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INVERSION OF POST-STACK SEISMIC DATA
USING SIMULATED ANNEALING!

PETER D. VESTERGAARD? and KLAUS MOSEGAARD?

ABSTRACT

VESTERGAARD, P.D. and MoseGAARD, K. 1991. Inversion of post-stack seismic data using
simulated annealing. Geophysical Prospecting 39, 613-624.

Model-based inversion of seismic reflection data is a global optimization problem when
prior information is sparse. We investigate the use of an efficient, global, stochastic opti-
mization method, that of simulated annealing, for determining the two-way traveltimes and
the reflection coefficients.

We exploit the advantage of an ensemble approach to the inversion of full-scale target
zones on 2D seismic sections.

In our ensemble approach, several copies of the model-algorithm system are run in
parallel. In this way, estimation of true ensemble statistics for the process is made possible,
and improved annealing schedules can be produced.

It is shown that the method can produce reliable results efficiently in the 2D case, even
when prior information is sparse.

INTRODUCTION

Automatic inversion schemes for the reconstruction of subsurface structures from
seismic reflection data are used more and more frequently in the oil industry for
detailed studies of oil and gasfields during the development phases. In cases of good
well control such methods have often produced satisfactory predictions concerning
the lithological columns seen in wells drilled at later stages.

However, it is frequently observed that surprisingly large errors in the prediction
of reflector locations and acoustic impedance values occur in cases where the well
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614 PETER D. VESTERGAARD AND KLAUS MOSEGAARD

control is sparse or in cases where the correlation between seismic events and
nearby wells is made difficult by fault zones, thinning of beds, local disappearance of
impedance contrasts or by the presence of noise. Under such circumstances the
prior information about the subsurface structure in the zone of interest is very
limited and it is not possible to put strong constraints on the solution to the inverse
problem.

An analysis of the principles behind the presently available inverse methods
reveals that these techniques all belong to a category called ‘local optimization
methods’. A characteristic property of these algorithms is that they systematically
adjust the subsurface model in such a way that the misfit function (measuring the
misfit between synthetic data and actual data) decreases monotically. This property
would have been desirable if the misfit function possessed only one minimum.

However, since seismic data is of a highly oscillating nature, the misfit function
generally has a very large number of minima (Fig. 1). Moreover, secondary minima
representing low values of the misfit function often correspond to subsurface models
that are quite different from the true model. It is therefore imperative that a local
model optimization method uses a starting model that is ‘connected’ to the optimal
solution by a path along which the misfit function decreases monotonically. In prac-
tice, the only way to ensure that this is the case is to use data from a nearby well
and provide a starting model that is very close to the optimal model.

These considerations lead to the conclusion that local model optimization algo-
rithms are likely to fail in the previously mentioned cases of limited well control. In
such cases, the probability that a starting model is sufficiently close to the optimal
model is small and the corresponding probability that a local optimization method
will be attracted by an irrelevant minimum for the misfit function is high.

The solution to the above-described problems is to employ a ‘global’ optimization
method. Global optimization methods are capable of searching for the optimal sub-
surface model with only a small risk of being trapped by irrelevant minima for the
misfit function. Global optimization methods are typically statistical techniques.

A prototype development and implementation of a global, full-scale, seismic
model optimization program for inversion of seismic profiles is presented. This
program is based on the global optimization method ‘simulated annealing’ and is
aimed at inversion of selected parts of migrated, seismic profiles with the purpose of
producing geological cross-sections showing the acoustic impedance and location of
layer interfaces in the subsurface.

Classical simulated annealing is known to be a rather inefficient Monte Carlo
technique, only applicable in cases where a very large number of iterations can be
performed within the available computer resources. However, in the present imple-
mentation we employ a recent version of simulated annealing (Nulton and Salamon
1988; Andresen et al. 1988) in which we are able to extract important statistical
information about the structure of the optimization problem during the computa-
tions. As a result, we have been able to speed up the algorithm significantly. The
efficiency is improved by a factor of 7 to 100, and the fact that highly accurate
results can be produced in a limited time has made the algorithm interesting from a
practical point of view.
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FiG. 1. Misfit function surface for a simple, single trace model optimization problem. The
misfit surface is shown for a 2D cut through the parameter space. The independent param-
eters in the considered plane are two-way traveltimes of two reflectors.
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F1G. 2. Subsurface model used to generate the synthetic test data shown in Fig. 3.
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SEISMIC INTERPRETATION AND INVERSION

Interpretation

Interpretation of seismic data is an extremely complex process in which quanti-
tative as well as qualitative information from several sources is compiled, weighted
and combined into a geological model, which is displayed in such a way that it
throws light on the most important aspects of the considered exploration problem.

The compilation of information includes all kinds of relevant data. One source
of quantitative data is recently and previously recorded seismic data, and possibly
also other kinds of geophysical data such as gravity and magnetic measurements.

Another source of information is qualitative, a priori geological models for the
considered area, derived from the known, or partly known, geology of the con-
sidered area or from neighbouring areas, or from remote geological provinces that
are expected to be geologically similar. Well data from the area or from adjacent
areas can also be used. Quantitative well data include measurements of a number of
physical parameters including mechanical ones. Qualitative well data includes geo-
logical descriptions of cuttings, small pieces of subsurface rock cut loose by the drill
bit and brought up to the surface by the mud flow.

A third, not very often appreciated but extremely important, source of informa-
tion in the interpretation problem is our knowledge of the theoretical connection
between the seismic data and the mechanical properties of the subsurface. Without
this information, an interpretation of the data would be impossible. Part of our
theoretical knowledge of wave generation and propagation is applied during the
conventional data processing. However, even successfully processed data are still
dominated by at least one residual source or wave propagation effect: the wavelet. It
is the interpreter’s knowledge of the effect of this wavelet that initially determines his
ability to resolve fine details in the subsurface.

The seismic wavelet gives rise to two important problems in data interpretation.
Firstly, the oscillatory appearance of the wavelet makes traveltime determination of
events ambiguous, and therefore serious reflector dislocations may occur in the pro-
duced model. Secondly, interference between events results in distortion of their
apparent traveltimes and amplitudes.

The first dislocation effect can be removed in the vicinity of wells, where the
reflectivity derived from the well data can be correlated directly with the seismic
data, and a one-to-one correspondence between reflectors and reflections can be
established. The second interference effect typically remains unsolved by the inter-
preter, due to the qualitative nature of the interpretation process.

Inversion

The above-mentioned interference effect can be solved by traditional, local opti-
mization techniques such as steepest descent search, conjugate gradient search, etc.
The dislocation problem, however, must be solved in advance. In case of sparse
or absent well control, this can only be done by means of a global optimization
technique.
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In order to remove or avoid seismic reflector dislocations, it is natural to simu-
late a technique which is used for removal of crystallographic dislocations, namely
chemical annealing. In this technique, the crystalline material is melted and subse-
quently cooled slowly through its melting point, allowing large, highly ordered crys-
tals to grow. If annealing is performed sufficiently slowly, the crystalline material
eventually consists of one crystal without dislocations. In this state the crystalline
material has the lowest possible internal energy.

As pointed out by Mosegaard and Vestergaard (1991), the analogy between the
seismic inversion process and chemical annealing can be reinforced in the following
way: the subsurface models can be identified with the atomic configurations of the
crystalline material. The misfit function used in the seismic model optimization as a
measure of the difference between synthetic data, computed from a trial model, and
the observed data, can be identified with the energy of the crystal. Furthermore,
random changes in the sub-surface model during a stochastic search can be per-
formed in a way that is analogous to the random movements of atoms in the melted
material or in the crystal lattice. By this analogy, a gradual decrease in the average
size of the ‘thermal movements’ of the model from large values down to zero is
likely to result in a settling into a subsurface model possessing a low value of the
misfit function. Such a model is exactly what we wish to find.

The technical details of this algorithm, which is known as ‘simulated annealing’
(Kirkpatrick, Gelatt and Vecchi 1983) are somewhat more involved than the above
exposition suggests. The interested reader may consult the review by Mosegaard
and Vestergaard (1991).

We have used a recently developed simulated annealing method (Nulton and
Salamon 1988; Andresen et al. 1988). This method needs statistical information
about the system to be optimized, in order to extract optimal annealing schedules.
Reliable statistical information would be difficult to obtain from annealing with a
single copy of the model-algorithm system, since the convergence property of the
simulated annealing algorithm often results in sampling of a limited part of the
model space, typically concentrated around the misfit minimum found by the algo-
rithm. In order to reduce this problem, we run a number of copies of the annealing
at the same time. These copies of the model-algorithm system share the same tem-
perature schedule, but they use different random number sequences, and their initial
states are distributed according the prior knowledge. Hence, their time evolution is
different, and they sample widely different parts of the model space.

CALCULATION OF THE MISFIT

In the present model optimization problem, the misfit function S is the error trace
energy

S(r, 7) = Zo (s(xr, v, m) — d(n))%, @

where d(n) is the nth data sample, s(r, t, n) is the nth sample of the modelled trace,
r and t are vectors of reflection coefficients and two-way traveltimes, respectively,
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and N + 1 is the number of data samples. s(r, t, n) is obtained from the convolu-
tional model of the seismic trace:

s(r, T, n) = i rewin — 7), ©)

where 1, is the two-way traveltime of the kth reflector, w, is the wavelet correspond-
ing to the kth reflection, and K is the number of reflectors considered.

However, for the considered type of global model optimation problems, the time
required to obtain a near-optimal solution by simulated annealing grows rapidly
with the number of parameters to be determined. Therefore it is desirable to reduce
the number of parameters to be optimized by means of simulated annealing.

In the present problem, it is observed that the assumed dependence of the mod-
elled trace s(r, 7, n) on the reflection coefficients r, is linear. Hence, it is possible to
restrict the simulated annealing optimization to the two-way traveltime parameters
7, only, and perform a simple, linear optimization of the reflection coefficients as
part of the misfit calculations. We therefore redefine the misfit function as:

E(t) = miny, S(r, 7). @

In the following, we assume that the wavelets w,(n) are non-zero only in the interval
0<n<N,. For transient wavelets, this situation can always be obtained by
introducing an appropriate time shift. We also assume that none of the individual
reflection events are clipped at the end of the modelled trace. In other words,
0<t,<N-—N,forall k.

The partial derivatives of S with respect to the reflection coefficients r, are given
by

s X N
— = 2s(r, T, n) —dm)wn — 1) =2 Y. elr, T, nw(n — 1), 5)

0 (1]

ark n= n=

where e(r, 1, n) = s(r, T, n) — d(n) is the error trace. The optimal values of r, must

satisfy
s _
or,

(6)

for all k. This leads to the following system of linear equations:

Z I:[ Y, (riw{n — 1) — d(n):IWk(n - Tk)] =0 )

n=0 i=1
for k =1, ..., K. This system of equations is equivalent to the system

N

i Z win — t)win — Tk):| = ), dnwn — 1 ©®)

Ln=0 n=0

M=

]
-
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]
-

L Zwo win + (Tk - Ti))wk(n):' = ;0 d(n)wk(n — Ty). ©)
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If we assume that the wavelet is the same, say w(n), for all reflections, the equations
reduce to

'Zl T; wa(‘ck - Ti) = Rdw(—Tk)a (10)
where
Nw
Ry (® = ), wmw(n + 1) (11)
n=0

is the autocorrelation of the wavelet, and

N
Ry(0) = Y., dmw(n + 1) (12)

is the cross-correlation between the data and the wavelet. From (10), optimal reflec-
tion coefficients r; can be found, if the two-way traveltimes 1, are given. Equations of
the form (10) are known in filter theory as the ‘normal equations’ and they can be
solved very efficiently by the Wiener—Levinson algorithm. In each iteration, a new
set of two-way traveltimes is selected to become candidate destinations for the next
move in the two-way traveltime parameter space (having half the dimensions of the
combined traveltime-reflection coefficient space). The misfit E is now calculated
after having minimized S with respect to the reflection coefficients.

A necessary condition for the system of equations (10) to have a unique solution
is that all the K two-way times 7, are different (no reflectors coincide). This condi-
tion must be satisfied by each perturbation applied to the subsurface models. More-
over, reflectors are not allowed to be too close, since numerical instabillity will occur
when the equations (10) are near singular. Geological situations such as layer pinch-
outs must therefore be treated separately.

Another problem to be mentioned is that a straight linear optimization of the
reflection coefficients for given traveltimes may yield reflection coefficients that
violate the constraints imposed by the prior information. This problem can be
avoided by performing a constrained, linear optimization.

A SYNTHETIC EXAMPLE

The synthetic data test is based on the synthetic seismic response for a model of thin
layers (Fig. 2). The model consists of a layered sequence between a low velocity
half-space above and a high velocity half-space below. The acoustic impedance of
the layers varies laterally, and two layers pinchout from left to right. The data set
(Fig. 3) is generated by convolving the model reflectivity with a 40 ms long, band-
pass filtered wavelet. The target zone is a 400 ms time window over 71 common
depth points, which is a realistic size for many practical applications of target zone
oriented inversion.

In this numerical example, the prior knowledge is sparse. The two-way travel-
times for the layer interfaces are limited to intervals that are slightly longer than one
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FiG. 3. Synthetic data set used in the test example.

wavelet-length, and the amplitudes of the reflections are constrained to be between
—0.2 and 0.2. A weak, lateral smoothness constraint is applied to the reflectors
during the optimization. Even when the wavelet is assumed to be known, these wide
limits on the parameters impose a very large number of local minima on the misfit
function for the model optimization problem.

Five independent copies of the model-algorithm system were allowed to perform
5000 iterations each. Two of these copies settled into a near-optimal solution. In
order to illustrate how the solution to the model optimization problem was formed
during the most successful of these annealing processes, a number of ‘snapshots’ of
intermediate subsurface models are shown for increasing iteration numbers, corre-
sponding to a temperature variation from a very high value (effectively infinity)
down to zero. The main point to notice is how the models in the ensemble gradually
change from being typical samples from the a priori distribution (model parameters
uniformly distributed over the parameter intervals), to models that reflect the infor-
mation contained in the seismic data, under the limitations imposed by the prior
knowledge.

The first subsurface model in Fig. 4 is the result of a substantial number of
iterations at a very high temperature. In this model, the seismic dislocations are very
large, and the resulting model for the acoustic impedance is far from the optimal
model. The illustrated model gives an impression of the weak model constraints
used in this annealing run.

In the first part of the annealing, an initial ordering of the models takes place.
Figure 5 shows a model after the first part of the annealing has taken place. It can
be seen that a layered structure is growing in the upper part of the target zone,
corresponding to the first ordering of a crystal structure in the physical analogy.
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FIG. 4. A typical subsurface model obtained at infinite temperature. The plot shows the
acoustic impedance as a function of two-way traveltimes.
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FI1G. 5. A subsurface model from the ensemble, picked after the first part of the simulated
annealing has taken place.
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FIG. 6. An intermediate temperature subsurface model.
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Fi1G. 7. The best subsurface model found close to zero temperature.
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F1G. 8. Error traces for the model shown in Fig. 7.

After a further lowering of the temperature, models like that shown in Fig. 6 can
be found in the ensemble. An increasing ordering of the model into a layered struc-
ture is seen. This illustrates how the influence of the data on the models increases as
the annealing progresses. The major part of the target zone is not yet resolved at
this intermediate temperature.

When the annealing temperature approaches zero, the models look like that
shown in Fig. 7. These models are near optimal in the misfit sense, that is, the total
error trace energy (Fig. 8) is small, compared to the total trace energy of the data. At
a temperature close to zero, the influence of the data on the model is very strong,
yielding a highly ordered subsurface model. The differences between the models in
the ensemble reflect the limited resolution in the data, the non-uniqueness of the
inverse problem, and possible imperfect convergence of the algorithm. It is seen that
the actual target in this model, namely the pinch-out, located approx. 175 ms below
the top of the target zone, developing from CDP 10 to CDP 40, is resolved at this
point. However, due to end-effects, the error traces build up to the left of this zone.

If the annealing is terminated by a number of iterations at zero temperature
(corresponding to a local optimization starting from the best model obtained from
the annealing), the true model is reached, since the data used in this example is
noise-free.

CONCLUSIONS

The process of seismic interpretation is made difficult by two main types of distor-
tion, both caused by the seismic wavelet: the oscillatory appearance of the individ-
ual reflection events and interference between different events. The former effect
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results in a serious ambiguity in event identification, that is, in establishing a one-to-
one correspondence between geological layer interfaces and features observed in the
seismic data. The latter effect is responsible for minor errors in the estimated
two-way traveltimes, and errors in reflection strengths observed in the seismic data.

Post-stack, sparse spike inversion methods provide quantitative methods for
determining two-way times and reflection coefficients from carefully processed
seismic data. If the event identification problem can be solved by comparing the
seismic data with synthetic seismograms, calculated from well data, the remaining
problem of removing interference effects can be solved by means of traditional, local
optimization methods. However, if sufficient well data are not available, the event
identification problem can only be solved quantitatively by means of a global
optimization technique.

Global optimization methods are typically stochastic, and at present the most
efficient is simulated annealing. In the present work, a recently developed, improved
version of simulated annealing has been shown to produce near-optimal solutions
to a seismic model optimization problem of a realistic size and complexity. An
ensemble, consisting of several copies of the model-algorithm system, sharing the
same temperature schedule but using different random number sequences, is used to
collect statistical information about the model optimization problem, and efficient
annealing temperature schedules are produced.

In order to reduce the computational workload considerably, the optimization
of the reflection coefficients, which turns out to be a simple linear optimization, can
be done separately as part of the misfit calculations. This reduces the dimensionality
of the parameter space, in which the stochastic optimization is performed, to half
the original dimensions. Consequently, the resulting number of accessible model
configurations for the stochastic search decreases drastically, and the average time
taken by the algorithm before a near-optimal model is located, is greatly reduced.
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