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RESIDUAL STATICS ESTIMATION: SCALING
TEMPERATURE SCHEDULES USING SIMULATED
ANNEALING!

E. NORMARK? and K. MOSEGAARD?

ABSTRACT

NorMARK, E. and MOSEGAARD, K. 1993. Residual statics estimation: scaling temperature
schedules using simulated annealing. Geophysical Prospecting 41, 565-578.

Linearized residual statics estimation will often fail when large static corrections are
needed. Cycle skipping may easily occur and the consequence may be that the solution is
trapped in a local maximum of the stack-power function. In order to find the global solution,
Monte Carlo optimization in terms of simulated annealing has been applied in the stack-
power maximization technique. However, a major problem when using simulated annealing is
to determine a critical parameter known as the temperature.

An efficient solution to this difficulty was provided by Nulton and Salamon (1988) and
Andresen et al. (1988), who used statistical information about the problem, acquired during
the optimization itself, to compute near optimal annealing schedules.

Although theoretically solved, the problem of finding the Nulton-Salamon temperature
schedule often referred to as the schedule at constant thermodynamic speed, may itself be
computationally heavy. Many extra iterations are needed to establish the schedule.

For an important geophysical inverse problem, the residual statics problem of reflection
seismology, we suggest a strategy to avoid the many extra iterations. Based on an analysis of
a few residual statics problems we compute approximations to Nulton-Salamon schedules for
almost arbitrary residual statics problems. The performance of the approximated schedules is
evaluated on synthetic and real data.

INTRODUCTION

When making reflection seismic surveys on land, different thicknesses and velocities
of the surface layers will induce different delays on the seismic recordings, which

! Received April 1992, revision accepted November 1992.

2 Department of Earth Sciences, Geophysical Laboratory, University of Aarhus, Finlands-
gade 8, 8200 Aarhus N, Denmark.

* Geophysical Institute, University of Copenhagen, Haraldsgade 6, 2200 Copenhagen N,
Denmark.

565


Klaus Mosegaard
Appendix B3


566 E. NORMARK AND K. MOSEGAARD

may generate false structures and reduce the quality of the common midpoint
(CMP) stack. To compensate for these timing errors, static timeshifts of the observa-
tions are made. If the a priori information in terms of the field statics is insufficient,
residual statics are estimated by automatic static correction procedures.

Usually, residual statics estimation is approached by a technique described by
Taner, Koehler and Alhilali (1974), sometimes referred to as the traveltime picking
method. This procedure is based on estimating timeshifts for all the individual traces
in the CMP gathers and later resolving the time lags into surface-consistent source
and receiver statics by least-squares fitting. Ronen and Claerbout (1985) have sug-
gested an alternative statics estimation technique maximizing the stack-power S(x),
where X = (X, X5,..., X3 is the vector of the M source and receiver static param-
eters. In this method surface-consistent statics are estimated directly by evaluating
one static parameter at a time.

The change in stack-power AS(dx;) for a perturbation dx; of the jth static param-
eter is

As(éxj) =2 Z ¢5’({ij)’ (1

ceCj
where ¢>g({,xj) is the cross-correlation between the trace f affected by the jth static
parameter and the partial stack p of the cth CMP gather. The partial stack is the
stack of all traces in the CMP gather except the trace being studied. C; is the subset
of CMP gathers affected by the static parameter x;.

For further details about the traveltime picking method and the stack-power
maximization technique see Nermark (1993).

Normally, the solution is approached by local optimization in both residual
statics estimation techniques. The permitted timeshifts are evaluated and the static
displacement giving the best correlation between the actual trace and a constructed
reference trace (normally the partial stack) is applied to the data. However, a major
problem is that cycle skipping often occurs when large residual statics, compared to
the dominating period in the data, are estimated. The consequence may easily be
that the solution is trapped in a local maximum of the objective function. This
presents a highly non-linear inverse problem, which requires a global optimization
technique to solve it.

GLOBAL OPTIMIZATION BY SIMULATED ANNEALING

Residual statics estimation considered as a global optimization problem was first
treated by Rothman (1985). The optimization problem was approached by a Monte
Carlo optimization technique, rooted in statistical mechanics, called simulated
annealing. Simulated annealing is a numerical technique that resembles chemical
annealing, in the way crystals are grown from a melt. This process is characterized
by the fact that if the melt is carefully cooled in a critical temperature interval, a
regular crystal with a minimum of energy is formed, whereas if the temperature is
lowered too quickly, glass may be the result. A similarity between a thermodynamic
description of such processes and the task of combinatorial optimization of a non-
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linear function of high dimension was discovered by Kirkpatrick, Gelatt and Vecchi
(1983). Based on this analogy they introduced simulated annealing as a tool to
locate near-optimum solutions to global optimization problems.

Minimization of a parameter-dependent objective function E(x) by simulated
annealing is accomplished by making random perturbations of the parameters
(corresponding to the state space coordinates in the physical problem) according to
the Metropolis algorithm. The Metropolis algorithm states that, in each iteration, a
random perturbation of a parameter, causing a change in the objective function (the
energy) given by AE(0x;), is

(1) accepted if AE(dx;) < 0,
(2) rejected with the probability P(dx;) = exp (—AE(dx;)/T) if AE(6x;) > 0

(Metropolis et al. 1953). The parameter T corresponds to the temperature in ther-
modynamics, and for convenience is also named so in this context. When T is infi-
nitely large, pure random perturbations of the parameters are made, whereas at
T = 0 only perturbations decreasing the energy are accepted. Simulated annealing is
initiated at high temperature. By slowly lowering the temperature and perturbing
the parameters according to the Metropolis algorithm, the global minimum is
reached with a high probability. Experimental evidences show the simulated anneal-
ing is much more efficient in locating the global minimum than the crude Monte
Carlo optimization see e.g. Jakobsen, Mosegaard and Pedersen (1987).

Traditionally, only minimization problems are considered in simulated anneal-
ing. To keep the same convention in the residual statics estimation problem, the
negative stack-power is minimized, which is equivalent to maximizing the stack-
power. Thus E(x) = — S(x).

In the stack-power maximization problem, Rothman (1986) applies a modified
version of the Metropolis algorithm, known as the heat bath method, which is
claimed to be more efficient for problems where the energy evaluations are compu-
tationally inexpensive. In this method, the random trials are chosen according to the
marginal Gibbs—Boltzmann probability distribution

P(ox) = Nexp (AE(x,)/T) ’ )

Y. exp (AE(x,)/T)

h=1

where N is the number of possible static corrections for each parameter. AE(dx ) (or
—AS(0x;)) is evaluated using (1). By repeating the random perturbations according
to the transition probabilities above (at constant temperature) and taking all static
parameters once in each iteration, Rothman (1986) shows that eventually this will
lead to a Boltzmann distribution of the available states, just as a repetition of the
Metropolis algorithm will do.

The temperature schedule chosen is crucial for the performance of the opti-
mization algorithm, in the sense that lowering the temperature too slowly will be a
waste of computer time and cooling the system too fast will most likely result in a
solution trapped in a local minimum. The temperature schedule suggested by
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Rothman (1986) takes the form

T = akTO’ akT;) > Tmin’
T otherwise,

min >

where k is the iteration number and « is a constant (set at 0.99). Firstly, a few
iterations (controlled by T;) are made with exponential cooling and afterwards a
constant temperature T,,;, is applied at which essentially all iterations are made. The
establishment of the above schedule is based on experiments.

Nulton and Salamon (1988) and Andresen et al. (1988) described a method by
which near-optimum annealing temperature schedules could be produced. Their
idea was to extend the analogy between the Monte Carlo optimization algorithms
and statistical mechanics. Nulton and Salamon (1988) defined the heat capacity and
the relaxation time for a problem and used principles from finite-time thermodyna-
mics to design annealing schedules with minimum ‘entropy’ production i.e. anneal-
ing schedules at constant thermodynamic speed. Andresen et al. (1988) provided a
method for the numerical estimation of constant speed schedules. In their method,
attempted energy transitions are monitored during annealing, and from this infor-
mation they estimate heat capacity and relaxation time for the considered problem.
(See Appendix A). Constant speed schedules can then be calculated.

The Nulton-Salamon method has proved its efficiency in many cases (see e.g.
Mosegaard and Vestergaard (1991)), but there are two important, practical prob-
lems in using this method.

Firstly, the Andresen et al. (1988) procedure is rather difficult to implement and
requires a great deal of experience to use it. Secondly, the amount of extra iterations
needed to give useful information about the heat capacity and relaxation time of a
problem, following Andresen et al. (1988), may be so large, that the expected gain in
computational efficiency is significantly reduced.

In order to overcome these problems in large residual statics estimation, we shall
in the following suggest a strategy in which we compute a Nulton-Salamon sched-
ule for a single (or a few) representative residual statics problems and apply a simple
scaling procedure to approximate Nulton—Salamon schedules for other residual
statics problems.

THE OBJECTIVE FUNCTION

Let us first consider the trivial problem of transferring temperature schedules from
one problem to another, when the optimization problems are defined in the same
parameter space and when the energies are linearly related. Then for two problems
(1 and 2) the energies are related by

E;(x) = aE5(x) + B, 3)

where o and B are constants. Considering the same transition of state in both prob-
lems we have

AEl = AE2.
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If we apply simulated annealing in the two problems with temperature schedules
T,(t) and T,(z) respectively, so that

Ti(t) = aT5(1),

it is obvious that the optimizations become identical, because the parameter pertur-
bations follow the same probability distributions in the two cases (see (2)).

In order to study whether a linear transformation of the temperature schedules
is approximately valid for a broader class of residual statics estimation problems,
not necessarily defined in parameter spaces with the same dimension and not neces-
sarily satisfying (3), the following considerations are made:

Let the CMP gather ¢ consist of M traces identified by index i. The individual
traces are assumed to carry the signals s, and the noise n,, and are displaced by
varying timeshifts k(ci). ¢t indicates the sample number. The CMP stack g, can be
expressed as

__ .signal noise
9ot = Yo + gt >

where

M M
signal __ * ise __ *
g = Z Oueeiy *Seit and ge Z Oueiy *Neie -
i=1 =1

i
Oueiy 15 Kronecker’s delta given by

P 1, t = k(ci),
D0, ¢ # k(ci),

describing the static displacements.
If it is assumed that the signals are uncorrelated with the noise, the power of the
CMP stack S, =Y (g.,)* can be approximated by
t

Sc ~ Silgnal + S;lonse'

Let us subdivide the stack-power range into intervals. The ith interval contains
stack-powers between S; and S; + 6S, where S is the interval width. During a run,
we can now form a matrix A = {a;;} where a;; is the number of transitions that
could have taken place from the ith stack-power level to the jth stack-power level.
In every iteration, we start at a certain stack-power level i and are allowed to
perform a transition to any state that can be reached by only changing one static
parameter. In such an iteration, all the reachable statics contribute to A. The ith
row in the matrix A will, after normalization, contain the distribution of potential
stack-power transitions starting in stack-power level i. Let d(S;) be the standard
deviation of this distribution.

By assuming that the stack-power perturbations have a Gaussian distribution,
we obtain

2 2 2
d*~ dsignal + dnoise ’

where dg,,, and d,,. are the standard deviations for the noise and the signals
respectively.
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As will be seen the magnitude of the potential stack-power perturbations is pro-
portional to the average stack-power associated with the static parameters. That is

d(<S.) = aC<{S;) + b,

where (S.) is the average stack-power per CMP, and C is the average number of
members in C;, the subset of the CMP gather over which the stack-power changes
are evaluated (see (1)). a and b are constants.

In order to verify this relationship, and in order to estimate a and b, two opti-
mization experiments were made, one on noise-free data and one on pure noise.
6-fold synthetic seismic data are used on which simulated annealing is applied. In
Fig. 1 the standard deviations d of the potential stack-power perturbations are
shown as a function of the stack-power for both experiments. Both d and S are
normalized with the maximum stack-power being observed.

It can be seen that a linear relationship between stack-power and the standard
deviation of the potential stack-power perturbations is a good approximation,
although slight deviation from this relationship is observed at low stack-power,
especially for the data containing pure noise. In both cases the intersections of the
linear fits with the horizontal axes are approximately equal to the minimum stack-
power being observed. Thus

dsignal X asignal C(<Sc>5ignal - <Sc>fxi1%:al)

and

dnoise X anoisec(<sc>m’ise - <Sc>nm°i:1sc .

In the experiments it was found that agg,a X Gpeise -

0.07,

0.06|

0.05

Noise free
0.04 data

0.03

0.02 Pure
noise

0.01

0.00

0.20 0.40 0.60 0.80 1.00
Stack - power

FiG. 1. Standard deviation of the potential stack-power perturbations d for experiments on
noise-free data and on pure noise. The stack-power perturbations are mapped as a function of
the stack-power itself. Both the stack-power and the standard deviations are normalized by
the maximum stack-power. The linear fits are indicated by thin lines.
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FiG. 2. The standard deviation d of the potential stack-power perturbations for data with a
signal-to-noise ratio of 1 on the unstacked data. As in Fig. 1 the stack-power perturbations
are mapped as function of the stack-power. The straight line indicates the predicted stack-
power perturbation.

If it is assumed that signal and noise are uncorrelated, we have
Ssienal & (1 + P~2)718, and Snoise ~ (1 + P?)71S,,
where P = (Ssienal)1/2j(Snoise)1/2 jg the signal-to-noise ratio of the CMP stack.
In the general case of noise-contaminated data, an estimate of d is given by
@ =~ (agigna C(CS Y™ — (S DRa™)? + (@noise CLS D™ — (S dmin))
~ (1 + P73 aggnar + (1 + P?) 7 ngisd) (CKSeD — S Dmin))’.

Since a is similar for both the signal and the noise experiments, P vanishes and d
is approximated by

d= aC(<Sc> - <Sc>min)' (4)

In order to confirm (4), an experiment on noise-contaminated data is made,
similar to those experiments made on noise-free data and on pure noise. The signal-
to-noise ratio is 1 on the unstacked data within the cross-correlation window. In
Fig. 2 the observed standard deviations of the potential stack-power perturbations
are shown, together with the standard deviations predicted from (4). It can be seen
that the estimated and the observed deviations are in good agreement with each
other.

NORMALIZING THE TEMPERATURE SCHEDULES

From (2) it seems promising to obtain approximate Nulton—Salamon schedules by
normalizing the temperatures by the magnitude of the expected energy pertur-
bations, which we evaluated as the standard deviation of the potential stack-power
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changes d. The aim of this section is to estimate the temperature schedules for a
small, but hopefully reasonably representative, group of residual statics estimation
problems, and normalize them to form schedules for other residual static problems.

According to (4), which has been verified experimentally, d varies approximately
linearly with the stack-power. Let us consider two different static problems (1 and
2). During annealing, the Nulton-Salmon schedule T;(t) for problem 1 will increase
the stack-power from S i, tO S; max i0 @ given number of iterations. The schedule
T,(t) for problem 2 should increase the stack-power for that problem from §, ;, to
S, max OVEr the same number of iterations. Let us assume further that the stack-
power functions (in the parameter space) for the two problems are different realiza-
tions of the same stochastic process, except for a linear transformation such as (3).
In any iteration, we therefore require that the typical Gibbs—Boltzmann probabil-
ities of (2) are approximately the same for both problems. This will be the case if the
relationship

4 _4d;
T, T
is satisfied. Here, d, and d, are the standard deviations of the potential stack-power

perturbations for problems 1 and 2 respectively. It is readily seen that the above
realization can be satisfied by the scaling

dl max __ d2 max

T, T,°
where d; ., and d, .., are d, and d, at the maximum stack-powers S ., and Sy ;.
respectively.

Normally, d,,,, is inaccessible, but according to (4) one may normalize by the
stack-power instead. We use C({S.max — <S¢ min) as a scaling factor. a vanished as
it was found to be almost problem independent. In most residual static problems
{8.D max and {S.>min are unknown, but a reasonable guess is usually possible.

In order to estimate the validity of the scaling suggested above, a number of
schedules are estimated on synthetic examples with different numbers of parameters,
varying signal-to-noise ratios, different stack-folds and different maximum static
corrections. A schedule based on a real seismic data set is also included. Seismic
data with between 6- and 12-fold coverages are employed. All examples have a fairly
high signal-to-noise ratio. The input data are normalized in such a way that the
mean power of the unstacked traces is equal to all examples. In all experiments a
number of static parameters are fixed to the assumed solution at the end of the
profile before initiating the optimization. This makes it easier for the algorithm to
start aligning the seismic events. In all optimization problems the static parameters
are taken in random order. The resulting temperature schedules are shown in Fig.
3a. No normalization has been applied. When normalizing by C({S;)max — <S¢ min)
as in Fig. 3b, it is seen that the schedules have become much closer. It will now be
investigated whether cooling curves normalized in this way can be used for the
construction of the master schedule, from which approximate Nulton-Salamon
schedules for other static problems can be derived.
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Fi1G. 3. (a) Temperature before normalization; (b) after normalization has been applied.

The data examples A and B, providing schedules with the lowest and highest
normalized temperatures, are analysed. Example A is constructed from a synthetic
seismic data set carrying a minimum phase signal and example B originates from
real seismic data on which random statics are applied. In the latter case it was
decided to use data where originally no significant statics problems existed. This
makes an evaluation of the static solution easier. Figure 4a shows the initial states
for the optimization and Fig. 4b shows the true solutions. In Fig. 4c, two examples
of carrying out local optimizations are given. Almost all experiments with local
optimization gave solutions trapped in local maxima of the stack-power function.

In order to demonstrate the possible consequence of using non-normalized tem-
perature schedules estimated from another experiment, the schedules with highest
and lowest temperatures (indicated by * in Fig. 3a) have been applied on data set A.

Example A Example B
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Fi1G. 4. Local optimization on two data sets. A is constructed from synthetic seismic data and
B originates from a real seismic data set. (a) The initial state of the optimization; (b) the true
solution; (c) examples of making local optimization by taking the static parameters in
random order.
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FI1G. 5. The outcome of simulated annealing using (unnormalized) temperature schedules esti-
mated from other experiments. (a) A schedule is used with temperatures that are generally too
high. No order in the seismic traces has been achieved. (b) The temperatures are too low for
the present data. The solution is trapped in a local maximum of the stack-power function.

In Fig. 5 the outcome of simulated annealing with 600 iterations is illustrated. (One
iteration refers here to a perturbation of all static parameters). It is observed that
when using a temperature schedule that is too high, no order in the seismograms
has been detected (Fig. 5a). By using a schedule with temperatures that are too low,
convergence is achieved after 530 iterations (Fig. 5b). Apparently, too rapid cooling
has taken place through the most critical temperatures and the solution is trapped
in a local optimum. This clearly demonstrates the need for normalizing the tem-
perature schedules. “

The normalized schedules in Fig. 3b still show a rather large scattering of the
temperatures. In order to study the significance of these variations and thus the
validity of a master temperature schedule based on an average of these cooling
curves, the following experiments are made. First, simulated annealing on both data
sets A and B is made using their own temperature schedules. 600 iteratons are made
on 5 copies of the same data set. Representative solutions are shown in Fig. 6a. It is
observed that the local maxima of the stack-power have now been avoided. By.
repeating these two experiments and changing their temperature schedules the
importances of the differences between the schedules can be studied. The cooling
curves are based on the normalized temperatures, which are scaled to match the
actual data. The outcome of the optimizations is shown in Fig. 6b. Practically, the
same solutions are obtained as when using their own temperature schedules. Only a
minor effect of employing another (normalized) schedule than its own, is observed
on the static corrections as well as on the stack-power function. For instance, on the
synthetic data example, long periodic statics are still left by using a schedule esti-
mated from another data set. However, one cannot expect to resolve long-periodic
static by residual statics estimation (Wiggins, Larner and Wisecup 1976).

These experiments demonstrate that a temperature schedule for a given problem
can successfully be estimated from another experiment, provided a proper normal-
ization has been applied. They also show that slight variations on the schedules do
not give rise to any significant variations in the appearance of the stacked data, at
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FiG. 6. (a) Simulated annealing using their own temperature schedules. (b) The result of
changing their normalized temperature schedules. Before the schedules are used they are
adapted to the actual data. The statics are given above the seismograms. The thin line in
example A indicates the difference between the true and the estimated statics.

least not for the data examples studied in this context. Yet, the results of the opti-
mization are not completely insensitive to such fluctuations. In order to construct a
master schedule we suggest following an average schedule that is the mean value of
the estimated master schedule.

DiSCUSSION

Since the change in the energy for a static parameter x; is only influenced by the
CMP gathers in C;, we can expect that the temperatures are independent of the size
of the seismic profile. However, when treating larger profiles local order may start
to occur in different parts of the section, without global consistency. The conse-
quence may be that more iterations are needed to find the global solution and that
the temperature schedule must be modified accordingly. Yet, in this context only
minor profiles, extending over a few spread lengths, have been treated. End effects
causing decreasing coverage in the end of the profile and the resulting difficulties in
estimating static parameters at such places have also been ignored.

Generally, it was found that normalized temperature schedules are fairly insensi-
tive to variations in the input data. Experiments confirm that changing the stack-
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fold does not have a significant effect on the normalized cooling schedules.
However, only data of low coverages, i.e. up to 14-fold, have been examined. Using
data of higher coverages will in itself make it more difficult to find a solution,
because order in the seismograms is harder to achieve. Experiments also showed
that changing the length of the cross-correlation window does not have any effect
on the schedules. Modifying the maximum allowable static correction will also have
no significant effect on the temperature schedules.

Our analysis of the temperature scaling problem shows that the temperatures
generally decrease with increasing noise level due to the fact that the difference
between ¢S, )., and {S,>min is small for noisy data. If statics estimation is made on
data with a very high noise level, it may be hard to find any correlation at all
between the seismic traces. In such cases it may be fruitful to scale the temperature
schedules as if the data were pure noise.

Experimentally, it was discovered that when the source spacing deviates signifi-
cantly from the receiver spacing the overall character of the temperature schedules
may change. The numbers of traces in the source and the receiver gathers are then
different, and consequently different magnitudes of the energy perturbations of the
source and the receiver parameters can be expected, which may have a significant
influence on the temperature schedule.

CONCLUSION

By studying the objective function of the residual statics estimation problem, it has
been shown that the magnitude of the energy perturbations can be estimated and
used to normalize the temperature schedules. Generally, it was found that normal-
ized schedules are fairly consistent, and can, for a larger class of residual statics
estimation problems, form a master temperature schedule from which approximate
Nulton-Salamon schedules can be found. Our master schedules are based on a few
static problems. A larger variety of problems should be included in order to deter-
mine a practically applicable master temperature schedule.

The present technique of calculating temperature schedules on the representative
group of problems, studying the characteristics of the objective function and nor-
malizing the temperatures in order to estimate a master schedule, could be used as
the model for other non-linear optimization problems solved by simulated anneal-
ing.

APPENDIX A
ANNEALING WITH CONSTANT THERMODYNAMIC SPEED

The philosophy of the present technique is to determine the temperature schedule
keeping the same ‘distance’ to equilibrium mean energy {E(T))., during the opti-
mization. The ‘distance’ called the thermodynamic distance v, is defined as

v = <E(T)> - <E(T)>eq
0(Eco(T)) ’
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where (E(T)) is the (non-equilibrium) mean energy of the states at temperature T
and o(E(T),,) is the standard deviation of energy fluctuations. (Nulton and Salamon
1988).

By adopting two other concepts from thermodynamics, the heat capacity C(T)
and the relaxation time &T), and keeping v constant, the temperature schedule can
be estimated as

oT vT

ot T JOT)

where ¢t is the time measured in units of iterations. This first-order differential equa-
tion defines the temperature schedule for what is called annealing with constant
thermodynamic speed. (See also Mosegaard and Vestergaard (1991)).

C(T) and &T) are determined by a method based on statistics of the energy
transitions, (Andresen et al. 1988). The states of the system are lumped by the energy
and the number of attempted moves from one energy interval i to another energy
interval j is recorded in a matrix Q = {Q;;}, which is normalized to form a transition
matrix. Using attempted moves means that both accepted perturbations and pertur-
bations being rejected, according to the Metropolis algorithm, are employed. By
transforming Q to the temperature-dependent transition probability probability
matrix Q(T) and calculating its largest and second largest eigenvalues and the corre-
sponding eigenvectors, an estimate of the density of states (from which the heat
capacity can be defined) and the relaxation time can be obtained. See e.g. Mose-
gaard and Vestergaard (1991).

(A1)
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