 1470 yr phase
distribution is exclusively determined by the position of the
peaks in the periodic forcing (compare right columns of Figs.
5 and 6) and thus by the periods T, T,, and T of this forcing
component, while the magnitude of the modes in the waiting
time distribution is also affected by the other time scales,
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FIG. 7. Definition of our measures of regularity. To define our measures we
divide the 1470 yr fundamental period of the periodic forcing into 34 bins,
each centered around the 34 positive and negative extrema of the 1470/17 yr
spectral component (as labeled by the numbers 1-34 in the figure). Note that
the same binning is used in the scenario with the (a) bisinusoidal forcing and
the (b) nonsinusoidal forcing. Each event is then placed into one bin, ac-
cording to the timing of its onset. The total number of events in the most
frequently populated one/two/three bins yields our measures of complex
regularity. For more information see text.

e.g., by the choice of the cutoff frequency (compare left col-
umns of Figs. 5 and 6).

IV. MEASURES OF MULTIMODALITY

In this section we first define new measures of phase
multimodality. Based on our model simulations, we then
demonstrate the ability of these measures to distinguish be-
tween a scenario of solely noise-induced DO events and a
GSR scenario on the basis of only 11 events. Finally we
apply our measures to analyze the recurrence pattern of DO
events in the NGRIP ice core from Greenland.

Let t; ie[1,11]) be the timing of the ith DO event in
the model simulation and T=1470 yr the period of the pre-
scribed periodic forcing component. We then define

(s ti mod T (4)

as the phase of the ith event compared with the periodic
forcing component (¢; € [0,1469]). Now we divide the pos-
sible range of ¢;-values into 34 (=1470 yr/[86.5 yr/2]) bins
of equal width, which are centered around the positive and
negative forcing anomalies, as depicted in Fig. 7. Each of the
11 DO events is then placed into one of the 34 bins (which
we label j; j €[1,34]), according to the timing of its onset.
Our choice of the number of bins is simply the number of
positive and negative peaks in the prescribed ~86.5 yr spec-
tral component of the periodic forcing. Finally we define n;
as the number of events that fall within the jth bin. Obvi-
ously, n; lies between zero and eleven for each value of j, and
n;+---+ns,=11 since we consider a total number of 11 DO
events. Based on these quantities, we define three different
measures of regularity,

M, = max n;(j € [1,34]), (5)
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M, =max n; +n(j.k € [1,34];j # k), (6)
M; = max nj+nk+n1(j,k,1 e [1,34];1 #j,k). (7)

Thus, M; corresponds to the maximum number of events in
one single bin, M, denotes the sum of events in the two most
frequently populated bins, and M5 labels the sum of events in
the three most frequently populated bins. As one can already
see from Figs. 5 and 6 (right part), these three measures of
complex regularity are likely to exhibit small values in a
scenario of solely noise-induced DO events, whereas they
will typically have much larger values in a GSR scenario
with a high signal-to-noise ratio. This justifies our choice of
these three measures to distinguish between the two forcing
scenarios. It should be stressed that apart from the number of
bins each measure contains two adjustable parameters, that
is, the period T of the 1470 yr periodic forcing component
and the relative position of the bins compared with the peri-
odic forcing (i.e., the phase ¢, of the bins compared with the
forcing). In contrast to our model study, in which the optimal
choice of these parameters is obvious, the existence of these
parameters must be taken into account when analyzing the
recurrence pattern of DO events in paleoclimatic records,
because the dating uncertainties of the records impose uncer-
tainties on the optimal choice of these parameters.

We now quantitatively test the performance of our three
measures by means of a Monte Carlo simulation. This is
done as follows: using the simple two-state model from Sec.
II, we simulate 3000 realizations of a series containing 11
DO events, for each combination of the forcing parameters,
as denoted in Sec. III. In each of the 3000 realizations we
then calculate the values obtained for the measures, which
gives us their distribution in the considered forcing scenarios
(Figs. 8 and 9). In the solely noise-induced case we further
distinguish two methodologically different approaches: in the
first approach [Figs. 8(a)-8(c) and Figs. 9(a)-9(c)] we con-
sider the position of the 34 bins as fixed, as depicted in Fig.
7. In the second approach [Figs. 8(d)-8(f) and Figs.
9(d)-9(f)] we treat the relative position of the bins as tun-
able. That means, in any single realization we allow for a
uniform shifting of all bins in the phase domain, such that
this shift results in a maximization of the measures. As a
result of this optimization, the simulated probability distribu-
tion is shifted toward slightly higher values as compared
with the untuned case.

From Figs. 8 and 9 it is evident that the distributions of
the three measures differ notably when the signal-to-noise
ratio in the forcing is altered. For example, in the purely
noise-driven scenario the probability to find four or more
events in the most frequently populated bin (i.e., M; =4) is
smaller than 0.03 [Fig. 8(d)]. In the GSR scenario with the
highest signal-to-noise ratio, in contrast, the probability to
find three or less events in the most frequently populated bin
(i.e., M; =3) is smaller than 0.05 [Fig. 8(j)]. Thus, in order
to distinguish between these two model scenarios, a simple
one-sided test could be constructed, in which the null hy-
pothesis of purely noise-driven events is rejected if and only
if M;=4. This test would be fairly efficient with a signifi-
cance level of about 0.97 and a power of about 0.95. A
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one-sided test with the measures M, and Mj as test statistics
would be even more efficient with a significance level of
~0.98 and a power of more than 0.99 (rejection of the null
hypothesis if and only if M,=6; cf. Figs. 8(e) and 8(k)),
respectively, 0.99 and more than 0.99 (rejection of the null
hypothesis if and only if M;=8; cf. Figs. 8(f) and 8(1)). The
high efficiency of the tests is also evident from the fact that
the corresponding distributions of our three measures in the
considered model scenarios are almost disjunct (Fig. 8). Ap-
plying the same tests to the scenarios shown in Fig. 9, that is,
to the solely noise-induced scenario [Figs. 9(d)-9(f)] and the
GSR scenario with the highest signal-to-noise ratio [Figs.
9()-9(1)], gives qualitatively similar results with a signifi-
cance of ~0.98 and a power of ~0.78 (M;=4), ~0.98, and
~0.97 (M,=6), respectively, ~0.99 and ~0.95 (M;=38).
Accordingly, it is possible to distinguish with high confi-
dence between solely noise-induced DO events on one hand
(first and second rows) and a GSR scenario with a high
signal-to-noise ratio on the other hand (bottom row), even on
the basis of only 11 DO events, as we also explicitly tested
with the Kolmogorov—Smirnov test. Moreover, it is also pos-
sible to distinguish with at least some confidence between
these two extreme cases on one hand and a GSR scenario
with an intermediate signal-to-noise ratio on the other hand.
Thus, our measures of complex regularity are apparently ap-
plicable for the analysis of DO events in paleoclimatic
records, e.g., in deep ice core records from Greenland.

We note that not only a GSR mechanism has been pro-
posed to explain the recurrence pattern of DO events, but
also a CR (Timmermann et al., 2003) and a SR (Alley et al.,
2001) mechanism. For a SR mechanism, however, a regular
driver with a leading millennial-scale frequency is required,
which is not known. In the context of DO events, we thus do
not see the relevance to distinguish between a SR and a GSR
mechanism. We further note that a CR mechanism (Pikovsky
and Kurths, 1997) does not occur in our model of DO events,
at least not with the choice of the model parameters as given
in Table II. While it might be of more relevance to test the
power of our measures to distinguish between a GSR and a
CR mechanism, this test is, thus, not possible in the frame-
work of our model. To perform such a test, a fundamentally
different model of DO events would therefore be required,
which is beyond the scope of this paper. Having shown the
applicability of our measures for statistical hypothesis test-
ing, we now use these measures for a first analysis of DO
events in the NGRIP ice core from Greenland (Fig. 1). This
is done as follows: using the timing of the onset of the DO
events 0-10 as given in Table I, we maximize the three mea-
sures M, M,, and M3 by optimizing the two free parameters
T and ¢, of the binning over some range. More precisely, the
phase ¢ is optimized over all possible values. The period T
is optimized over the somewhat arbitrary range of 1000-
2000 yr. For a period of 1487-1488 yr we find a pronounced
maximum in the values of all three of our measures with
M;=5, M,=9, and M;=10, cf. right part in Fig. 1. Figure
10(a) shows that within the considered range of 1000-2000
yr all measures take a global maximum at T=1488 yr,
which exceeds the standard range of variability in the distri-
bution of our measures by up to three units. We further tested



043132-9 Ghost resonance in glacial climate? Chaos 19, 043132 (2009)
o 3000 a 3000 b 3000 ¢
4
g .
3 A =0 mSv, sigma =7 mSv
8
%
>
(%}
c
[
3
3
; _L _l___
L oo 0 0
01 2 3 4 5 6 7 8 9 101 01t 2 3 4 5 6 7 8 9 101 01t 2 3 4 5 6 7 8 9 101
3000 3000 € w0 f

A =0 mSyv, sigma = 7 mSv, optimized binning

Frequency of occurrence
o
o

01 2 3 4 5 6 7 8 9 101 0 1 2 3 4

3000 3000
g0 g h
c
]
t
3
3
%
> L
Q
c
]
3
T
0
19
Lo+ 0
01 2 3 4 5 6 7 8 9 10N 0o 1 2 3 4
3000, ¢ 3000
$ k
c
]
t
3
3
-
o
>
o
c
]
3
4 4L-
(]
13
“ o
01 2 3 4 5 6 7 8 9 101
Measure M,

5

01 2 3 45 6 7 8 9 1011 0 1

Measure M,

?'

6 7 8 9 101 01t 2 3 4 5 6 7 8 9 1011

07 ]

A =5 mSyv, sigma = 5 mSv

6 7 8 9 10 1 01 2 3 4 5 6 7 8 9 101

]

A =7.7 mSv, sigma =1 mSv

2 3 4 5 6 7 8 9 101

Measure M,

FIG. 8. Performance of our statistical measures in scenario 1. The figure shows the distribution of the measures M; (left), M, (middle), and Mj; (right) for three
different signal-to-noise ratios in the forcing with increasing signal-to-noise level from top to bottom. In each realization the value of the measures as obtained
from a series of 11 DO events is calculated. The ensemble size is 3000 realizations. Note that the distributions in the first [(a)—(c)], third [(g)—(i)], and fourth
[G)-(1)] rows were calculated with a fixed position of the bins, as shown in Fig. 7. In the distributions in the second row [(d)—(f)], in contrast, the position of
the bins has been treated as tunable and has been optimized in a way to maximize the coincidence of the events with the bins (see text for more details). All
three measures have a reasonable power to distinguish between the considered forcing scenarios. The number of bins is 34, as illustrated in Fig. 7.

the stability of this global maximum with respect to modifi-
cations in the number of bins in our measures of regularity
[Fig. 10(b)]. As can be seen from the figure, using even a
considerably different number of bins has little impact on our
results, which further strengthens our findings. We also in-
vestigated the distribution of our measures as a function of
the chosen reference phase of the bins [Fig. 10(c)]. The fig-
ure shows that all measures take their maximum values
within a continuous range of bin phases, which is precisely

the same range for all three measures. Consequently, our
results are also stable with respect to changes in the exact bin
location. A comparison to the simulated distributions of the
three measures, as shown in Figs. 8 and 9, indicates that the
observed values are consistent with a GSR scenario, and
even agree with a very high signal-to-noise ratio in the forc-
ing. We note that between the DO events 2 and 3 in the
NGRIP ice core, the waiting time is about 8660 yr. This
value is very unlikely according to the waiting time distribu-
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FIG. 9. Performance of our statistical measures in scenario 2. The figure shows the distribution of the measures M; (left), M, (middle), and M; (right) for three
different signal-to-noise ratios in the forcing with increasing signal-to-noise level from top to bottom. In each realization the value of the measures as obtained
from a series of 11 DO events is calculated. The ensemble size is 3000 realizations. Note that the distributions in the first [(a)—(c)], third [(g)—(i)], and fourth
[G)-(1)] rows were calculated with a fixed position of the bins, as shown in Fig. 7. In the distributions in the second row [(d)—(f)], in contrast, the position of
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number of bins is 34, as illustrated in Fig. 7.

tions shown in Fig. 5. According to the distributions shown
in the top and middle parts of Fig. 6, however, similarly large
values (>8000 yr) still have a non-negligible probability of
occurrence at least once in a series of 11 events, with an
approximate probability of 5% in the upper panel of Fig. 6
and 2.5% in the middle panel. This possible mismatch be-
tween the simulated distributions and the ice core data is not
taken into account when calculating the three measures in

Figs. 8 and 9, since we only look at the waiting times
modulo of 1470 yr.

It should be stressed, however, that we are not yet able to
estimate the statistical significance of the detected recurrence
pattern. In particular, it is not yet possible to estimate the
statistical significance of the detected pattern based on the
simulated distributions of our three measures of regularity, as
shown in Figs. 8(d)-8(f) and Figs. 9(d)-9(f), since these
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TABLE II. Parameters of the simple two-state model. Values of A, A}, By,
and B, are in milliSverdrup (I mSv=1 mSverdrup=10° m?/s), that it is
freshwater flux units, since the model was originally designed to mimic the
response of an ocean-atmosphere model to a given freshwater anomaly in
the northern North Atlantic. Note that these parameter values are identical to
the values used in the original version of the two-state model, cf. supple-
mentary material in Braun er al. (2005). For these values it was shown that
the two-state model is able to mimic the dynamical principles of DO events
as simulated with a much more comprehensive ocean-atmosphere model of
intermediate complexity (Braun et al., 2007).

Parameter Value
Ay —27 mSv
Ay 27 mSv
By —9.7 mSv
B, 11.2 mSv
T 1200 yr
7 800 yr
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FIG. 10. (Color online) Analysis of the DO events 0-10 in the NGRIP ice
core by means of our three measures of regularity. The timing of the 11
events is given in Table 1. The figure shows (a) the distribution of the three
measures (M, M,, and M3) as a function of the template “period” T. We use
34 bins, as illustrated in Fig. 7. For each value of T the phase of the template
has been optimized in order to maximize our measures. Note that all mea-
sures take their global maximum at a value T=1488 yr. (b) The distribution
of the measure M, as a function of the template period T for different
choices of the number of bins. Each curve corresponds to a different number
of bins, as indicated in the figure. Again, the phase of the template has been
optimized. Note that all curves take their global maximum at T=1488 yr.
(c) The distribution of the three measures as a function of the template phase
(in years). We use 34 bins and a template period T=1488 yr, which results
in a possible range of 1488/34 (~43) different template phases. Note that all
curves take their global maximum at the same range of template phases.
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were simulated for one given value of the free parameter T
(i.e., the period) of our measures. When analyzing the ice
core data, in contrast, the parameter T must be regarded as
tunable at least within a range that is determined by the un-
certainty in both the ice core chronology and the solar cycle
periods. A remedy is to maximize the measures over both
parameters T and ¢,, and not just over ¢,, as was done in
Figs. 8(d)-8(f) and Figs. 9(d)-9(f). Such a treatment, how-
ever, is more complicated since it requires the specification
of an objective range of T-values over which the measures
are maximized, and is thus beyond the scope of this paper.
We further note that the chosen bin size of our measures
(1470/34 yr; that means, 3% of 1470 yr) is comparable to the
estimated dating uncertainty of the NGRIP ice core chronol-
ogy (Andersen er al., 2006). With our measures we thus op-
erate near the dating limit of the ice core record.

V. CONCLUSIONS

In this paper three new statistical measures of complex
regularity (that is, of phase multimodality) were constructed.
Using a Monte Carlo approach with a simple two-state
model of glacial climate switches, the DO events, we dem-
onstrated the ability of the measures to distinguish between a
GSR and a solely noise-induced resonance on the basis of
just 11 events. Finally we applied our measures to analyze
the recurrence pattern of DO events in a deep ice core from
Greenland, and we observed a pattern that is consistent with
a GSR. Further work is needed to estimate the statistical
significance of the detected recurrence pattern and to use
these measures for time series analysis of DO events in other
paleoclimatic records.
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